Skip to main content

Parametric Instability of an Electromechanically Coupled Rotor-Bearing System Subjected to Periodic Axial Loads: A Preliminary Theoretical Analysis

  • Conference paper
  • First Online:
Book cover Advances in Applied Nonlinear Dynamics, Vibration and Control -2021 (ICANDVC 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 799))

  • 3087 Accesses

Abstract

The parametric instability of an electromechanically coupled single-span rotor-bearing system subjected to periodic axial loads is studied. Here, the rotor system is equipped with two piezoelectric dampers, which has been developed in our previous work. The so-called electromechanically coupled characteristic is namely derived from that damper. By using assumed mode method and Lagrange equation, the equations of motion are derived. The multiple scales method is utilized to obtain the analytical instability boundaries. Numerical simulations based on the discrete state transition matrix method (DSTM) are conducted to verify the analytical results. With the comparison between analytical results and simulated results, we find that the additional combination instability regions are created due to the usage of piezoelectric dampers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He H, Tan X, He J, Zhang F, Chen G (2020) A novel ring-shaped vibration damper based on piezoelectric shunt damping: theoretical analysis and experiments. J Sound Vib 468. https://doi.org/10.1016/j.jsv.2019.115125.

  2. Tan X et al (2020) Dynamic modeling for rotor-bearing system with electromechanically coupled boundary conditions. Appl Math Model 91:280–296. https://doi.org/10.1016/j.apm.2020.09.042

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen LW, Ku DM (1990) Dynamic stability analysis of a rotating shaft by the finite element method. J Sound Vib 143:143–151. https://doi.org/10.1016/0022-460X(90)90573-I

    Article  Google Scholar 

  4. Takayanagi M (1991) Parametric resonance of liquid storage axisymmetric shell under horizontal excitation. J Press Vessel Technol Trans ASME 113:511–516. https://doi.org/10.1115/1.2928788

    Article  Google Scholar 

  5. Dutt JK, Nakra BC (1992) Stability of rotor systems with viscoelastic supports. J Sound Vib 153:89–96. https://doi.org/10.1016/0022-460X(92)90629-C

    Article  MATH  Google Scholar 

  6. Pei YC (2009) Stability boundaries of a spinning rotor with parametrically excited gyroscopic system. Eur J Mech A/Solids 28:891–896

    Article  Google Scholar 

  7. Han Q, Chu F (2013) Effects of rotation upon parametric instability of a cylindrical shell subjected to periodic axial loads. J Sound Vib 332:5653–5661. https://doi.org/10.1016/j.jsv.2013.06.013

    Article  Google Scholar 

  8. Han Q, Chu F (2015) Parametric instability of flexible rotor-bearing system under time-periodic base angular motions. Appl Math Model 39:4511–4522. https://doi.org/10.1016/j.apm.2014.10.064

    Article  MathSciNet  MATH  Google Scholar 

  9. Song Z, Chen Z, Li W, Chai Y (2016) Parametric instability analysis of a rotating shaft subjected to a periodic axial force by using discrete singular convolution method. Meccanica 52(4–5):1159–1173. https://doi.org/10.1007/s11012-016-0457-4

    Article  MathSciNet  MATH  Google Scholar 

  10. Qaderi MS, Hosseini SAA, Zamanian M (2018) Combination parametric resonance of nonlinear unbalanced rotating shafts. J Comput Nonlinear Dyn 13:1–8. https://doi.org/10.1115/1.4041029

    Article  Google Scholar 

  11. Dai Q, Cao Q (2018) Parametric instability of rotating cylindrical shells subjected to periodic axial loads. Int J Mech Sci 146–147:1–8. https://doi.org/10.1016/j.ijmecsci.2018.07.031

    Article  Google Scholar 

  12. Phadatare HP, Pratiher B (2020) Dynamic stability and bifurcation phenomena of an axially loaded flexible shaft-disk system supported by flexible bearing. Proc Inst Mech Eng Part C J Mech Eng Sci 234:2951–2967. https://doi.org/10.1177/0954406220911957.

  13. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. John Wiley, New York

    MATH  Google Scholar 

  14. Chen LQ, Zhang YL (2014) Multi-scale analysis on nonlinear gyroscopic systems with multi-degree-of-freedoms. J Sound Vib 333:4711–4723. https://doi.org/10.1016/j.jsv.2014.05.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan He .

Editor information

Editors and Affiliations

Appendices

Appendix A

The detailed expressions of \({\tilde{\mathbf{M}}}\), \({\tilde{\mathbf{G}}}\), \({\tilde{\mathbf{K}}}\), \(\stackrel{\mathrm{\sim }}{\text{D}}\), \(\stackrel{\mathrm{\sim }}{\text{S}}\), \({{\tilde{\mathbf{F}}}}_{\text{v}}\), \({{\tilde{\mathbf{F}}}}_{\text{w}}\) are given as follows:

where

$$ \begin{gathered} \tilde{m}_{ij} = \int_{0}^{L} {\rho A\;\phi_{i} \left( x \right)\phi_{j} \left( x \right){\text{d}}x} + \int_{0}^{L} {\rho I_{D} \phi^{\prime}_{i} \left( x \right)\phi^{\prime}_{j} \left( x \right){\text{d}}x} + M\phi_{i} \left( {x_{0} } \right)\phi_{j} \left( {x_{0} } \right) + J_{d} \phi^{\prime}_{i} \left( {x_{0} } \right)\phi^{\prime}_{j} \left( {x_{0} } \right) \hfill \\ \tilde{m}_{55} = \tilde{m}_{66} = 2\cot^{2} \beta \theta_{p}^{2} L \hfill \\ \tilde{g}_{ij} = \int_{0}^{L} {\rho \Omega I_{p} \phi^{\prime}_{i} \left( x \right)\phi^{\prime}_{j} \left( x \right){\text{d}}x} + J_{p} \Omega \phi^{\prime}_{i} \left( {x_{0} } \right)\phi^{\prime}_{j} \left( {x_{0} } \right)\;\;\left( {i,j = 1,\;2} \right) \hfill \\ \end{gathered} $$

where

$$ \begin{gathered} \tilde{k}_{ij} = \int_{0}^{L} {EI_{D} \phi^{\prime\prime}_{i} \left( x \right)\phi^{\prime\prime}_{j} \left( x \right){\text{d}}x} + k_{eq} \left[ {\phi_{i} \left( 0 \right)\phi_{j} \left( 0 \right) + \phi_{i} \left( L \right)\phi_{j} \left( L \right)} \right] - \chi P_{cr} \tilde{s}_{ij} \hfill \\ \tilde{k}_{55} = \tilde{k}_{66} = k_{eq2} + \frac{{2\cot^{2} \beta \theta_{p}^{2} }}{C},\;\;\tilde{k}_{13} = \tilde{k}_{31} = - k_{eq} \phi_{1} \left( 0 \right),\;\;\tilde{k}_{14} = \tilde{k}_{41} = - k_{eq} \phi_{1} \left( L \right),\;\; \hfill \\ \tilde{k}_{23} = \tilde{k}_{32} = - k_{eq} \phi_{2} \left( 0 \right),\;\;\tilde{k}_{24} = \tilde{k}_{42} = - k_{eq} \phi_{2} \left( L \right) \hfill \\ \tilde{d}_{ij} = \eta \left[ {\phi_{i} \left( 0 \right)\phi_{j} \left( 0 \right) + \phi_{i} \left( L \right)\phi_{j} \left( L \right)} \right] \hfill \\ \tilde{d}_{55} = \tilde{d}_{66} = 2\cot^{2} \beta \theta_{p}^{2} R,\;\;\tilde{d}_{13} = \tilde{d}_{31} = - \eta \phi_{1} \left( 0 \right),\;\;\tilde{d}_{14} = \tilde{d}_{41} = - \eta \phi_{1} \left( L \right),\;\; \hfill \\ \tilde{d}_{23} = \tilde{d}_{32} = - \eta \phi_{2} \left( 0 \right),\;\;\tilde{d}_{24} = \tilde{d}_{42} = - \eta \phi_{2} \left( L \right) \hfill \\ \end{gathered} $$

and

$$ \left\{ \begin{gathered} {\tilde{\mathbf{F}}}_{v} = M\Omega^{2} e\left[ {\phi_{1} \left( {x_{0} } \right)\cos \left( {\Omega t + \phi } \right),\;\phi_{2} \left( {x_{0} } \right)\cos \left( {\Omega t + \phi } \right),\;0,\;0,\;0,\;0} \right]^{{\text{T}}} \hfill \\ {\tilde{\mathbf{F}}}_{w} = M\Omega^{2} e\left[ {\phi_{1} \left( {x_{0} } \right)\sin \left( {\Omega t + \phi } \right),\;\phi_{2} \left( {x_{0} } \right)\sin \left( {\Omega t + \phi } \right),\;0,\;0,\;0,\;0} \right]^{{\text{T}}} \hfill \\ \end{gathered} \right. $$

Appendix B

For simplicity, only the mode vector ri is derived here and the derivation process of sk is similar. In Eq. (21a), the matrix equation can be detailedly expressed as

$$ \left( {\begin{array}{*{20}c} { - \omega_{Fi}^{2} + \omega_{Fi} \overline{g}_{11} + \alpha_{1} } & {\omega_{Fi} \overline{g}_{12} } & \cdots & {\omega_{Fi} \overline{g}_{1N} } \\ {\omega_{Fi} \overline{g}_{21} } & { - \omega_{Fi}^{2} + \omega_{Fi} \overline{g}_{11} + \alpha_{1} } & \cdots & {\omega_{Fi} \overline{g}_{2N} } \\ \vdots & \vdots & \ddots & \vdots \\ {\omega_{Fi} \overline{g}_{N1} } & {\omega_{Fi} \overline{g}_{N2} } & \cdots & { - \omega_{Fi}^{2} + \omega_{Fi} \overline{g}_{NN} + \alpha_{N} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r_{1i} } \\ {r_{2i} } \\ \vdots \\ {r_{Ni} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ \vdots \\ 0 \\ \end{array} } \right) $$

Assume r1i = 1, then the other elements of ri can be calculated by the following N − 1 linear algebraic equations

$$ \begin{gathered} \left( {\begin{array}{*{20}c} { - \omega_{Fi}^{2} + \omega_{Fi} \overline{g}_{22} + \alpha_{2} } & {\omega_{Fi} \overline{g}_{22} } & \cdots & {\omega_{Fi} \overline{g}_{2N} } \\ {\omega_{Fi} \overline{g}_{32} } & { - \omega_{Fi}^{2} + \omega_{Fi} \overline{g}_{33} + \alpha_{3} } & \cdots & {\omega_{Fi} \overline{g}_{3N} } \\ \vdots & \vdots & \ddots & \vdots \\ {\omega_{Fi} \overline{g}_{N2} } & {\omega_{Fi} \overline{g}_{N3} } & \cdots & { - \omega_{Fi}^{2} + \omega_{Fi} \overline{g}_{NN} + \alpha_{N} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r_{2i} } \\ {r_{3i} } \\ \vdots \\ {r_{Ni} } \\ \end{array} } \right) \hfill \\ = \left( {\begin{array}{*{20}c} { - \omega_{Fi} \overline{g}_{21} } \\ { - \omega_{Fi} \overline{g}_{31} } \\ \vdots \\ { - \omega_{Fi} \overline{g}_{N1} } \\ \end{array} } \right) \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, X. et al. (2022). Parametric Instability of an Electromechanically Coupled Rotor-Bearing System Subjected to Periodic Axial Loads: A Preliminary Theoretical Analysis. In: Jing, X., Ding, H., Wang, J. (eds) Advances in Applied Nonlinear Dynamics, Vibration and Control -2021. ICANDVC 2021. Lecture Notes in Electrical Engineering, vol 799. Springer, Singapore. https://doi.org/10.1007/978-981-16-5912-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5912-6_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5911-9

  • Online ISBN: 978-981-16-5912-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics