Skip to main content

Cutting-Edge Technologies for Terahertz Wave Generation: A Brief History from the Inception Till the Present State of The Art

  • Chapter
  • First Online:
Generation, Detection and Processing of Terahertz Signals

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 794))

  • 1135 Accesses

Abstract

A short review on avalanche transit time devices has been presented in this chapter. From its first proposal till the state of the art, impact avalanche transit time (IMPATT) sources for the generation of terahertz (THz) waves have been briefly described. The noise outputs of the sources at different electromagnetic spectrum have been discussed. The details of deferent device structures, potential materials, popular simulation techniques, etc. are also appended in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shockley W (1954) Negative resistance arising from transit time in semiconductor diodes. Bell Syst Tech J 33:799–826

    Article  Google Scholar 

  2. Read WT (1958) A proposed high frequency negative resistance diode. Bell Syst Tech J 37:401

    Article  Google Scholar 

  3. Lee CA, Batdrof RL, Weigman W, Kaminsky G (1965) The read diode an avalanching transit time negative resistance oscillator. Appl Phys Lett 6:89–91

    Article  Google Scholar 

  4. Johnson RL, Deloach BC, Cohen BG (1965) A silicon diode microwave oscillator. Bell Syst Tech J 44:369–372

    Article  Google Scholar 

  5. Misawa T (1966) The negative resistance in p-n junctions under avalanche breakdown conditions Part-1. IEEE Trans Electron Device 13:137–151

    Article  Google Scholar 

  6. Gilden M, Hines ME (1966) Electronic tuning effects in read microwave avalanche diode. IEEE Trans Electron Devices 13:169–175

    Article  Google Scholar 

  7. Gummel HK, Blue JL (1967) A small-signal theory of avalanche noise in IMPATT diodes. IEEE Trans Electron Devices 14:569–580

    Article  Google Scholar 

  8. Fisher ST (1967) Small-signal impedance of avalanche junctions with unequal electron and hole ionization rates and drift velocities. IEEE Trans Electron Devices 14:313–322

    Article  Google Scholar 

  9. Gewartowski JW (1968) The effect of series resistance on avalanche diode oscillator frequency. J Appl Phys 46:31

    Google Scholar 

  10. Kwok SP, Haddad GI (1972) Effect of tunnelling on an impatt oscillator. J Appl Phys 43:3824–3830

    Article  Google Scholar 

  11. Culshaw B (1974) Effect of carrier diffusion on operation of avalanche diodes. Electron Lett 10:143SS

    Google Scholar 

  12. Lee CM, Seddik ME, Haddad GI (1974) Effect of ionisation rates on Si IMPATT diodes. IEEE Trans Electron Devices 21:808

    Article  Google Scholar 

  13. Pearsall TP, Capasso F, Nahory RE, Pallock MA, Chelikowsky JR (1978) The band structure dependence of impact ionization by hot carriers in semiconductors: GaAs. Solid state Electron 21:297

    Article  Google Scholar 

  14. Lee MH, Sze SM (1980) Orientation dependence of Breakdown voltage in GaAs. Solid State Electron 23:1007

    Article  Google Scholar 

  15. Scharfetter DL, Evans WJ, Johnson HL (1970) Double drift region p+pnn+ avalanche diode oscillators. Proc IEEE (Lett) 50:1131

    Google Scholar 

  16. Seidel TE, Davis RE, Jglesias DE (1970) DDR ion-implanted (p+pnn+) mm-wave IMPATT diodes. Inst. Electron devices Meeting, Washington DC, USA, 28th–30th Oct 1970, pp 52

    Google Scholar 

  17. Roy SK, Sridharan M, Ghosh R, Pal BB (1979) Computer method for the dc field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer. In: Miller JH (ed) Proceeding of the 1st conference on numerical analysis of semiconductor devices (NASECODE I). Dublin, Ireland, pp 266–274

    Google Scholar 

  18. Roy SK, Banerjee JP, Pati SP (1985) A computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT Diodes. In: Proceeding 4th conference on numerical analysis of semiconductor devices (NASECODE IV) (Dublin), Ireland, pp 494–500

