Skip to main content

Wastewater Pollution, Types and Treatment Methods Assisted Different Amendments. A Review

  • Chapter
  • First Online:
Managing Plant Production Under Changing Environment

Abstract

Mining activities, industrial processing, domestic and agricultural use of metal and metal-containing compounds have resulted in the release of toxic metals into the atmosphere, which has become a widespread environmental problem as a result of global industrialization. Metal contamination has grave consequences for human health and the environment. Few heavy metals are toxic and lethal in trace quantities, and others are teratogenic, mutagenic and endocrine disruptors, while others cause behavioural and neurological disorders. As a result, heavy metal remediation from polluted sites could be the only viable alternative for reducing the harmful effects on ecosystem health. Reclamation methods used in the past were both costly and detrimental to the ecosystem. Phytoremediation is a modern set of technologies that utilises green plants to eliminate toxins from the atmosphere. It has been promoted as a cost-effective and noninvasive alternative to traditional engineering-based remediation methods. The use of organic chelators such as citric acid, ascorbic acid, oxalic acid etc., increased metal uptake and accumulation in plant roots, stems and leaves significantly. Thus, keeping in view the above facts, an attempt has been made in this article to review the best remediation technique, and the role of different amendments in increasing heavy metals uptake and accumulation in along with their ameliorating role in plant stress by supporting its normal growth and functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash MR, Srikantaswamy S, Shiva Kumar D, Jagadish K, Shruthi L (2016) Phytoremediation of heavy metal industrial contaminated soil by Spiracia oleracea L. and Zea mays L. Int J Appl Sci 4:1

    Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    CAS  PubMed  Google Scholar 

  • Adriano DC, Wenzel W, Vangronsveld J, Bolan N (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122(2):121–142

    CAS  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22(15):11679–11689

    CAS  Google Scholar 

  • Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170

    Google Scholar 

  • Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijayae L, Alyemenie MN, Ahmad P (2019) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant

    Google Scholar 

  • Akinci I, Akinci S, Yilmaz K (2010) Response of tomato (Solanum lycopersicum L.) to lead toxicity: growth, element uptake, chlorophyll and water content. Afr J Agric Res 5(6):416–423

    Google Scholar 

  • Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes-a view from the rhizosphere. Plant and Soil 337(1):33–50

    CAS  Google Scholar 

  • Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376

    CAS  PubMed  Google Scholar 

  • Amir W, Farid M, Ishaq HK, Farid S, Zubair M, Rizwan M, Raza N, Ali S (2020) Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury. Chemosphere 257:127247

    CAS  PubMed  Google Scholar 

  • Ashfaq H, Abubakar M, Ghulzar H, Farid M, Yaqoob S, Komal N, Azam Z, Hamza A, Ali S, Adrees M (2020) Phytoremediation potential of oilseed crops for Lead- and nickel-contaminated soil. In: Hasanuzzaman M (ed) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives II, mechanisms of adaptation and stress amelioration. Springer, Singapore, pp 801–820. https://doi.org/10.1007/978-981-15-2172-0_31

    Chapter  Google Scholar 

  • Bahnmüller S, Loi CH, Linge KL, Von Gunten UV, Canonica S (2015) Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2. Water Res 74:143–154

    PubMed  Google Scholar 

  • Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM (2011) Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Sci Total Environ 409(19):4087–4093

    CAS  PubMed  Google Scholar 

  • Belluck DA, Benjamin SL, David S (2006) Why remediate? Phytoremed Metal-Contam Soils 68:1–23

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals. Wiley, New York, p 53

    Google Scholar 

  • Boczkaj G, Fernandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J 320:608–633

    CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369

    CAS  Google Scholar 

  • Carvalho PN, Basto MCP, Almeida CMR, Brix H (2014) A review of plant–pharmaceutical interactions: from 483 uptake and effects in crop plants to phytoremediation in constructed wetlands. Environ Sci Pollut Res 21(20):11729–11763

    Google Scholar 

  • CCME-Canadian Council of Ministers of the Environment (2007) Summary of a protocol for the derivation of environmental and human health soil quality guidelines. CCME, Winnipeg

    Google Scholar 

  • Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves RD, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Banuelos GS, Terry N (eds) Proceedings of the symposium on phytoremediation, fourth international conference on the biogeochemistry of trace elements. CRC Press, Boca Raton, pp 129–158

