Skip to main content

Machine Learning Algorithms for Optical Remote Sensing Data Classification and Analysis

  • Chapter
  • First Online:
Data Science in Agriculture and Natural Resource Management

Part of the book series: Studies in Big Data ((SBD,volume 96))

Abstract

In recent years, Machine Learning (ML) algorithms have gained much attention and found a profound importance in processing, classification as well as analysis of multispectral, and hyperspectral remotely sensed data. The core objectives of this chapter are firstly to provide a critical review on important advanced ML algorithms in remote sensing data classification, and analysis; secondly, examine the performance of widely used important supervised ML algorithms namely Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART) in satellite image classification, and analysis on Google Earth Engine (GEE) platform to derive distinct Land Use/Land Cover (LULC) classes. ML algorithms are being extensively used in optical  remote sensing data analysis it includes the image classification algorithms to precisely allocate objects to a distinct set of known classes, the clustering algorithms to group the objects into classes based on a given set of input variables, the regression algorithms to forecast a response variable from a given a set of covariates, and the dimensionality reduction algorithms to build a small set of new variables that includes most of the information available in the input set of numerous variables. In the study, among the three tested supervised ML algorithms in LULC classification, CART algorithm shows relatively better performance than the RF, and SVM algorithms. The study concludes that advanced ML algorithms have immense potential in optical remote sensing data classification, and analysis to attain the higher classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbot J, Marohasy J (2014) Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos Res 138:166–178

    Article  Google Scholar 

  • Aertsen W, Kint V, Van Orshoven J, Muys B (2011) Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environ Model Softw 26:929–937

    Article  Google Scholar 

  • Alpaydın E (2014) Introduction to machine learning. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Andualem TG, Belay G, Guadie A (2018) Land use change detection using remote sensing technology. J Earth Sci Clim Chang 9:1–6

    Article  Google Scholar 

  • Asokan A, Anitha J, Ciobanu M, Gabor A, Naaji A, Hemanth DJ (2020) Image processing techniques for analysis of satellite images for historical maps classification—An overview. Appl Sci 10:4207

    Google Scholar 

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to land sliding in the central Apennines. Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Attarchi S, Gloaguen R (2014) Classifying complex mountainous forests with L-Band SAR and Landsat data integration: a comparison among different machine learning methods in the hyrcanian forest. Remote Sens 6:3624–3647

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Bajwa IS, Naweed M, Asif MN, Hyder SI (2009) Feature based image classification by using principal component analysis. ICGST Int J Graph vis Image Process GVIP 9:11–17

    Google Scholar 

  • Ban Z, Liu J, Li C (2018) Superpixel segmentation using Gaussian mixture model. IEEE Trans Image Process 27:4105–4117

    Article  MathSciNet  MATH  Google Scholar 

  • Bandos TV, Bruzzone L, Camps-Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosci Remote Sens 47:862–873

    Article  Google Scholar 

  • Bangira T, Alfieri SM, Menenti M, van Niekerk A (2019) Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sens 11(11):1351

    Article  Google Scholar 

  • Báscones D, González C, Mozos D (2018) Hyperspectral image compression using vector quantization, PCA and JPEG2000. Remote Sens 10:907

    Article  Google Scholar 

  • Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404

    Article  Google Scholar 

  • Belgiu M, Drăgut L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Article  Google Scholar 

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10:191–203

    Article  Google Scholar 

  • Bishop CM (2006) Pattern Recognition and Machine Learning. Springer. pp. 1–758

    Google Scholar 

  • Breiman L (2001) Random forests machine learning; Springer: Berlin/Heidelberg. Germany 45:5–32

    MATH  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ, (1984) Classification and regression trees. The Wadsworth Statistics/Probability Series. Chapman and Hall, New York.

    Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  • Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. Proceedings of the IEEE International conference on computer vision, Rio De Janeiro, Brazil 14–21:1–7

    Google Scholar 

  • Calvo-Zaragoza J, Valero-Mas JJ, Rico-Juan JR (2015) Improving kNN multi-label classification in prototype selection scenarios using class proposals. Pattern Recognit 48(5):1608–1622

    Article  Google Scholar 

  • Cardot H, Faivre R, Goulard M (2003) Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data. J Appl Stat 30(10):1185–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Chau KT, Chan JE (2005) Regional bias of landslide data in generating susceptibility maps; case of Hong Kong Island. Landslides 2:280–290

    Article  Google Scholar 

  • Cheng Q, Jing L, Panahi A (2017) Principal component analysis with optimum order sample correlation coefficient for image enhancement. Int J Remote Sens 27(16):3387–3401

    Google Scholar 

  • Clark ML, Roberts DA, Clark DB (2005) Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens Environ 96(3/4):375–398

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sen Environ 37(1):35–46

    Article  Google Scholar 

  • Congalton RG, Green K (2010) Assessing the accuracy of remotely sensed data: principles and practices, vol 25. CRS Press, Boca Raton

    Google Scholar 

  • Corcoran JM, Knight JF, Gallant AL (2013) Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota. Remote Sens 5(7):3212–3238

    Article  Google Scholar 

  • David K, Mitchel K (2010) Logistic regression: a self-learning text, 3rd edn. Springer-Verlag Inc., New York

    MATH  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, second ed, Wiley Interscience

    Google Scholar 

  • Duda RO, Hart PE, Stork DG (2012) Pattern classification. Wiley, Hoboken, NJ, USA

    Google Scholar 

  • Duro DC, Franklin SE, Dubé MG (2012) A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens Environ 118:259–272

    Article  Google Scholar 

  • Escabias M, Aguilera AM, Valderrama MJ (2005) Modeling environmental data by functional principal component logistic regression. Environmetrics 16:95–107

    Article  MathSciNet  Google Scholar 

  • Fauvel M, Tarabalka Y, Benediktsson JA, Chanussot J, Tilton JC (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Article  Google Scholar 

  • Feng F, Li W, Du Q, Zhang B (2017) Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity. Remote Sens Environ 9(4):323–336

    Article  Google Scholar 

  • Foody GM (1996) Approaches for the production and evaluation of fuzzy land cover classification from remotely-sensed data. Int J Remote Sens 17:1317–1340

    Article  Google Scholar 

  • Foody GM (2009) Sample size determination for image classification accuracy assessment and comparison. Int J Remote Sen 30:5273–5291

    Article  Google Scholar 

  • Foody GM, Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42:1335–1343

    Article  Google Scholar 

  • Fraser RH, Abuelgasim A, Latifovic R (2005) A method for detecting large-scale forest cover change using coarse spatial resolution imagery. Remote Sens Environ 95:414–427

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Inst Math Stat 29:1189–1232

    MathSciNet  MATH  Google Scholar 

  • Fu B, Wang Y, Campbell A, Li Y, Zhang B, Yin S, Xing Z, Jin X (2017) Comparison of object-based and pixel-based random forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data. Ecol Indic 73:105–117

    Article  Google Scholar 

  • Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press Professional, Inc., San Diego, California

    MATH  Google Scholar 

  • Ghimire B, Rogan J, Rodríguez-Galiano V, Panday P, Neeti N (2012) An evaluation of bagging, boosting, and random forests for land-cover classification in cape cod, Massachusetts, USA. Gisci Remote Sen 49(5):623–643

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 8(1):100–108

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning, 2nd edn. Springer, Berlin, Germany

    MATH  Google Scholar 

  • Hastie TJ, Tibshirani RJ, Friedman JH (2005) The elements of statistical learning: data mining, inference, and prediction. Math Intell 27:83–85

    Article  MATH  Google Scholar 

  • He QP, Wang J (2007) Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans Semicond Manuf 20:345–354

    Article  Google Scholar 

  • Heydari SS, Mountrakis G (2018) Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens Environ 204:648–658

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley series in probability and mathematical statistics. Wiley, New York, p 307

    Google Scholar 

  • Huang J, Wang X, Li X, Tian H, Pan Z (2013) Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE 8:e70816