    Google Scholar 

  19. Banerjee JP, Luy JF, Schaffler F (1991) Comparison of theoretical and experimental 60 GHz silicon IMPATT diode performance. Electron Lett 27:1049–1050

    Article  Google Scholar 

  20. Som B, Pal BB, Roy SK (1974) A small-signal analysis of an IMPATT device having two avalanche layers interspaced by a drift layer. Solid State Electron 17:1029

    Article  Google Scholar 

  21. Dutta DN, Pati SP, Banerjee JP, Pal BB, Roy SK (1982) Computer analysis of DC field and current density profiles of DAR Impatt diodes. IEEE Trans Electron Devices 29:677–632

    Google Scholar 

  22. Pati SP, Banerjee JP, Roy SP (1991) High frequency numerical analysis of DAR impatt diode. Semicond Sci Tech 6:777–783

    Article  Google Scholar 

  23. Cruz RDL, Zemliak A, Alexander M (2004) Characteristics of the double avalanche region IMPATT diode in millimetric range. In: 14th international conference on electronics, communications and computers, 2004 (CONIELECOMP 2004), 16–18th Feb 2004, pp 223–227

    Google Scholar 

  24. Zemliak A, Ostrovsky A, Vergara S, Machusskiy E (2011) Analysis and optimization of a DAR IMPATT Diode for 330 GHz. In: CISST'11 proceedings of the 5th WSEAS international conference on circuits, systems, signal and telecommunications, pp 95–101

    Google Scholar 

  25. Takayama Y (1975) Effect of temperature on devices admittance of GaAs and Si IMPATT diodes. IEEE Trans Microw Theory Tech 23:673

    Google Scholar 

  26. Hirachi Y, Nishi H, Shireda M, Fukakawa Y (1975) Millimeter wave IMPATT diodes with improved efficiency by using ion-implanted ohmic contact. Proc IEEE Lett 63:1367–1367

    Article  Google Scholar 

  27. Gupta MS (1975) A simple approximate method to estimate the effect of carrier diffusion in Impatt diodes. Solid State Electron 18:327

    Article  Google Scholar 

  28. Chive M, Constant E, Lefebvre M, Ribetich JP (1975) Effect of tunneling on high efficiency Impatt avalanche diode. Proc IEEE (Lett) 63:824–826

    Article  Google Scholar 

  29. Winterbon KB (1975) Ion implantation range and energy deposition distributions, vol. 2. New York, IFI/Plenum Press

    Google Scholar 

  30. Doumitria I, Salmer G, Constant E (1975) High frequency limitation of Silicon IMPATT diode velocity modulation. J Appl Phys 46:1831

    Google Scholar 

  31. Wan CP, Chang YS, Denoglar EJ (1975) Multilayer epitaxially grown silicon IMPATT diodes at millimeter wave frequencies. J Electron Mater 4(1):119–129

    Article  Google Scholar 

  32. Acharyya A, Banerjee JP (2014) Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci 4:1–14

    Article  Google Scholar 

  33. Acharyya A, Banerjee JP (2013) Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J Res 59(2):118–127

    Article  Google Scholar 

  34. Acharyya A, Mallik A, Banerjee D, Ganguli S, Das A, Dasgupta S, Banerjee JP (2014) Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies. Journal of Semiconductors 35(8):084003-1-10

    Google Scholar 

  35. Kwok SP, Hadded GI (1972) Effects of tunnelling on an IMPATT oscillator. J Appl Phys 43:3824–3860

    Article  Google Scholar 

  36. Nishizawa J, Motoya K, Okuno Y (1978) GaAs TUNNET diodes. IEEE Trans MTT 26(12):1029–1035

    Article  Google Scholar 

  37. Elta EM, Hadded GI (1979) High frequency limitations of IMPATT, MITATT and TUNNET mode devices. IEEE Trans. on MTT 27:442

    Article  Google Scholar 

  38. Elta EM, Hadded GI (1978) Mixed tunnelling and avalanche mechanism in p-n junctions and their effects on microwave transit-time devices. IEEE Trans Electron Devices 25(6):694–702