    Google Scholar 

  • Colo MS, Guglielmino SPP, Solinas V, Salis A (2016) Consequences of microbial interactions with hydrocarbons. Oil Lipids Prod Fuels Chem 5:1–20

    Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6(3):2605–2618

    CAS  Google Scholar 

  • de Souza MP, Pickering IJ, Walla M, Terry N (2002) Selenium assimilation and volatilization from Selenocyanate-treated Indian mustard and musk grass. Plant Physiol 128(2):625–633

    PubMed  PubMed Central  Google Scholar 

  • DeCastro BR, Korrick SA, Spengler JD, Soto AM (2006) Estrogenic activity of polychlorinated biphenyls present in human tissue and the environment. Environ Sci Technol 40:2819–2825

    CAS  PubMed  Google Scholar 

  • Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremed 11(2):97–114

    CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    CAS  PubMed  Google Scholar 

  • EPA (2012) A citizen’s guide to phytoremediation. EPA, Washington

    Google Scholar 

  • Evangelou MWH, Ebel M, Hommes G, Schaeffer A (2008) Biodegradation: the reason for the inefficiency of small organic acids in Chelant-assisted phytoextraction. Water Air Soil Pollut 195:177–188

    CAS  Google Scholar 

  • Farid M, Ali S, Akram NA, Rizwan M, Abbas F, Bukhari SAH, Saeed R (2017) Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ Sci Pollut Res 24(20):16845–16859

    CAS  Google Scholar 

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of EDTA enhanced phytoremediation of cadmium by Brassica napus L. Int J Environ Sci Technol 12(12):3981–3992

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MIA, Ata-Ul-Karim ST, Bukhari SAH (2018) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151(30):255–265

    CAS  PubMed  Google Scholar 

  • Farid M, Farid S, Zubair M, Rizwan M, Ishaq HK, Ali S, Ashraf U, Alhaithloul HAS, Gowayed S, Soliman MH (2020) Efficacy of Zea mays L. for the management of marble effluent contaminated soil under citric acid amendment; morpho-physiological and biochemical response. Chemosphere 240:124930

    CAS  PubMed  Google Scholar 

  • Fayiga AO, Ma LQ (2005) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 15(1–3):17–25

    Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92(2):213–217

    CAS  PubMed  Google Scholar 

  • Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408(17):3683–3688

    CAS  PubMed  Google Scholar 

  • Gent B, Bricka RM, Alshawabkeh AN, Larson SL, Fabian G, Granade S (2004) Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetics. J Hazard Mater 110(1–3):53–62

    CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41(10):2031–2037

    CAS  Google Scholar 

  • Göthberg A, Greger M, Holm K, Bengtsson BE (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J Environ Qual 33(4):1247–1255

    PubMed  Google Scholar 

  • Gregoraszczuk EL, Grochowalski A, Chrzaszcz R, Wegiel M (2003) Congener-specific accumulation of polychlorinated biphenyls in ovarian follicular wall follows repeated exposure to PCB 126 and PCB 153. Comparison of tissue levels of PCB and biological changes. Chemosphere 50:481–488

    CAS  PubMed  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    CAS  Google Scholar 

  • Hu RZ, Liu JM, Zhai MG (2009) Mineral resources science in China: a roadmap to 2050. Science Press, Beijing

    Google Scholar 

  • Imtiazuddin SM (2018) Impact of textile wastewater pollution on the environment. Pakistan Textile J 68:38

    Google Scholar 

  • Javied S, Mehmood T, Chaudhry MM, Tufail M, Irfan N (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem J 91(1):94–99

    Google Scholar 

  • Juang RS, Shiau RC (2000) Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J Membr Sci 165(2):159–167

    CAS  Google Scholar 

  • Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 69(1):101–123

    Google Scholar 

  • Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1119

    PubMed  Google Scholar 

  • Khair KU, Farid M, Ashraf U, Zubair M, Rizwan M, Farid S, Ishaq HK, Iftikhar U, Kim JY, Kim KW, Ahn JS, Ko I, Lee CH (2014) Investigation and risk assessment modeling of as and other heavy metals contamination around five abandoned metal mines in Korea. Environ Geochem Health 27(2):193–203