    Google Scholar 

  • Huang X, Zhang L (2013) An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high resolution remotely sensed imagery. IEEE Trans Geosci Remote Sens 51(1):257–272

    Article  Google Scholar 

  • Ji Z, Huang Y, Yong X, Zheng Y (2017) A robust modified Gaussian mixture model with rough set for image segmentation. Neurocomputing 266:550–565

    Article  Google Scholar 

  • Jin H, Stehman SV, Mountrakis G (2014) Assessing the impact of training sample extraction on accuracy of an urban classification: a case study in Denver, Colorado. Int J Remote Sens 35:2067–2081

    Article  Google Scholar 

  • Kavzoglu T, Mather PM (2003) The use of backpropagating artificial neural networks in land cover classification. Int J Remote Sens 15(23):4907–4938

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439

    Article  Google Scholar 

  • Kruse FA, Boardman JW, Lefkoff AB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163

    Article  Google Scholar 

  • Kuhn M, Johnson K (2013) A short tour of the predictive modeling process. In Applied Predictive Modeling. Springer, Berlin/Heidelberg, Germany, pp. 19–26

    Google Scholar 

  • Lary DJ, Alavi AH, Gandomi AH, Walker AL (2016) Machine learning in geosciences and remote sensing. Geosci Front 7:3–10

    Article  Google Scholar 

  • Lary DJ (2010) Artificial intelligence in geoscience and remote sensing. In: Imperatore P, Riccio D (eds) Geoscience and remote sensing, new achievements. IN-TECH, Vukovar, Croatia, pp. 1e24

    Google Scholar 

  • Lasaponara R (2006) On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series. Ecol Modell 194:429–434

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman J (2008) Remote sensing and image interpretation, 6th edn. Wiley

    Google Scholar 

  • Lillesand T, Kiefer R (1994) Remote sensing and image interpretation, 3rd ed, Wiley, Inc. p. 750

    Google Scholar 

  • Lira J (2010) Tratamiento digital de imágenes multiespectrales, 2nd ed. Universidad nacional autónoma de México, México D.F

    Google Scholar 

  • Liu L, Tang H, Caccetta P, Lehmann EA, Hu Y, Wu X (2013) Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series stacks in Yulin District, a key region of the three-north shelter region, China. Environ Monit Assess 185:9949–9965

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Lu J, Plataniotis K, Venetsanopoulos A (2005) Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Pattern Recognit Lett 26:181–191

    Article  Google Scholar 

  • Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2017) Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens 55:645–657

    Article  Google Scholar 

  • Mantero P, Moser G, Member S, Serpico SB, Member S (2005) Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transact Geosci Remote Sens 43(3):559–570

    Article  Google Scholar 

  • Maryantica N, Lin C (2017) Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, east java using multi-temporal landsat images. Inform Process Agri 4:321–332

    Google Scholar 

  • Mathur A, Foody GM (2008) Multiclass and binary SVM classification: implications for training and classification users. IEEE Geosci Remote Sens Lett 5(2):241–245

    Article  Google Scholar 

  • Matus-Hernández MÁ, Hernández-Saavedra NY, Martínez-Rincón RO (2018) Predictive performance of regression models to estimate chlorophyll-a concentration based on Landsat imagery. PLoS ONE 13(10):e0205682

    Google Scholar 

  • Medina O, Manian V, Chinea JD (2013) Biodiversity assessment using hierarchical agglomerative clustering and spectral unmixing over hyperspectral images. Sensors 13:13949–13959

    Article  Google Scholar 

  • Mellor A, Boukir S, Haywood A, Jones S (2015) Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J Photogramm Remote Sens 105:155–168

    Article  Google Scholar 

  • Miao L, Zang S, Zhang B, Li S, Wu C (2014) A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur J Remote Sens 47(1):389–411

    Article  Google Scholar 

  • Müller K-R, Smola AJ, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1997) Predicting time series with support vector machines. In: International conference on artificial neural networks. Springer. pp. 999–1004

    Google Scholar 

  • Munyati C (2008) Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue flats. Zambia Geocarto Int 6(3):15–26