    Article  Google Scholar 

  39. Luy JF, Kuehnf R (1989) Tunneling assisted IMPATT operation. IEEE Trans Electron Devices 36(3):589–595

    Article  Google Scholar 

  40. Dash GN, Pati SP (1992) A generalized simulation method for IMPATT mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond Sci Technol 7:222–230

    Article  Google Scholar 

  41. Elta EM (1978) The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes. Ph.D. dissertation, Electron Physics Laboratory at the University of Michigan, Ann Arbor, MI, Tech Rep

    Google Scholar 

  42. Kane EO (1961) Theory of tunneling. J Appl Phys 32:83–91

    Article  MathSciNet  MATH  Google Scholar 

  43. Eisele H, Hadded GI (1995) GaAs TUNNETT diodes on diamond sink for 100 GHz and above. IEEE Trans MTT 43(1):210

    Article  Google Scholar 

  44. Dash GN (1995) A new design approach for MITATT and TUNNETT mode devices. Solid State Electron 38:1381–1385

    Article  Google Scholar 

  45. Acharyya A, Mukherjee M, Banerjee JP (2013) Effects of tunnelling current on mm-wave IMPATT devices. Int J Electron 102(9):1429–1456

    Article  Google Scholar 

  46. Acharyya A, Mukherjee M, Banerjee JP (2011) Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Sci Technol 4(1):26–41

    Google Scholar 

  47. Acharyya A, Mukherjee M, Banerjee JP (2011) Studies on the millimeter-wave performance of MITATTs from avalanche transit time phase delay. In: Proceeding of IEEE applied electromagnetics conference 2011, Kolkata, India, 18–22 Dec 2011, pp 1–4

    Google Scholar 

  48. Luy JF, Casel A, Behr W, Kasper E (1987) A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans Electron Devices 34:1084–1089

    Article  Google Scholar 

  49. Wollitzer M, Buchler J, Schafflr F, Luy JF (1996) D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron Lett 32:122–123

    Google Scholar 

  50. Huang HC (1973) A modified GaAs IMPATT structure for high-efficiency operation. IEEE Trans Electron Devices 20(5):482–486

    Article  Google Scholar 

  51. Goldwasser RE, Rosztoczy FE (1974) High efficiency GaAs low-high-low IMPATTs. Appl Phys Lett 25:92

    Article  Google Scholar 

  52. Bozler CO, Donelly JP, Murphy RA, Laton RW, Sudhury RN, Lindley WT (1976) High efficiency ion implanted Lo-hi-lo GaAs IMPATT diodes. Appl Phys Lett 29:123–125

    Article  Google Scholar 

  53. Adlerstein MG, Chu SLG (1984) GaAs IMPATT diodes for 60 GHz. IEEE Electron Devices Let 5:97–98

    Article  Google Scholar 

  54. Eisele H (1989) Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid State Electron 32(3):253–257

    Article  Google Scholar 

  55. Eisele H (1990) GaAs W-band IMPATT diode for very low noise oscillations. Electron Lett 26(2):109–110

    Article  Google Scholar 

  56. Eisele H, Hadded GI (1992) GaAs single-drift flat profile IMPATT diodes for CW operation at D band. Electron Lett 28(23):2176–2177

    Article  Google Scholar 

  57. Kearney MJ, Couch NR, Stephens JS, Smith RS (1992) Low noise, high efficiency GaAs IMPATT diodes at 30 GHz. Electron Lett 28(8):706–708

    Article  Google Scholar 

  58. Curow M (1994) Proposed GaAs IMPATT device structure for D-band applications. Electron Lett 30(19):1629–1631

    Article  Google Scholar 

  59. Tschernitz M, Freyer J, Grothe H (1994) GaAs read-type IMPATT diodes for D-band. Electron Lett 30(13):1070–1071

    Article  Google Scholar 

  60. Tschernitz M, Freyer J (1995) 140 GHz GaAs double-read IMPATT diodes. Electron Lett 31(7):582–583

    Article  Google Scholar 

  61. Berenz JJ, Fank FB, Hierl TL (1978) Ion-implanted p-n junction Indium-Phosphide IMPATT diodes. Electron Lett 14(21):683–684