    Google Scholar 

  • Komnitsas K, Modis K (2006) Soil risk assessment of as and Zn contamination in a coal mining region using geostatistics. Sci Total Environ 371(1–3):190–196

    CAS  PubMed  Google Scholar 

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14(1):1–13

    Google Scholar 

  • Kumpiene J, Ore S, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and cu-contaminated soil using coal fly ash and peat. Environ Pollut 145(1):65–373

    Google Scholar 

  • Küpper H, Kochian LV (2009) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185(1):114–129

    PubMed  Google Scholar 

  • Latif U, Farid M, Rizwan M, Ishaq HK, Farid S, Ali S, El-Sheikh MA, Alyemeni MN, Wijaya L (2020) Physiological and biochemical response of Alternanthera bettzickiana (regel) G. Nicholson under acetic acid assisted phytoextraction of lead. Plan Theory 9(9):1084

    CAS  Google Scholar 

  • Lei M, Yue QL, Chen TB, Huang ZC, Liao X, Liu YR, Zheng GD, Chang QR (2005) Heavy metal concentrations in soils and plants around Shizuyuan mining area of Hunan province. Acta Ecol Sin 25(5):1146–1151

    CAS  Google Scholar 

  • Lestan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal contaminated soils: a review. Environ Pollut 153(1):3–13

    CAS  PubMed  Google Scholar 

  • Li MS (2006) Ecological restoration of mine land with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357(1–3):38–53

    CAS  PubMed  Google Scholar 

  • Liang C, Guo YY (2010) Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ Sci Technol 44(21):8203–8208

    CAS  PubMed  Google Scholar 

  • Liu RR, Tian Q, Yang B, Chen J (2010) Hybrid anaerobic baffled reactor for treatment of desizing wastewater. Int J Environ Sci Technol 7:111–118

    CAS  Google Scholar 

  • Lofrano G, Meric S, Zengin GE, Orhon D (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–228

    PubMed  Google Scholar 

  • Luo YL, GuoWS NHH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    PubMed  Google Scholar 

  • Maqbool Z, Hussain S, Ahmad T, Nadeem H, Imran M, Khalid A, Abid M, Martin-Laurent F (2016) Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ Sci Pollut Res 23(11):11224–11239

    CAS  Google Scholar 

  • Masindi V, Muedi K (2018) Environmental contamination by heavy metals. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.76082

    Book  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • Merdoud O, Cameselle C, Boulakradeche MO, Akretche DE (2016) Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids. Environ Sci: Processes Impacts 18(11):1440–1448

    CAS  Google Scholar 

  • Mijangos I, Parmo RP, Albizu I, Garbisu C (2006) Effects of fertilization and tillage on soil biological parameters. Enzyme Microb Technol 40(1):100–106

    CAS  Google Scholar 

  • Monika DP, Sawicka-Kapusta K (2004) Histopathological changes in the liver, kidneys, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environ Res 96(1):72–78

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352

    CAS  PubMed  Google Scholar 

  • Mota A, Albuquerque LF, Beltrame L, Chiavone-Filho O, Machulek A, Nascimento C (2009) Advanced oxidation processes and their application in the petroleum industry: a review. Braz J Petroleum Gas 2(3):122–142

    Google Scholar 

  • Naeem N, Khalid N, Sarfraz W, Ejaz U, Yousaf A, Rizvi ZF, Ikram S (2021) Assessment of Lead and cadmium pollution in soil and wild plants at different functional areas of Sialkot. Bull Environ Contam Toxicol

    Google Scholar 

  • Navarro MC, Perez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96(2–3):183–193

    CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232

    CAS  PubMed  Google Scholar 

  • Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Van de Wiele T, Wragg J, Rompelberg CJM, Sips AJAM, Wijnen JHV (2002) Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36(15):3326–3334

    CAS  PubMed  Google Scholar 

  • Ouyang Y (2002) Phytoremediation: modeling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrol 266:66–82

    CAS  Google Scholar 

  • Pantola RC, Alam A (2014) Potential of Brassicaceae Burnett (mustard family; angiosperms) in phytoremediation of heavy metals. Int J Sci Res Environ Sci 2(4):120–138

    Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185(2–3):549–574

    CAS  PubMed  Google Scholar 

  • Poulopoulos SG, Voutsas EC, Grigoropoulou HP, Philippopoulos CJ (2005) J Hazard Mater 117(2–3):135–139