    Google Scholar 

  • Naghibi SA, Pourghasemi HR, Abbaspour K (2018) A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theor Appl Climatol 131(3–4):967–984

    Article  Google Scholar 

  • Naidoo L, Cho MA, Mathieu R, Asner G (2012) Classification of savanna tree species in the greater Kruger national park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment. ISPRS J Photogramm Remote Sens 69:167–179

    Article  Google Scholar 

  • Napoleon D, Ramaraj E (2014) An efficient segmentation of remote sensing images for the classification of satellite data using K-Means clustering algorithm. Int J Innov Res Sci Tech 1(6):314–319

    Google Scholar 

  • Noi PT, Kappas M (2018) Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. SensS SensS 18:18

    Google Scholar 

  • Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26(5):1007–1011

    Article  Google Scholar 

  • Peng G, Ruiliang P, Bin Y (1997) Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sens Environ 62(2):189–200

    Article  Google Scholar 

  • Petropoulos GP, Arvanitis K, Sigrimis N (2012) Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Syst Appl 39(3):3800–3809

    Article  Google Scholar 

  • Phiri D, Morgenroth J, Xu C, Hermosilla T (2018) Effects of preprocessing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. Int J Appl Earth Obs Geoinf 73:170–178

    Google Scholar 

  • Plourde L, Congalton RG (2003) Sampling method and sample placement: how do they affect the accuracy of remotely sensed maps. Photogramm Eng Remote Sens 69(3):289–297

    Article  Google Scholar 

  • Potgieter AB, Apan A, Dunn P, Hammer G (2007) Estimating crop area using seasonal time series of enhanced vegetation index from MODIS satellite imagery. Aus J Agri Res 58(4):316–325

    Article  Google Scholar 

  • Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9:1–18

    Google Scholar 

  • Rahmati O, Naghibi SA, Shahabi H, Bui DT, Pradhan B, Azareh A, Rafiei-Sardooi E, Samani AN, Melesse AM (2018) Groundwater spring potential modelling: Comprising the capability and robustness of three deferent modeling approaches. J Hydrol 565:248–261

    Article  Google Scholar 

  • Reddy GPO (2012) Principles of digital image processing, In: remote sensing and GIS in digital terrain analysis and soil–landscape modeling, Reddy GPO, Sarkar D (eds) NBSS&LUP Publ No 152, pp 86–97

    Google Scholar 

  • Reddy GPO (2018) Satellite remote sensing sensors: principles and applications. In:Reddy GPO, Singh SK (eds) geospatial technologies in land resources mapping, monitoring and management. geotechnologies and the environment, vol 21. Springer, Cham, pp 21–43

    Google Scholar 

  • Reddy GPO, Kumar N, Sarkar D (eds.) (2012) Training manual on GIS and digital image processing, NBSS&LUP Publ No 153, pp. 166

    Google Scholar 

  • Reddy GPO, Sarkar D (Eds.) (2012) Remote sensing and GIS in digital terrain analysis and soil-landscape modeling, NBSS&LUP Publ No 152, p 300

    Google Scholar 

  • Reddy GPO, Singh SK (2018) Geospatial technologies in land resources mapping, monitoring, and management, geotechnologies and the environment 21, Springer, p 638

    Google Scholar 

  • Robinzonov N (2013) Advances in boosting of temporal and spatial models. Ludwig-Maximilians-Universität München

    Google Scholar 

  • Ryu C, Suguri M, Umeda M (2011) Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crop Res 122:214–224

    Article  Google Scholar 

  • Schmidt M, Pringle M, Devadas R, Denham R, Tindall D (2016) A framework for large-area mapping of past and present cropping activity using seasonal Landsat images and time series metrics. Remote Sens 8:312

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Asghari A, Tayyebi A, Taleai M (2017) Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Comput Environ Urban Syst 64:297–308

    Article  Google Scholar 

  • Shafri HZM, Zeen RM (2011) Mapping Malaysian urban environment from airborne hyperspectral sensor system in the VIS-NIR (0.4–1.1 µm) spectrum. Res J Environ Sci 5(6):587

    Google Scholar 

  • Shao Y, Lunetta RS (2012) Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J Photogramm Remote Sen 70:78–87

    Article  Google Scholar 

  • Shirzadi A, Saro L, Joo OH, Chapi K (2012) A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan. Iran Nat Hazards 64:1639–1656

    Article  Google Scholar 

  • Shivakumar BR, Rajashekararadhya SV (2017) Performance evaluation of spectral angle mapper and spectral correlation mapper classifiers over multiple remote sensor data, in 2017 Second IEEE International conference on electrical, computer and communication technologies. 677–684

    Google Scholar 

  • Son NT, Chen CF, Chen CR, Minh VQ (2017) Assessment of sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int 1–15

    Google Scholar 

  • Stehman SV (2009) Sampling designs for accuracy assessment of land cover. Int J Remote Sens 30:5243–5272

    Article  Google Scholar 

  • Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R (2016) Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region. Iran. Geoderma 266:98–110

    Article  Google Scholar 

  • Thenkabail PS, Lyon JG, Huete A (2012) Hyperspectral remote sensing of vegetation, 1st edn. CRC Press Taylor & Francis Group, New York

    Google Scholar 

  • Theodoridis S, Koutroumbas K (2003) Pattern recognition, 2nd edn. Elsevier Academic Press, Greece

    MATH  Google Scholar 

  • Toth C, Jó´zków G, (2016) Remote sensing platforms and sensors: a survey. ISPRS J Photogramm Remote Sens 115:22–36

    Article  Google Scholar 

  • Usman B (2013) Satellite imagery land cover classification using K-means clustering algorithm computer vision for environmental information extraction. Elixir Comput Sci Eng 63:18671–18675

    Google Scholar 

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  • Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Philip SY (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14:1–37

    Article  Google Scholar 

  • Yang JF, Lu CL (1995) Combined techniques of singular value decomposition and vector quantization for image coding. IEEE Trans Image Process 4(8):1141–1146

    Article  Google Scholar 

  • Yang R-M, Zhang G-L, Liu F, Lu Y-Y, Yang F, Yang F, Yang M, Zhao Y-G, Li D-C (2016) Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol Indic 60:870–878

    Article  Google Scholar 

  • Yesuph AY, Dagnew AB (2019) Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the blue Nile basin, north eastern highlands of Ethiopia. Environ Syst Res 8:21

    Article  Google Scholar 

  • Yiging G, Jianhui W, Danong Z, Mingjuan Z, Liru Z (2013) To identify the important of soil properties affecting Dinoseb adsorption with statistical analysis. The Sci World J 3(13):1–7

    Google Scholar 

  • Zhang M, Huang H, Li Z, Hackman KO, Liu C, Andriamiarisoa RL, Raherivelo NAN, T, Li Y, Gong P, (2020) Automatic high-resolution land cover production in Madagascar using Sentinel-2 time series, tile-based image classification and google earth engine. Remote Sen 12(21):3663

    Article  Google Scholar 

  • Zhang Y, Yeung D (2011) Semi-supervised generalized discriminant analysis. IEEE Trans Neural Netw 22(8):1–11

    Article  Google Scholar 

  • Zhong YF, Zhang LP (2010) Initialization methods for remote sensing image clustering using K- Means algorithm. Syst Eng Electron 32(9):2009–2014

    Google Scholar 

  • Zhou X, Zheng H, Xu X, He J, Ge X, Yao X, Cheng T, Zhu Y, Cao W, Tian Y (2017) Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J Photogramm Remote Sens 130:246–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Obi Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, G.P.O., Kumar, K.C.A. (2022). Machine Learning Algorithms for Optical Remote Sensing Data Classification and Analysis. In: Reddy, G.P.O., Raval, M.S., Adinarayana, J., Chaudhary, S. (eds) Data Science in Agriculture and Natural Resource Management. Studies in Big Data, vol 96. Springer, Singapore. https://doi.org/10.1007/978-981-16-5847-1_10

Download citation

Publish with us

Policies and ethics