    Article  Google Scholar 

  62. Banerjee JP, Pati SP, Roy SK (1984) High frequency characterisation of double drift region InP and GaAs diode. Appl Phys A 48:437–443

    Article  Google Scholar 

  63. Eisele H, Chen CC, Munns GO, Haddad GI (1996) The potential of InP IMPATT diodes as high-power millimeter-wave sources: First experimental results. IEEE MTT-S Inter Microwave Symp Dig 2:529–532

    Google Scholar 

  64. Mukherjee M, Banerjee S, Banerjee JP (2010) Dynamic characteristics of III-V and IV-IV semiconductor based transit time devices in the terahertz regime: a comparative analysis. Terahertz Sci Technol 3:98–109

    Google Scholar 

  65. Mukherjee M, Mazumder N, Roy SK, Goswami K (2007) Terahertz frequency performance of double drift IMPATT diode based on opto-sensitive semiconductor. In: Proceeding of Asia-Pacific microwave conference, pp 1–4

    Google Scholar 

  66. Acharyya A, Banerjee S, Banerjee JP (2012) Calculation of avalanche response time for determining the high frequency performance limitations of IMPATT devices. J Electron Dev 12:756–760

    Google Scholar 

  67. Mukherjee M, Mazumder N, Roy SK (2009) Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime. Active Passive Electron Componen 1–9

    Google Scholar 

  68. Panda AK, Parida RK, Agarwala NC, Dash GN (2007) A comparative study on the high band gap materials (GaN and SiC)-based IMPATTs. In: Proceding of Asia-pacific microwave conference, pp 1–4

    Google Scholar 

  69. Panda AK, Pavlidis D, Alekseev E (2001) DC and high-frequency characteristics of GaN-based IMPATTs. IEEE Trans Electron Devices 48:820–823

    Article  Google Scholar 

  70. Banerjee S, Mukherjee M, Banerjee JP (2010) Bias current optimization of Wurtzite-GaN DDR IMPATT diode for high power operation at THz frequencies. Int J Adv Sci Technol 16:12–20

    Google Scholar 

  71. Yuan L, James A, Cooper JA, Melloch MR, Webb KJ (2001) Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Device Letter 22:266–268

    Article  Google Scholar 

  72. Vassilevski KV, Zorenko AV, Zekentes K, Tsagaraki K, Bano E, Banc C, Lebedev A (2001) 4H-SiC IMPATT diode fabrication and testing. In: Technical digest of international conference on SiC and related materials, Tsukuba, Japan, pp 713–714

    Google Scholar 

  73. Trew RJ, Yan JB, Mock PM (1991) The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE 79(5):598–620

    Article  Google Scholar 

  74. Osman MA, Andrews G, Kreskovsky JP, Grubin HL (1989) Numerical simulation studies of semiconducting diamond electronic devices. Final Report on Contract DNA001–87-C-0250, Defense Nuclear Agency 1989

    Google Scholar 

  75. Mock PM, Trew RJ (1989) RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. In: Proceeding of IEEE/cornell conference advanced concepts in high-speed semiconductor devices and circuits, pp 383–389

    Google Scholar 

  76. Vyas HP, Gutmann RJ, Borrego JM (1977) Leakage current enhancement in IMPATT oscillator by photo-excitation. Eletron Lett 13:189–190

    Article  Google Scholar 

  77. Yen HW, Barnoski MK, Hunsperger RG, Melville RT (1977) Switching of GaAs IMPATT diode oscillator by optical illumination. Appl Phys Lett 31:120–121

    Article  Google Scholar 

  78. Schweighart A, Vyas HP, Borrego JM, Gutmann RJ (1978) Avalanche diode structure suitable for microwave-optical interaction. Solid-Sate Electron 21:1119–1121

    Article  Google Scholar 

  79. Vyas HP, Gutmann RJ, Borrego JM (1979) Effect of hole versus electron photocurrent on microwave-optical interactions in impatt oscillators. IEEE Trans Electron Devices 26(3):232–234