    CAS  PubMed  Google Scholar 

  • Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205(1):187–204

    CAS  Google Scholar 

  • Pruvot C, Douay F, Herve F, Waterlot C (2006) Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas (6pp). J Soil Sediment 6(4):215–220

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540

    CAS  PubMed  Google Scholar 

  • Reddy KR, Cameselle C (2009) Overview of electrochemical remediation technologies. In: Electrochemical remediation technologies for polluted soils,sediments and groundwater. John Wiley & Sons, New York, pp 1–28

    Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia A (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25:1529–1537

    CAS  Google Scholar 

  • Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Zia-ur-Rehman M, Farid M, Asma M (2017a) Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adress M, Ibrahim M, Zia-ur-Reham M, Farid M, Abbas F (2017b) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16. https://doi.org/10.1016/j.jhazmat.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  • Ruiz F, Abad M, Bodergat AM, Carbonel P, Rodríguez-Lázaro J, González-Regalado ML, Prenda J (2013) Freshwater ostracods as environmental tracers. Int J Environ Sci Technol 10(5):1115–1128

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    CAS  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69

    Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw LJ, Burns RG (2005) Rhizodeposits of Trifolium pratense and Lolium perenne: their comparative effects on 2,4-D mineralization in two contrasting soils. Soil Biol Biochem 37(5):995–1002

    CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214

    Google Scholar 

  • Singh G, Brar MS, Malhi SS (2007) Decontamination of chromium by farmyard manure application in spinach grown in two texturally different Cr-contaminated soils. J Plant Nutr 30:2

    Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35(1):142–156

    CAS  PubMed  Google Scholar 

  • Succuro JS (2010) The effectiveness of using Typha latifolia (broadleaf cattail) for phytoremediation of increased levels of lead-contamination in soil (Master’s thesis, Humboldt State University)

    Google Scholar 

  • Tejada M (2009) Application of different organic wastes in a soil polluted by cadmium: effects on soil biological properties. Geoderma 153:254–268

    CAS  Google Scholar 

  • Tsapakis M, Stephanou EG, Karakassis I (2003) Evaluation of atmospheric transport as a nonpoint source of polycyclic aromatic hydrocarbons in marine sediments of the eastern Mediterranean. Mar Chem 80(4):283–298

    CAS  Google Scholar 

  • Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, TlustoÅ¡ P, Zupan M, Wenzel W (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut 148:107–114

    CAS  PubMed  Google Scholar 

  • Vakili AH, Aboutorab M (2013) The potential of Lepidium sativum for phytoremediation of contaminated soil with cadmium. Int J Sci Res Knowled 1(2):20–24

    Google Scholar 

  • Vanek T, Podlipná R, Fialova Z, Petrova S, Soudek P (2010) Uptake of xenobiotics from polluted waters by plants. https://doi.org/10.1007/978-90-481-3509-7_23

  • Viisimaa M, Karpenko O, Novikov V, Trapido M, Goi A (2013) Influence of biosurfactant on combined chemical–biological treatment of PCB-contaminated soil. Chem Eng J 220:352–359

    CAS  Google Scholar 

  • Wei H, Li B, Li J, Dong S, Wang E (2008) DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes. Nanotechnology 19(9):095501

    PubMed  Google Scholar 

  • Wei S, Twardowska I (2013) Main rhizosphere characteristics of the cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Plant and Soil 372:669–668

    CAS  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94(2):99–107

    CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780

    CAS  PubMed  Google Scholar 

  • Yang Y, Ratte D, Smets BF, Pignatello JJ, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43(8):1013–1021

    CAS  PubMed  Google Scholar 

  • Yateem A, Al-Sharrah T, Bin-Haji A (2007) Investigation of microbes in the rhizosphere of selected grasses of rhizoremediation of hydrocarbon-contaminated soils. Soil Sediment Contam 16:269–280

    CAS  Google Scholar 

  • Zaheer I, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    CAS  PubMed  Google Scholar 

  • Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407(5):1551–1561

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farid, M. et al. (2022). Wastewater Pollution, Types and Treatment Methods Assisted Different Amendments. A Review. In: Hasanuzzaman, M., Ahammed, G.J., Nahar, K. (eds) Managing Plant Production Under Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-5059-8_11

Download citation

Publish with us

Policies and ethics