Skip to main content

Advances in Plasmonic Biosensors and Their Futuristic Applications

  • Chapter
  • First Online:
Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 16))

  • 347 Accesses

Abstract

The focus of this chapter is on different types of sensors based on plasmonic nanoparticles for detecting various analytes. These include biological and chemical entities including metal ions, organic molecules, proteins, biomarkers, nucleic acids (DNA and RNA) etc. Early detection of diseases is possible by detecting the presence or variations of several biological components in the human body. These are achievable through the development of specific biosensors. Here, we briefly discuss about the structure, sensing mechanisms, detection methods and applications of plasmonic biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Chao, W. Cao, S. Su et al., Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. J. Mater. Chem. B 4, 1757–1769 (2016). https://doi.org/10.1039/C5TB02135A

    Article  Google Scholar 

  2. J. Zheng, L. He (2014) Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 13, 317–328. https://doi.org/10.1111/1541-4337.12062

  3. P. Mehrotra, Biosensors and their applications–A review. J. oral. Biol. Craniofacial. Res. 6, 153–159 (2016)

    Article  Google Scholar 

  4. C.I.L. Justino, A.C. Duarte, T.A.P. Rocha-Santos, Critical overview on the application of sensors and biosensors for clinical analysis. TrAC Trends Anal Chem 85, 36–60 (2016)

    Article  Google Scholar 

  5. C.I.L. Justino, A.C. Duarte, T.A.P. Rocha-Santos, Recent progress in biosensors for environmental monitoring: A review. Sensors 17, 2918 (2017)

    Article  ADS  Google Scholar 

  6. J. Liu, M. Jalali, S. Mahshid, S. Wachsmann-Hogiu, Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 145, 364–384 (2020). https://doi.org/10.1039/c9an02149c

    Article  ADS  Google Scholar 

  7. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li et al, Quantum dots for live cells. Vivo Imaging, Diagnostics Sci. 307, 538–544 (2005)

    Google Scholar 

  8. C.M. Tyrakowski, P.T. Snee, A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Phys. Chem. 16, 837–855 (2014)

    Google Scholar 

  9. M.E. Stewart, C.R. Anderton, L.B. Thompson et al., Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)

    Article  Google Scholar 

  10. K.V. Sreekanth, Y. Alapan, M. ElKabbash et al., Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016)

    Article  ADS  Google Scholar 

  11. J. Lee, K. Takemura, E.Y. Park, Plasmonic nanomaterial-based optical biosensing platforms for virus detection. Sensors 17, 2332 (2017)

    Article  ADS  Google Scholar 

  12. S.D. Soelberg, R.C. Stevens, A.P. Limaye, C.E. Furlong, Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal. Chem. 81, 2357–2363 (2009)

    Article  Google Scholar 

  13. M. Svedendahl, R. Verre, M. Käll, Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light. Sci. Appl. 3, e220–e220 (2014)

    Article  ADS  Google Scholar 

  14. J. Jatschka, A. Dathe, A. Csáki et al., Propagating and localized surface plasmon resonance sensing—A critical comparison based on measurements and theory. Sens. Bio-sensing Res. 7, 62–70 (2016)

    Article  Google Scholar 

  15. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  16. A.J. Haes, C.L. Haynes, A.D. McFarland et al., Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368–375 (2005). https://doi.org/10.1557/mrs2005.100

    Article  Google Scholar 

  17. Ashcroft NW, Mermin ND (1976) Solid state physics Brooks. Cole, Cengage Learn 10:

    Google Scholar 

  18. E. Petryayeva, U.J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta. 706, 8–24 (2011). https://doi.org/10.1016/j.aca.2011.08.020

    Article  Google Scholar 

  19. A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)

    Article  Google Scholar 

  20. J. Kim, S.Y. Oh, S. Shukla et al., Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg). Biosens. Bioelectron. 107, 118–122 (2018)

    Article  Google Scholar 

  21. E. Mauriz, Recent progress in plasmonic biosensing schemes for virus detection. Sensors 20, 4745 (2020)

    Article  ADS  Google Scholar 

  22. T. Lee, G.H. Kim, S.M. Kim et al. (2019) Label-free localized surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection. Colloids Surf. B Biointer. 182, 110341

    Google Scholar 

  23. N. Bellassai, R. D’Agata, V. Jungbluth, G. Spoto, Surface plasmon resonance for biomarker detection: Advances in Non-invasive cancer diagnosis. Front. Chem. 7, 570 (2019). https://doi.org/10.3389/fchem.2019.00570

    Article  ADS  Google Scholar 

  24. W. Zhou, Y. Ma, H. Yang et al., A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomedicine. 6, 381 (2011)

    Article  Google Scholar 

  25. W.S. Hwang, S.J. Sim, A strategy for the ultrasensitive detection of cancer biomarkers based on the LSPR response of a single AuNP. J. Nanosci. Nanotechnol. 11, 5651–5656 (2011). https://doi.org/10.1166/jnn.2011.4346

    Article  Google Scholar 

  26. T. Huang, P.D. Nallathamby, X.-H.N. Xu, Photostable single-molecule nanoparticle optical biosensors for real-time sensing of single cytokine molecules and their binding reactions. J. Am. Chem. Soc. 130, 17095–17105 (2008)

    Article  Google Scholar 

  27. X. Ma, K. Fletcher, T. Kipp et al., Photoluminescence of individual Au/CdSe nanocrystal complexes with variable interparticle distances. J. Phys. Chem. Lett. 2, 2466–2471 (2011)

    Article  Google Scholar 

  28. C. Xue, Y. Xue, L. Dai et al., Size-and shape-dependent fluorescence quenching of gold nanoparticles on perylene dye. Adv. Opt. Mater. 1, 581–587 (2013)

    Article  Google Scholar 

  29. J.R. Lakowicz, K. Ray, M. Chowdhury et al., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008)

    Article  ADS  Google Scholar 

  30. N. De Acha, C. Elosua, I. Matias, F.J. Arregui, Luminescence-based optical sensors fabricated by means of the layer-by-layer nano-assembly technique. Sensors 17, 2826 (2017)

    Article  ADS  Google Scholar 

  31. M. Bauch, K. Toma, M. Toma et al., Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9, 781–799 (2014)

    Article  Google Scholar 

  32. L. Wang, Q. Song, Q. Liu et al. (2015) Plasmon-enhanced fluorescence-based core–shell gold nanorods as a near-IR fluorescent turn-on sensor for the highly sensitive detection of pyrophosphate in aqueous solution. Adv. Funct. Mater. 25, 7017–7027. https://doi.org/10.1002/adfm.201503326

  33. K.A. Willets, Super-resolution imaging of interactions between molecules and plasmonic nanostructures. Phys. Chem 15, 5345–5354 (2013)

    Google Scholar 

  34. H. Cang, A. Labno, C. Lu et al., Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature 469, 385–388 (2011)

    Article  ADS  Google Scholar 

  35. M. Thomas, R. Carminati, J.-J. Greffet, J.R. Arias-Gonzalez JR, Single molecule spontaneous emission close to absorbing metallic nanostructures (2004)

    Google Scholar 

  36. K. Takemura, O. Adegoke, N. Takahashi et al., Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron. 89, 998–1005 (2017)

    Article  Google Scholar 

  37. A.M. Shrivastav, U. Cvelbar, I. Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 4, 1–12 (2021)

    Article  Google Scholar 

  38. G. Qiu, Z. Gai, Y. Tao et al., Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 14, 5268–5277 (2020)

    Article  Google Scholar 

  39. P. Chen, M.T. Chung, W. McHugh et al., Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano. 9, 4173–4181 (2015)

    Article  Google Scholar 

  40. G.K. Joshi, S. Deitz-McElyea, M. Johnson et al., Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Nano. Lett. 14, 6955–6963 (2014)

    Article  ADS  Google Scholar 

  41. J. Yan, L. Wang, L. Tang et al., Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin. Biosens. Bioelectron. 70, 404–410 (2015)

    Article  Google Scholar 

  42. N. Chen, P. Ding, Y. Shi et al., Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem. 89, 5072–5078 (2017)

    Article  Google Scholar 

  43. J. Homola, Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  44. E.Y.Y. Chan, S.M. Griffiths, C.W. Chan, Public-health risks of melamine in milk products. Lancet 372, 1444–1445 (2008)

    Article  Google Scholar 

  45. R. Najafi, S. Mukherjee, J. Hudson Jr. et al., Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int. J. Food Microbiol. 189, 89–97 (2014)

    Article  Google Scholar 

  46. J. Chen, Y. Huang, P. Kannan et al., Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 88, 2149–2155 (2016)

    Article  Google Scholar 

  47. X. Li, S. Feng, Y. Hu et al., Rapid detection of melamine in milk using immunological separation and surface enhanced Raman spectroscopy. J. Food Sci. 80, C1196–C1201 (2015)

    Article  Google Scholar 

  48. H. Qiu, M. Wang, S. Jiang et al., Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sensors Actuators B Chem. 249, 439–450 (2017)

    Article  Google Scholar 

  49. M. Kahraman, E.R. Mullen, A. Korkmaz, S. Wachsmann-Hogiu, Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 6, 831–852 (2017)

    Article  Google Scholar 

  50. C. Wang, F. Madiyar, C. Yu, J. Li, Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor. J. Biol. Eng. 11, 1–11 (2017)

    Article  Google Scholar 

  51. H.H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15, 10481–10510 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandran, N., Bayal, M., Pilankatta, R., Nair, S.S. (2021). Advances in Plasmonic Biosensors and Their Futuristic Applications. In: Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications. Progress in Optical Science and Photonics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-16-5367-4_5

Download citation

Publish with us

Policies and ethics