    Article  Google Scholar 

  80. Forrest JR, Seeds AJ (1978) Optical injection locking of impatt oscillators. Electron Lett 14(19):626–627

    Article  Google Scholar 

  81. Seeds AJ, Augusto A (1990) Optical control of microwave semiconductor devices. IEEE Trans Microw Theory Tech 38(5):577–585

    Google Scholar 

  82. Mukherjee R, Banerjee JP (1994) Effect of electron and hole dominant photocurrent on the millimeter-wave properties of indium phosphide impatt diode at 94 GHz. Semicond Sci Technol 9:1–4

    Google Scholar 

  83. Mukherjee M, Majumder N (2007) Optically illuminated 4H-SiC terahertz IMPATT device. Egypt J Solids 30(1):87–101

    Article  Google Scholar 

  84. Mukherjee M, Majumder N, Roy SK (2008) Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high power source at 0.7 terahertz frequency regime. Active Passive Electron Compon 1–9

    Google Scholar 

  85. Mukherjee M, Roy SK (2009) Optically modulated III-V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans Electron Device 56(7):1411–1417

    Article  Google Scholar 

  86. Banerjee S, Chakrabarti I, Baidya R, Banerjee JP (2010) Studies on frequency chirping in optical illuminated α-Gallium Nitride Impatt Diodes at Sub-millimeter wave frequency. J Telecommun 3(2):1–8

    Google Scholar 

  87. Banerjee S, Banerjee JP (2010) Studies on Optical Modulation of III-V GaN and InP based DDR Impatt diode at Sub-millimeter wave frequency. Int J Eng Sci Technol 2(7):2790–2801

    Google Scholar 

  88. Mukhopadhyay J, Banerjee S, Banerjee JP (2010) A comparative study on indium phosphide and α-gallium nitride based impatt oscillators for terahertz communication. J Telecommun 3(1):14–21

    Google Scholar 

  89. Acharyya A, Banerjee JP (2011) A comparative study on the effect of optical illumination on Si1-xGex and Si based DDR IMPATT diodes at W-Band. Iran J Electron Electr Eng 7(3):179–189

    Google Scholar 

  90. Acharyya A, Banerjee JP (2012) Analysis of photo-irradiated double-drift region silicon impact avalanche transit time devices in the millimeter-wave and terahertz regime. Terahertz Sci Technol 5(2):97–113

    Google Scholar 

  91. Midford TA, Bowers HC (1968) A two-port IMPATT diode travelling wave amplifier. Proc IEEE 56:1724–1725

    Article  Google Scholar 

  92. Lee DH, Weller KP, Thrower WF (1978) Ion-implanted planner mesa IMPATT diodes for millimeter wavelengths. IEEE Trans Electron Devices 25:714–722

    Article  Google Scholar 

  93. Bayraktaroglu B (1988) Monolithic 60 GHz GaAs IMPATT oscillators. IEEE Trans MTT 36(12):1925–1929

    Article  Google Scholar 

  94. Lei WN, Stacey W, Brooks RC, Donegan K, Hoke WE (1988) Millimeter-wave monolithic GaAs IMPATT VCO. IEEE Trans MTT 36(12):1942–1947

    Article  Google Scholar 

  95. Luy JF, Strohm KM, Benchler J (1988) Silicon monolithic mm-wave IMPATT Oscillator. In: Conference Paper, Microwave exhibition and publishers, Turnbridge Wells (UK), pp382–387

    Google Scholar 

  96. Bayraktaroglu B (1988) V-band monolithic IMPATT VCO. IEEE MTT-S Inter Microw Sympos Dig 2:687–690

    Google Scholar 

  97. Camilleri N, Bayraktaroglu B (1988) Monolithic millimeter-wave IMPATT oscillator and active antenna. IEEE MTT-S Inter Microw Symp Dig 2:955–958

    Google Scholar 

  98. Stabile PJ, Lalevic B (1989) Lateral IMPATT diodes. IEEE Trans Electron Devices 10(6):249–251

    Article  Google Scholar 

  99. Al-Attar T, Mulligan M, Lee TH (2004) Lateral IMPATT diodes in standard CMOS technology. Int Electron Devices Meet Dig 459–462. Washington, DC, 13–14 Dec 2004

    Google Scholar 

  100. Al-Attar T, Mulligan M, Lee TH (2005) A 77 GHz monolithic IMPATT transmitter in standard CMOS technology. IEEE MTT-S Int Microwave Symp Dig Long Beach, CA, June 2005

    Google Scholar 

  101. Al-Attar T, Lee TH (2005) Monolithic integrated millimeter-wave IMPATT transmitter in standard cmos technology. IEEE Trans MTT 53(11):3557–3561

    Article  Google Scholar 

  102. Al-Attar T (2011) CMOS diodes operating beyond avalanche frequency. In: 12th International symposium on quality electronic design (ISQED), 14–16 Mar 2011, pp 1–6

    Google Scholar 

  103. Acharyya A, Banerjee JP (2012) A proposed lateral DDR IMPATT structure for better millimeter-wave optical interaction. In: IEEE international conference on devices, circuits and systems 2012,Karunya University, Coimbatore, Tamil Nadu, India, 15–16 Mar 2012, pp 599–602

    Google Scholar 

  104. Acharyya A, Banerjee S, Banerjee JP (2012) Optical control of millimeter-wave lateral double-drift region silicon IMPATT device. Radioengineering 21(4):1208–1217

    Google Scholar 

  105. Tager AS (1965) Current fluctuations in semiconductor (dielectric) under the conditions of impact ionization and avalanche breakdown. Sov Phys Solid State 4:1919–1925

    Google Scholar 

  106. Hine ME (1966) Noise theory of Read type avalanche diode. IEEE Trans Electron Devices 13:57–60

    Google Scholar 

  107. Inkson JK (1958) Noise generation under large signal conditions in the Read micro-wave avalanche diode. Int J Electron 25:1–12

    Article  Google Scholar 

  108. Haus HA, Statz H, Pucel PA (1971) Optimum noise measure of IMPATT diode. IEEE Trans MTT 19:801–8123

    Article  Google Scholar 

  109. Kuvas RL (1972) Noise in IMPATT diodes Intrinsic properties. IEEE Trans Electron Devices 19:220–226

    Article  Google Scholar 

  110. Elta ME, Haddad GI (1978) Mixed tunneling and avalanche mechanism in p-n junctions and their effects on microwave transit time devices. IEEE Trans Electron Devices 25:694–702

    Article  Google Scholar 

  111. Dash GN, Mishra JK, Panda AK (1996) Noise in mixed tunneling avalanche transit time (MITATT) diodes. Solid-State Electron 39(10):1473–1479

    Google Scholar 

  112. Mishra JK, Panda AK, Dash GN (1997) An extremely low-noise heterojunction IMPATT. IEEE Trans Electron Devices 44(12):2143–2148

    Article  Google Scholar 

  113. Acharyya A, Mukherjee M, Banerjee JP (2010) Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time.(MITATT) diode. Int J Electr Electron Eng 4(8):577–584

    Google Scholar 

  114. Acharyya A, Mukherjee M, Banerjee JP (2011) Noise in millimeter-wave mixed tunneling avalanche transit time diodes”. Arch Appl Sci Res 3(1):250–266

    Google Scholar 

  115. Banerjee S, Acharyya A, Banerjee JP (2012) Millimeter-wave and noise properties of Si~Si1-xGex heterojunction double-drift region MITATT devices at 94 GHz. In: IEEE Conference CODEC 2012, Kolkata, India, 17–19 Dec 2012, pp 1–4

    Google Scholar 

  116. Acharyya A, Banerjee S, Banerjee JP (2013) Effect of photo-irradiation on the noise properties of double-drift silicon MITATT device. Int J Electron 101(9):1270–1286

    Article  Google Scholar 

  117. Banerjee S, Acharyya A, Mitra M (2012) Dependence of noise properties on photon flux incident on Silicon MITATT device at millimeter-wave window frequencies. Procedia Technol 4:431–436

