Skip to main content

Optical Characterization of Nanomaterials-I

  • Chapter
  • First Online:
Synthesis and Applications of Nanoparticles
  • 933 Accesses

Abstract

The advent of optical nanotechnologies (technologies for structuring optical materials with a resolution above 100 nm) opens the possibility of creating photonics devices, the action of which is based on the effects arising from the interaction of a light wave with a substantially sub-wave structure (visible wavelength range 400–780 nm, infrared wavelength range 0.78–30 мкм). Such devices with wide functional properties and miniature dimensions form a new element base of optical systems for collecting, transmitting, and processing information. At the same time, the methods of nanostructuring optical materials and creating optical nanocomposites allow you to create new metamaterials—that is, composites, the interaction of the light wave with which is described by generalized (effective) physical characteristics. Both nanostructures with linear optical properties and nonlinear ones are successfully used to create optical metamaterials and photonic nanodevices. The first section of this chapter is devoted to the study of functional photonic nanostructures with linear properties, and the second section is devoted to the study of functional photonic nanostructures with nonlinear properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asadi R, Malek-Mohammad M, Khorasani S (2011) Opt Commun 284:2230

    Article  CAS  Google Scholar 

  • Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondla JP, Ozin GA, Toader O, Van Driel HM (2000) Nature 405:437

    Article  CAS  Google Scholar 

  • Bogomolov VN, Gaponenko SV, Kapitonov AM, Prokofiev AV, Ponyavina AN, Silvanovich NI, Samoilovich SM (1996) Appl Phys A Mater Sci Process 63:613

    Article  CAS  Google Scholar 

  • Caglayan H, Bulu I, Ozbay E (2005) Opt Express 13:7645

    Article  Google Scholar 

  • Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Nature 404:53

    Article  CAS  Google Scholar 

  • Chaplygin YA (2005) Nanotechnology in electronics. Technosphera, Moscow

    Google Scholar 

  • Chelnokov A, Wang K, Rowson S, Garoche P, Lourtioz JM (2000) Appl Phys Lett 77:2943

    Article  CAS  Google Scholar 

  • Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Opt Lett 29:1093

    Article  CAS  Google Scholar 

  • Deubel M, Von Freymann G, Wegener M, Pereira S, Bush K, Soukoulis CM (2004) Nat Mater 3:444

    Article  CAS  Google Scholar 

  • Dyachenko PN, Karpeev SV, Fesik EV, Miklyaev YV, Pavelyev VS, Malchikov GD (2011b) Opt Commun 284:885

    Article  CAS  Google Scholar 

  • Dyachenko PN, Karpeev SV, Pavelyev VS (2011a) Fabrication and characterization of three-dimensional metallodielectric photonic crystals for infrared spectral region. Opt Commun 284:5381–5383

    Article  CAS  Google Scholar 

  • Fleming JG, Lin S-Y, El-Kady I, Biswas R, Ho KM (2002) Nature 417:52

    Article  CAS  Google Scholar 

  • Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M (2009) Science 325:1513

    Article  CAS  Google Scholar 

  • Hatef A, Singh M (2011) Opt Commun 284:2363

    Article  CAS  Google Scholar 

  • Ho KM, Chen CT, Soukoulis CM, Biswas R, Sigalas M (1994) Solid State Commun 89:413

    Article  CAS  Google Scholar 

  • John S (1987) Phys Rev Lett 58:2486

    Article  CAS  Google Scholar 

  • Kaneko K, Yamamoto K, Kawata S, Xia H, Song J-F, Sun H-B (2008) Opt Lett 33:1999

    Article  CAS  Google Scholar 

  • Kang Y, Walish JJ, Gorishnyy T, Thomas EL (2007) Nat Mater 6:957

    Article  CAS  Google Scholar 

  • Knight JC (2003) Nature 424:6950

    Google Scholar 

  • Lin SY, Ye D-X, Lu T-M, Bur J, Kim YS, Ho KM (2006) J Appl Phys 99:083104

    Article  Google Scholar 

  • Miklyaev Y, Imgrunt W, Pavelyev V.S, Kachalov D, Bizjak T, Aschke L, Lissotschenko V (2010) SPIE Advanced Lithography. 764024

    Google Scholar 

  • Miklyaev YV, Karpeev SV, Dyachenko PN, Pavelyev VS (2009) J Mod Opt 56:1133

    Article  CAS  Google Scholar 

  • Miklyaev YV, Imgrunt W, Pavelyev VS, Soifer VA, Kachalov DG, Eropolov VA, Aschke L, Bolshakov MV, Lissotschenko VN (2011) Synthesis and investigation of diffractive beam splitters with continuous profile. Comput Opt 35(1):42–46

    Google Scholar 

  • Mizeikis V, Juodkazis S, Tarozaite R, Juodkazyte J, Juodkazis K, Misawa H (2007) Opt Express 15:8454

    Article  CAS  Google Scholar 

  • Osipov V, Pavelyev V, Kachalov D, Zukauskas A, Chichkov B (2010) Realization of binary radial diffractive optical elements by two-photon polymerization technique. Opt Express 18(25):25808–25814

    Article  CAS  Google Scholar 

  • Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) Comp Phys Commun 181:687

    Article  CAS  Google Scholar 

  • Rinnie SA, Santamaria FG, Braun PV (2008) Nat Photonics 8:52

    Article  Google Scholar 

  • Sedghi AA, Kalafi M, SoltaniVala A, Rezaei B (2010) Opt Commun 283:2356

    Article  CAS  Google Scholar 

  • Serbin J, Ovsianikov A, Chichkov B (2004) Opt Express 12:5221

    Article  CAS  Google Scholar 

  • Sigalas MM, Chan CT, Ho KM, Soukoulis CM (1995) Phys Rev B 52:11744

    Article  CAS  Google Scholar 

  • Soifer VA (2014) Diffractive nanophotonics. CRC Press, Taylor & Francis Group, CISP, Boca Raton

    Google Scholar 

  • Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech, Norwood MA

    Google Scholar 

  • Tal A, Chen Y-S, Williams HE, Rumpf RC, Kuebler SM (2007) Opt Express 15:18283

    Article  CAS  Google Scholar 

  • Tukmakov KN, Volodkin BO, Pavelyev VS, Komlenok MS, Khomich AA (2012) Photonic crystal resonator on a diamond film. Bull Samara State Aerosp Univ 7(38):112–116. (in Russian)

    Google Scholar 

  • Tukmakov KN, Volodkin BO, Pavelyev VS, Komlenok MS, Khomich AA, Ralchenko VG (2013) Fabrication of diamond film-based photonics with focused ion beam. Techn Digest Int Conf Las Appl Technol (LAT), Moscow LAT-04:41–42

    Google Scholar 

  • Walsh TA, Bur JA, Kim Y-S, Lu T-M, Yu Lin S (2009) J Opt Soc Am B 26:1450

    Article  CAS  Google Scholar 

  • Wijnhoven JEGJ, Vos WL (1998) Science 281:802

    Article  CAS  Google Scholar 

  • Yablonovich E, Gmitter TJ, Leung KM (1991) Phys Rev Lett 67:2295

    Article  Google Scholar 

  • Yablonovitch Y (1987) Phys Rev Lett 58:2059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavelyev, V. (2022). Optical Characterization of Nanomaterials-I. In: Thakur, A., Thakur, P., Khurana, S.P. (eds) Synthesis and Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_7

Download citation

Publish with us

Policies and ethics