    Article  Google Scholar 

  118. Chan WL, Deibel J, Mittleman DM (2007) Imaging with terahertz radiation. Rep Prog Phys 70:1325–1379

    Article  Google Scholar 

  119. Grischkowsky D, Keiding S, Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B 7:2006–2015

    Article  Google Scholar 

  120. Debus C, Bolivar PH (2007) Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett 91:184102

    Google Scholar 

  121. Yasui T, Yasuda T, Sawanaka K, Araki T (2005) Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt 44:6849–6856

    Article  Google Scholar 

  122. Stoik CD, Bohn MJ, Blackshire JL (2008) Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Expr 16:17039–17051

    Article  Google Scholar 

  123. Jördens C, Koch M (2008) Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt Eng 47:037003

    Google Scholar 

  124. Fitzgerald AJ, Cole BE, Taday PF (2005) Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J Pharm Sci 94:177–183

    Article  Google Scholar 

  125. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech 52:2438–2447

    Article  Google Scholar 

  126. Siegel PH (2007) THz instruments for space. IEEE Trans Antenn Propag 55:2957–2965

    Article  Google Scholar 

  127. Ward J, Schlecht E, Chattopadhyay G, Maestrini A, Gill J, Maiwald F, Javadi H, Mehdi I (2004) Capability of THz sources based on schotiky diode frequency multiplier chains. IEEE MTT-S Dig 12:1587–1590

    Google Scholar 

  128. Heyminck S, Güsten R, Graf U, Stutzki J, Hartogh P, Hübers HW, Ricken O, Klein B (2009) GREAT: ready for early science aboard SOFIA. In: Proceding of 20th international symposium space THz technology, Charlottesville, VA, pp 315–317

    Google Scholar 

  129. Crowe TW, Hesler JL, Retzloff SA, Pouzou C, Schoenthal GS (2011) Solid state LO sources for greater than 2THz. In: 2011 ISSTT digest, 22nd symposium on space terahertz technology. Tucson Arizona, USA

    Google Scholar 

  130. Crowe TW, Hesler JL, Retzloff SA, Pouzou C, Hester JL (2011) Multiplier based sources for frequencies above 2 THz,” In: 36th international conference on infrared, millimeter and terahertz sources (IRMMW-THz), pp 1–4

    Google Scholar 

  131. Maestrini A, Mehdi I, Siles JV, Ward J, Lin R, Thomas B, Lee C, Gill J, Chattopadhyay G, Schlecht E, Pearson J, Siegel P (2012) First demonstration of a tunable electronic source in the 2.5–2.7 THz Range. IEEE Trans Terahertz Sci Tech 3:112–123

    Google Scholar 

  132. Lynch SA et al (2005) Silicon quantum cascade lasers for THz sources. In: 18th annual meeting of the IEEE on lasers and electro-optics society. Leos 22–28 Oct 2005, pp 728–729

    Google Scholar 

  133. Seo M, Urteaga M, Hacker J, Young A, Griffith Z, Jain V, Pierson R, Rowell P, Skalare A, Peralta A, Lin R, Pukala D, Rodwell M (2011) InP HBT IC technology for terahertz frequencies: fundamental oscillators Up to 0.57 THz. IEEE J Solid-State Circuits 46(10):2203–2214

    Google Scholar 

  134. Gray WW, Kikushima L, Morentc NP, Wagner RJ (1969) Applying IMPATT power sources to modern microwave systems. IEEE J Solid-State Circuits 4:409–413

    Article  Google Scholar 

  135. Chang Y, Hellum JM, Paul JA, Weller KP (1977) Millimeter-wave IMPATT sources for communication applications. IEEE MTT-S Inter Microw Symp Dig 4:216–219

    Article  Google Scholar 

  136. Midford TA, Bernick RL (1979) Millimeter Wave CW IMPATT diodes and Oscillators. IEEE Trans Microw Theory Tech 27:483–492

    Article  Google Scholar 

  137. Dalle C, Rolland P, Lieti G (1990) Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans Electron Devices 37:227–236

    Article  Google Scholar 

  138. Luschas M, Judaschke R, Luy JF (2002) Measurement results of packaged millimeter-wave silicon IMPATT diodes. In: Proceeding of 27th international conference on infrared and millimeter waves, conference digest, pp 135–136

    Google Scholar 

  139. Luschas M, Judaschke R, Luy JF (2002) Simulation and measurement results of 150 GHz integrated silicon IMPATT diodes. IEEE MTT-S Inter Microw Symp Dig 12:1269–1272

    Google Scholar 

  140. Shih HD, Bayraktaroglu B, Duncan WM (1983) Growth of millimeter-wave GaAs IMPATT structures by molecular beam epitaxy. J Vac Sc Technol B Microelectron Nanometer Struct 1:199–201

    Article  Google Scholar 

  141. Shih HD, Bayraktaroglu B, Duncan WM (2021) Diamond a cut above the rest. Available from: http://www.akhantech.com/about.html. (Accessed on Apr 2021)

  142. Johnson EO (1965) Physical limitations on frequency and power parameters of transistors. RCA Rev 26:163–177

    Google Scholar 

  143. Baliga BJ (1989) Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett 10(10):455–457

    Article  Google Scholar 

  144. Evans WJ, Haddad GI (1968) A large-signal analysis of IMPATT diodes. IEEE Trans Electron Devices 15(10):708–717

    Article  Google Scholar 

  145. Scharfetter DL, Gummel HK (1969) Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices 6(1):64–77

    Article  Google Scholar 

  146. Gupta MS, Lomax RJ (1973) A current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans Electron Devices 20:395–399

    Article  Google Scholar 

  147. Acharyya A, Banerjee S, Banerjee JP (2013) Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J Semicond 34(2):024001–024012

    Article  Google Scholar 

  148. Acharyya A, Banerjee S, Banerjee JP (2012) Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4):1218–1225

    Google Scholar 

  149. Acharyya A, Banerjee JP, Banerjee S (2012) Temperature transient effect on the large-signal properties and frequency chirping in pulsed silicon DDR IMPATTs at 94 GHz. In: IEEE Conference CODEC 2012, Kolkata, India, 17–19 Dec 2012, pp 5–7

    Google Scholar 

  150. Biswas A, Sinha S, Acharyya A, Banerjee A,.Pal S, Satoh H, Inokawa H (2018) 1.0 THz GaN IMPATT source: effect of parasitic series resistance. J Infrared Millimeter Terahertz Waves 39(10):954–974

    Google Scholar 

  151. Ray UC, Gupta AK (1988) Measurement of electrical series resistance of W-band Si IMPATT diode. In: 2nd Asia Pacific microwave conference proceedings, China, pp 434–437

    Google Scholar 

  152. Adlerstein MG, Holway LH, Chu SLG (1983) Measurement of series resistance in IMPATT diodes. IEEE Trans Electron Devices 30:179–182

    Article  Google Scholar 

  153. Mitra M, Das M, Kar S, Roy SK (1993) A study of the electrical series resistance of Si IMPATT diodes. IEEE Trans Electron Devices 40:1890–1893

    Article  Google Scholar 

  154. Pal TK (2009) Series resistance of silicon millimeter wave (Ka-band) IMPATT diodes. Def Sci J 59:189–193

    Article  Google Scholar 

  155. Acharyya A, Banerjee S, Banerjee JP (2013) A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-Band Si IMPATTs from the electric field snap-shots. Int J Microw Wirel Technol 5(1):91–100

    Article  Google Scholar 

  156. Acharyya A, Banerjee S, Banerjee JP (2012) A proposed method to study the parasitic resistance of Ka-band silicon IMPATT diode from large-signal electric field snap-shots. In: IEEE conference CODIS-2012, Jadavpur University, W. B., India, 28–29 Dec 2012,pp 133–136

    Google Scholar 

  157. Acharyya A, Banerjee S, Banerjee JP (2013) Influence of skin effect on the series resistance of millimeter-wave IMPATT devices. J Comput Electron 12:511–525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, M., Acharyya, A., Biswas, A. (2022). Cutting-Edge Technologies for Terahertz Wave Generation: A Brief History from the Inception Till the Present State of The Art. In: Acharyya, A., Biswas, A., Das, P. (eds) Generation, Detection and Processing of Terahertz Signals. Lecture Notes in Electrical Engineering, vol 794. Springer, Singapore. https://doi.org/10.1007/978-981-16-4947-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4947-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4946-2

  • Online ISBN: 978-981-16-4947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics