Skip to main content

Microbial Factory; Utilization of Pectin-Rich Agro-Industrial Wastes for the Production of Pectinases Enzymes Through Solid State Fermentation (SSF)

  • Chapter
  • First Online:
Waste Management, Processing and Valorisation

Abstract

Agro-industrial wastes are abundantly generated every year from the agriculture processing industries. While some of the organic biomasses are used as animal feed, most of the organic materials are either dumped or burnt in the open environment, thus resulting in debilitating pollution and health hazards. However, such wastes are usually composed of organic pectic substances, sugars, minerals, proteins and moisture that may serve as an ideal environment that can support microbial growth. The nutritious property of agro-industrial wastes allows its utilization as the perfect substrate for solid state fermentation (SSF). The SSF is a low-cost technology that enables bioconversion of agro-industrial wastes into various value-added by-products such as pectinases enzymes as well as an eco-friendly approach for the control and waste management system. While SSF technology is less explored compared to submerged fermentation, it has been proven to give higher microbial bioactive compound productivity. This chapter will provide an overview of agro-industrial wastes valorisation via SSF methods and its application in pectinases production. Further, general requirements for efficient SSF bioprocess technology and final productivity are comprehensively described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gassner, A., Harris, D., Mausch, K., Terheggen, A., Lopes, C., Finlayson, R.F., Dobie, P.: Poverty eradication and food security through agriculture in Africa: rethinking objectives and entry points. Outlook Agric. 48, 309–315 (2019). https://doi.org/10.1177/0030727019888513

    Article  CAS  Google Scholar 

  2. Tian, Z., Wang, J.-W., Li, J., Han, B.: Designing future crops: challenges and strategies for sustainable agriculture. Plant J. 105, 1165–1178 (2021). https://doi.org/10.1111/tpj.15107

  3. FAO: The State of Food and Agriculture: Viale delle Terme di Caracalla, 00153 Rome, Italy (2012)

    Google Scholar 

  4. Encyclopedia of the Nation: Malaysia Agriculture, Information about Agriculture in Malaysia. https://www.nationsencyclopedia.com/economies/Asia-and-the-Pacific/Malaysia-AGRICULTURE.html

  5. DOS: Department of Statistics Malaysia Official Portal. https://www.dosm.gov.my/v1/index.php?r=column/ctwoByCat&parent_id=45&menu_id=Z0VTZGU1UHBUT1VJMFlpaXRRR0xpdz09

  6. FAO: High Level Expert Forum - How to Feed the World in 2050, Viale delle Terme di Caracalla, 00153 Rome, Italy (2009)

    Google Scholar 

  7. Adejumo, I.O., Adebiyi, O.A.: Agricultural solid wastes: causes, effects, and effective management. In: Solid Waste Management. IntechOpen (2020). https://doi.org/10.5772/intechopen.93601

  8. Sadh, P.K., Duhan, S., Duhan, J.S.: Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour. Bioprocess. 5, 1–15 (2018). https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  9. Agamuthu, P.: Inaugural Meeting of First Regional 3R Forum in Asia 11–12, Tokyo, Japan (2009)

    Google Scholar 

  10. Belewu, M.A., Babalola, F.T.: Nutrient enrichment of waste agricultural residues after solid state fermentation using Rhizopus oligosporus. J. Appl. Biosci. 13, 695–699 (2009)

    Google Scholar 

  11. Javad, S., Akhtar, I., Naz, S.: Nanomaterials and agrowaste. In: Nanoagronomy, pp. 197–207. Springer, Berlin (2020)

    Google Scholar 

  12. Basri, M.F., Yacob, S., Hassan, M.A., Shirai, Y., Wakisaka, M., Zakaria, M.R., Phang, L.Y.: Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process. World J. Microbiol. Biotechnol. 26, 505–514 (2010). https://doi.org/10.1007/s11274-009-0197-x

    Article  CAS  Google Scholar 

  13. Balachandran, C., Vishali, A., Nagendran, N.A., Baskar, K., Hashem, A., FathiAbd_Allah, E.: Optimization of protease production from Bacillus halodurans under solid state fermentation using agrowastes. Saudi J. Biol. Sci. (2021). https://doi.org/10.1016/j.sjbs.2021.04.069

  14. Rusdianti, R., Azizah, A., Utarti, E., Wiyono, H.T., Muzakhar, K.: Cheap cellulase production by Aspergillus sp. VTM1 through solid state fermentation of coffee pulp waste. In: Key Engineering Materials, pp. 159–164. Trans Tech Publ (2021). https://doi.org/10.4028/www.scientific.net/KEM.884.159

  15. Thakur, P., Mukherjee, G.: Utilization of agro-waste in pectinase production and its industrial applications. In: Recent Developments in Microbial Technologies, pp. 145–162. Springer, Berlin (2021)

    Google Scholar 

  16. Jacob, N., Prema, P.: Influence of mode of fermentation on production of polygalacturonase by a novel strain of Streptomyces lydicus. Food Technol. Biotechnol. 44 (2006)

    Google Scholar 

  17. Pandey, A., Selvakumar, P., Soccol, C.R., Nigam, P.: Solid state fermentation for the production of industrial enzymes. Curr. Sci. 149–162 (1999)

    Google Scholar 

  18. Kieliszek, M., Piwowarek, K., Kot, A.M., Pobiega, K.: The aspects of microbial biomass use in the utilization of selected waste from the agro-food industry. Open Life Sci. 15, 787–796 (2020). https://doi.org/10.1515/biol-2020-0099

    Article  CAS  Google Scholar 

  19. Celus, M., Kyomugasho, C., Van Loey, A.M., Grauwet, T., Hendrickx, M.E.: Influence of pectin structural properties on interactions with divalent cations and its associated functionalities. Compr. Rev. Food Sci. Food Saf. 17, 1576–1594 (2018). https://doi.org/10.1111/1541-4337.12394

    Article  CAS  Google Scholar 

  20. Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40, 2931–2944 (2005). https://doi.org/10.1016/j.procbio.2005.03.026

    Article  CAS  Google Scholar 

  21. Geetha, M., Saranraj, P., Mahalakshmi, S., Reetha, D.: Screening of pectinase producing bacteria and fungi for its pectinolytic activity using fruit wastes. Int. J. Biochem. Biotech. Sci. 1, 30–42 (2012)

    Google Scholar 

  22. Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., Beg, Q.: Microbial alkaline pectinases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 59, 409–418 (2002). https://doi.org/10.1007/s00253-002-1061-1

    Article  CAS  Google Scholar 

  23. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., Rascón-Chu, A.: Pectin and pectin-based composite materials: beyond food texture. Molecules 23, 942 (2018). https://doi.org/10.3390/molecules23040942

    Article  CAS  Google Scholar 

  24. Suhaimi, H., Dailin, D.J., Abd Malek, R., Hanapi, S.Z., Ambehabati, K.K., Keat, H.C., Prakasham, S., Elsayed, E.A., Misson, M., El Enshasy, H.: Fungal pectinases: production and applications in food industries. Fungi Sustain. Food Prod. 85–115 (2021)

    Google Scholar 

  25. Carpita, N.C., Gibeaut, D.M.: Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993). https://doi.org/10.1111/j.1365-313x.1993.tb00007.x

    Article  CAS  Google Scholar 

  26. Díaz, G.V., Coniglio, R.O., Alvarenga, A.E., Zapata, P.D., Villalba, L.L., Fonseca, M.I.: Secretomic analysis of cheap enzymatic cocktails of Aspergillus niger LBM 134 grown on cassava bagasse and sugarcane bagasse. Mycologia 112, 663–676 (2020). https://doi.org/10.1080/00275514.2020.1763707

    Article  CAS  Google Scholar 

  27. Baladhandayutham, S., Thangavelu, V.: Optimization and kinetics of solid-state fermentative production of pectinase by Aspergillus awamori. Int. J. ChemTech Res. 3, 1758–1764 (2011)

    CAS  Google Scholar 

  28. Solis-Pereyra, S., Favela-Torres, E., Gutierrez-Rojas, M., Roussos, S., Saucedo-Castaneda, G., Gunasekaran, P., Viniegra-Gonzalez, G.: Production of pectinases by Aspergillus niger in solid state fermentation at high initial glucose concentrations. World J. Microbiol. Biotechnol. 12, 257–260 (1996)

    Article  CAS  Google Scholar 

  29. Martin, N., de Souza, S.R., da Silva, R., Gomes, E.: Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct. Brazilian Arch. Biol. Technol. 47, 813–819 (2004)

    Article  CAS  Google Scholar 

  30. Bai, Z.H., Zhang, H.X., Qi, H.Y., Peng, X.W., Li, B.J.: Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresour. Technol. 95, 49–52 (2004). https://doi.org/10.1016/j.biortech.2003.06.006

    Article  CAS  Google Scholar 

  31. Li, Z., Bai, Z., Zhang, B., Xie, H., Hu, Q., Hao, C., Xue, W., Zhang, H.: Newly isolated Bacillus gibsonii S-2 capable of using sugar beet pulp for alkaline pectinase production. World J. Microbiol. Biotechnol. 21, 1483–1486 (2005)

    Article  CAS  Google Scholar 

  32. Neagu, D.A., Destain, J., Thonart, P., Socaciu, C.: Effects of different carbon sources on pectinase production by Penicillium oxalicum. Bull. UASVM Agric. 69, 327–333 (2012)

    CAS  Google Scholar 

  33. Thite, V.S., Nerurkar, A.S., Baxi, N.N.: Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through response surface methodology. Sci. Rep. 10, 3824 (2020). https://doi.org/10.1038/s41598-020-60760-6

    Article  CAS  Google Scholar 

  34. Abbasi, H., Mortazavipour, S.R., Setudeh, M.: Polygalacturonase (PG) production by fungal strains using agro-industrial bioproduct in solid state fermentation. Chem. Eng. Res. Bull. 15, 1–5 (2011)

    Article  CAS  Google Scholar 

  35. Heerd, D., Yegin, S., Tari, C., Fernandez-Lahore, M.: Pectinase enzyme-complex production by Aspergillus spp. in solid-state fermentation: a comparative study. Food Bioprod. Process. 90, 102–110 (2012). https://doi.org/10.1016/j.fbp.2011.08.003

  36. Martins, E.S., Silva, D., Da Silva, R., Gomes, E.: Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem. 37, 949–954 (2002). https://doi.org/10.1016/S0032-9592(01)00300-4

    Article  CAS  Google Scholar 

  37. Kashyap, D.R., Soni, S.K., Tewari, R.: Enhanced production of pectinase by Bacillus sp. DT7 using solid state fermentation. Bioresour. Technol. 88, 251–254 (2003). https://doi.org/10.1016/S0960-8524(02)00206-7

  38. Kuhad, R.C., Kapoor, M., Rustagi, R.: Enhanced production of an alkaline pectinase from Streptomyces sp. RCK-SC by whole-cell immobilization and solid-state cultivation. World J. Microbiol. Biotechnol. 20, 257–263 (2004). https://doi.org/10.1023/B:WIBI.0000023833.15866.45

  39. Silva, D., Tokuioshi, K., da Silva Martins, E., Da Silva, R., Gomes, E.: Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem. 40, 2885–2889 (2005). https://doi.org/10.1016/j.procbio.2005.01.008

    Article  CAS  Google Scholar 

  40. Zhu, M., He, H., Fan, M., Ma, H., Ren, H., Zeng, J., Gao, H.: Application and optimization of solid-state fermentation process for enhancing polygalacturonase production by Penicillium expansum. Int. J. Agric. Biol. Eng. 11, 187–194 (2018). https://doi.org/10.25165/j.ijabe.20181106.3673

    Article  Google Scholar 

  41. Sharma, D.C., Satyanarayana, T.: Biotechnological potential of agro residues for economical production of thermoalkali-stable pectinase by Bacillus pumilus dcsr1 by solid-state fermentation and its efficacy in the treatment of ramie fibres. Enzyme Res. 2012 (2012). https://doi.org/10.1155/2012/281384

  42. Faten, A.M., Abeer, A.A.E.: Enzyme activities of the marine-derived fungus Alternaria alternata cultivated on selected agricultural wastes. J. Appl. Biol. Sci. 7, 39–46 (2013)

    Google Scholar 

  43. Chugh, P., Soni, R., Soni, S.K.: Deoiled rice bran: a substrate for co-production of a consortium of hydrolytic enzymes by Aspergillus niger P-19. Waste Biomass Valorizat. 7, 513–525 (2016)

    Article  CAS  Google Scholar 

  44. Irshad, M., Anwar, Z., Mahmood, Z., Aqil, T., Mehmmod, S., Nawaz, H.: Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viridi; its purification and characterization. Turkish J. Biochem. Biyokim. Derg. 39, (2014). https://doi.org/10.5505/tjb.2014.55707

  45. Adeleke, A.J., Odunfa, S.A., Olanbiwonninu, A., Owoseni, M.C.: Production of cellulase and pectinase from orange peels by fungi. Nat. Sci. 10, 107–112 (2012)

    Google Scholar 

  46. Hidayah, A.A., Azizah, Winarsa, R., Muzakhar, K.: Utilization of coffee pulp as a substrate for pectinase production by Aspergillus sp. VTMS through solid state fermentation. In: AIP Conference Proceedings, p. 020012. AIP Publishing LLC (2020)

    Google Scholar 

  47. Frómeta, R.A.R., Sánchez, J.L., García, J.M.R.: Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emirates J. Food Agric. 117–124 (2020). https://doi.org/10.9755/ejfa.2020.v32.i2.2068

  48. Haile, M., Kang, W.H.: Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms 7, 401 (2019). https://doi.org/10.3390/microorganisms7100401

    Article  CAS  Google Scholar 

  49. Avallone, S., Brillouet, J.M., Guyot, B., Olguin, E., Guiraud, J.P.: Involvement of pectolytic micro-organisms in coffee fermentation. Int. J. food Sci. Technol. 37, 191–198 (2002)

    Article  CAS  Google Scholar 

  50. Botella, C., Diaz, A., De Ory, I., Webb, C., Blandino, A.: Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 42, 98–101 (2007). https://doi.org/10.1016/j.procbio.2006.06.025

    Article  CAS  Google Scholar 

  51. Arévalo-Villena, M., Fernández, M., López, J., Briones, A.: Pectinases yeast production using grape skin as carbon source. Adv. Biosci. Biotechnol. 2, 89 (2011). https://doi.org/10.4236/abb.2011.22014

    Article  CAS  Google Scholar 

  52. Castilho, L.R., Medronho, R.A., Alves, T.L.M.: Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresour. Technol. 71, 45–50 (2000). https://doi.org/10.1016/S0960-8524(99)00058-9

    Article  CAS  Google Scholar 

  53. Dhillon, S.S., Gill, R.K., Gill, S.S., Singh, M.: Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger. Int. J. Environ. Stud. 61, 199–210 (2004). https://doi.org/10.1080/0020723032000143346

    Article  CAS  Google Scholar 

  54. Mehmood, T., Saman, T., Irfan, M., Anwar, F., Ikram, M.S., Tabassam, Q.: Pectinase production from Schizophyllum commune through central composite design using citrus waste and its immobilization for industrial exploitation. Waste Biomass Valorizat. 10, 2527–2536 (2019). https://doi.org/10.1007/s12649-018-0279-9

    Article  CAS  Google Scholar 

  55. Rodríguez-Fernández, D.E., Leon, J.A.R., Carvalho, J.C., Karp, S.G., Parada, J.L., Soccol, C.R.: Process development to recover pectinases produced by solid-state fermentation. J. Bioprocess. Biotech. 2 (2012). https://doi.org/10.4172/2155-9821.1000121

  56. Sharma, N., Rathore, M., Sharma, M.: Microbial pectinase: sources, characterization and applications. Rev. Environ. Sci. Bio/Technol. 12, 45–60 (2013). https://doi.org/10.1007/s11157-012-9276-9

    Article  CAS  Google Scholar 

  57. Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77, 215–227 (2001). https://doi.org/10.1016/S0960-8524(00)00118-8

    Article  CAS  Google Scholar 

  58. Shiukashvili, V., Vephkhishvili, N., Khositashvili, M.: Quantitative analysis of soluble and insoluble forms of pectic substances in grapes in different phases of vegetation. In: E-Conference Globe, pp. 1–7 (2021)

    Google Scholar 

  59. Vaclavik, V.A., Christian, E.W.: Pectins and gums. In: Essentials of Food Science, pp. 53–61. Springer, Berlin (2014). https://doi.org/10.1007/978-1-4614-9138-5_5

  60. Susanti, S., Legowo, A.M., Nurwantoro, N., Silviana, S., Arifan, F.: Comparing the chemical characteristics of pectin isolated from various Indonesian fruit peels. Indones. J. Chem. 21, 1057–1062 (2021). https://doi.org/10.22146/ijc.59799

    Article  CAS  Google Scholar 

  61. Rehman, H., Baloch, A.H., Nawaz, M.A.: Pectinase: immobilization and applications: a review. Trends Pept. Protein Sci. 6, 1–16 (2021). https://doi.org/10.22037/tpps.v6i.33871

    Article  Google Scholar 

  62. Valdés, A., Burgos, N., Jiménez, A., Garrigós, M.C.: Natural pectin polysaccharides as edible coatings. Coatings 5, 865–886 (2015). https://doi.org/10.3390/coatings5040865

    Article  CAS  Google Scholar 

  63. Tsuru, C., Umada, A., Noma, S., Demura, M., Hayashi, N.: Extraction of pectin from Satsuma mandarin orange peels by combining pressurized carbon dioxide and deionized water: a green chemistry method. Food Bioprocess Technol. 1–8 (2021). https://doi.org/10.1007/s11947-021-02644-9

  64. Reddy, P.L., Sreeramulu, A.: Isolation, identification and screening of pectinolytic fungi from different soil samples of Chittoor district. Int. J. Life Sci. Biotechnol. Pharma Res. 1, 186–193 (2012)

    Google Scholar 

  65. Pedrolli, D.B., Monteiro, A.C., Gomes, E., Carmona, E.C.: Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol. J. 9–18 (2009)

    Google Scholar 

  66. Yadav, S., Yadav, P.K., Yadav, D., Yadav, K.D.S.: Pectin lyase: a review. Process Biochem. 44, 1–10 (2009). https://doi.org/10.1016/j.procbio.2008.09.012

    Article  CAS  Google Scholar 

  67. Tai, C., Bouissil, S., Gantumur, E., Carranza, M.S., Yoshii, A., Sakai, S., Pierre, G., Michaud, P., Delattre, C.: Use of anionic polysaccharides in the development of 3D bioprinting technology. Appl. Sci. 9, 2596 (2019). https://doi.org/10.3390/app9132596

    Article  CAS  Google Scholar 

  68. Paniagua, C., Posé, S., Morris, V.J., Kirby, A.R., Quesada, M.A., Mercado, J.A.: Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann. Bot. 114, 1375–1383 (2014). https://doi.org/10.1093/aob/mcu149

    Article  CAS  Google Scholar 

  69. Lang, C., Dörnenburg, H.: Perspectives in the biological function and the technological application of polygalacturonases. Appl. Microbiol. Biotechnol. 53, 366–375 (2000). https://doi.org/10.1007/s002530051628

    Article  CAS  Google Scholar 

  70. Kavuthodi, B., Sebastian, D.: Review on bacterial production of alkaline pectinase with special emphasis on Bacillus species. Biosci. Biotechnol. Res. Commun. 11, 18–30 (2018). https://doi.org/10.21786/bbrc/11.1/4

    Article  Google Scholar 

  71. Roy, K., Dey, S., Uddin, M., Barua, R., Hossain, M.: Extracellular pectinase from a novel bacterium Chryseobacterium indologenes strain SD and its application in fruit juice clarification. Enzyme Res. 2018 (2018). https://doi.org/10.1155/2018/3859752

  72. Amin, F., Bhatti, H.N., Bilal, M.: Recent advances in the production strategies of microbial pectinases—a review. Int. J. Biol. Macromol. 122, 1017–1026 (2019). https://doi.org/10.1016/j.ijbiomac.2018.09.048

    Article  CAS  Google Scholar 

  73. Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J., Mahajan, R.: Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech. 6, 47 (2016). https://doi.org/10.1007/s13205-016-0371-4

  74. KC, S., Upadhyaya, J., Joshi, D.R., Lekhak, B., Kumar Chaudhary, D., Raj Pant, B., Raj Bajgai, T., Dhital, R., Khanal, S., Koirala, N.: Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains. Fermentation. 6, 59 (2020). https://doi.org/10.3390/fermentation6020059

  75. Chebli, Y., Kaneda, M., Zerzour, R., Geitmann, A.: The cell wall of the Arabidopsis pollen tube-spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 160, 1940–1955 (2012). https://doi.org/10.1104/pp.112.199729

    Article  CAS  Google Scholar 

  76. Shen, Z., Reese, J.C., Reeck, G.R.: Purification and characterization of polygalacturonase from the rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Insect Biochem. Mol. Biol. 26, 427–433 (1996)

    Article  CAS  Google Scholar 

  77. Bhardwaj, V., Garg, N.: Exploitation of micro-organisms for isolation and screening of pectinase from environment. In: Globelics 2010 8th International Conference, University of Malaya, Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  78. Gummadi, S.N., Panda, T.: Purification and biochemical properties of microbial pectinases—a review. Process Biochem. 38, 987–996 (2003). https://doi.org/10.1016/S0032-9592(02)00203-0

    Article  CAS  Google Scholar 

  79. Satapathy, S., Rout, J.R., Kerry, R.G., Thatoi, H., Sahoo, S.L.: Biochemical prospects of various microbial pectinase and pectin: an approachable concept in pharmaceutical bioprocessing. Front. Nutr. 7, 117 (2020). https://doi.org/10.3389/fnut.2020.00117

    Article  CAS  Google Scholar 

  80. Shet, A.R., Desai, S.V., Achappa, S.: Pectinolytic enzymes: classification, production, purification and applications. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 4, 337–348 (2018). https://doi.org/10.26479/2018.0403.30

    Article  CAS  Google Scholar 

  81. Suykerbuyk, M.E.G., Schaap, P.J., Stam, H., Musters, W., Visser, J.: Cloning, sequence and expression of the gene coding for rhamnogalacturonase of Aspergillus aculeatus; a novel pectinolytic enzyme. Appl. Microbiol. Biotechnol. 43, 861–870 (1995). https://doi.org/10.1007/BF02431920

    Article  CAS  Google Scholar 

  82. Chaudhri, A., Suneetha, V.: Microbially derived pectinases: a review. IOSR J Pharm Biol Sci. 2, 1–5 (2012)

    Google Scholar 

  83. Singh, R., Kumar, M., Mittal, A., Mehta, P.K.: Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6, 174 (2016). https://doi.org/10.1007/s13205-016-0485-8

  84. Anisa, S.K., Girish, K.: Pectinolytic activity of Rhizopus sp. and Trichoderma viride. Int. J. Res. Pure Appl. Microbiol. 4, 28–31 (2014)

    Google Scholar 

  85. Underkofler, L.A., Barton, R.R., Rennert, S.S.: Production of microbial enzymes and their applications. Appl. Microbiol. 6, 212 (1958)

    Article  CAS  Google Scholar 

  86. Bharadwaj, P.S., Udupa, P.M.: Isolation, purification and characterization of pectinase enzyme from Streptomyces thermocarboxydus. J. Clin. Microbiol. Biochem. Technol. 5, 1–6 (2019)

    Google Scholar 

  87. Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A., Mathew, A.K., Madhavan, A., Rebello, S., Pandey, A.: Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56, 16–30 (2018). https://doi.org/10.17113/ftb.56.01.18.5491

    Article  CAS  Google Scholar 

  88. Boddy, L., Hiscox, J.: Fungal Ecology: Principles and mechanisms of colonization and competition by saprotrophic fungi. In: The Fungal Kingdom, pp. 293–308. Wiley (2017)

    Google Scholar 

  89. Mamma, D., Kourtoglou, E., Christakopoulos, P.: Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresour. Technol. 99, 2373–2383 (2008). https://doi.org/10.1016/j.biortech.2007.05.018

    Article  CAS  Google Scholar 

  90. Doughari, J.H., Onyebarachi, G.C.: Production, purification and characterization of polygalacturonase from Aspergillus flavus grown on orange peel. Appl. Microbiol. Open Access. 4, 1–7 (2019). https://doi.org/10.4172/2471-9315.1000155

    Article  Google Scholar 

  91. Jacob, N.: Pectinolytic enzymes. In: Biotechnology for Agro-Industrial Residues Utilisation, pp. 383–396. Springer, Berlin (2009)

    Google Scholar 

  92. Schuster, E., Dunn-Coleman, N., Frisvad, J.C., Van Dijck, P.W.: On the safety of Aspergillus niger—a review. Appl. Microbiol. Biotechnol. 59, 426–435 (2002). https://doi.org/10.1007/s00253-002-1032-6

    Article  CAS  Google Scholar 

  93. Hölker, U., Höfer, M., Lenz, J.: Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64, 175–186 (2004). https://doi.org/10.1007/s00253-003-1504-3

    Article  CAS  Google Scholar 

  94. Bayoumi, R.A., Yassin, H.M., Swelim, M.A., Abdel-All, E.Z.: Production of bacterial pectinase (s) from agro-industrial wastes under solid state fermentation conditions. J. Appl. Sci. Res. 4, 1708–1721 (2008)

    Google Scholar 

  95. Jayani, R.S., Shukla, S.K., Gupta, R.: Screening of bacterial strains for polygalacturonase activity: Its production by Bacillus sphaericus (MTCC 7542). Enzyme Res. 2010 (2010). https://doi.org/10.4061/2010/306785

  96. Daskaya-Dikmen, C., Karbancioglu-Guler, F., Ozcelik, B.: Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples. Extremophiles 22, 599–606 (2018). https://doi.org/10.1007/s00792-018-1020-0

    Article  CAS  Google Scholar 

  97. Moharib, S.A., El-Sayed, S.T., Jwanny, E.W.: Evaluation of enzymes produced from yeast. Food Nahrung 44, 47–51 (2000). https://doi.org/10.1002/(SICI)1521-3803(20000101)44:1%3c47::AID-FOOD47%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  98. Blanco, P., Sieiro, C., Villa, T.G.: Production of pectic enzymes in yeasts. FEMS Microbiol. Lett. 175, 1–9 (1999). https://doi.org/10.1111/j.1574-6968.1999.tb13595.x

    Article  CAS  Google Scholar 

  99. Karaoğlan, M., Erden-Karaoğlan, F.: Effect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris. Enzyme Microb. Technol. 139, 109589 (2020). https://doi.org/10.1016/j.enzmictec.2020.109589

    Article  CAS  Google Scholar 

  100. Teixeira, J.A., Gonçalves, D.B., De Queiroz, M.V., De Araújo, E.F.: Improved pectinase production in Penicillium griseoroseum recombinant strains. J. Appl. Microbiol. 111, 818–825 (2011). https://doi.org/10.1111/j.1365-2672.2011.05099.x

    Article  CAS  Google Scholar 

  101. Esquivel, J.C.C., Voget, C.E.: Purification and partial characterization of an acidic polygalacturonase from Aspergillus kawachii. J. Biotechnol. 110, 21–28 (2004). https://doi.org/10.1016/j.jbiotec.2004.01.010

    Article  CAS  Google Scholar 

  102. Schwan, R.F., Cooper, R.M., Wheals, A.E.: Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts. Enzyme Microb. Technol. 21, 234–244 (1997). https://doi.org/10.1016/S0141-0229(96)00261-X

    Article  CAS  Google Scholar 

  103. Whitehead, M.P., Shieh, M.T., Cleveland, T.E., Cary, J.W., Dean, R.A.: Isolation and characterization of polygalacturonase genes (pecA and pecB) from Aspergillus flavus. Appl. Environ. Microbiol. 61, 3316 (1995). https://doi.org/10.1128/aem.61.9.3316-3322.1995

    Article  CAS  Google Scholar 

  104. Bussink, H.J.D., Buxton, F.P., Fraaye, B.A., de Graaff, L.H., Visser, J.: The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur. J. Biochem. 208, 83–90 (1992). https://doi.org/10.1111/j.1432-1033.1992.tb17161.x

    Article  CAS  Google Scholar 

  105. Mohamed, S.A., Farid, N.M., Hossiny, E.N., Bassuiny, R.I.: Biochemical characterization of an extracellular polygalacturonase from Trichoderma harzianum. J. Biotechnol. 127, 54–64 (2006). https://doi.org/10.1016/j.jbiotec.2006.06.009

    Article  CAS  Google Scholar 

  106. Gainvors, A., Frezier, V., Lemaresquier, H., Lequart, C., Aigle, M., Belarbi, A.: Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 10, 1311–1319 (1994). https://doi.org/10.1002/yea.320101008

    Article  CAS  Google Scholar 

  107. Martos, M.A., Zubreski, E.R., Garro, O.A., Hours, R.A.: Production of Pectinolytic enzymes by the yeast Wickerhanomyces anomalus isolated from citrus fruits peels. Biotechnol. Res. Int. 2013 (2013). https://doi.org/10.1155/2013/435154

  108. Maisuria, V.B., Patel, V.A., Nerurkar, A.S.: Biochemical and thermal stabilization parameters of polygalacturonase from Erwinia carotovora subsp. carotovora BR1. J. Microbiol. Biotechnol. 20, 1077–1085 (2010). https://doi.org/10.4014/jmb.0908.08008

  109. Alaña, A., Gabilondo, A., Hernando, F., Moragues, M.D., Dominguez, J.B., Llama, M.J., Serra, J.L.: Pectin lyase production by a Penicillium italicum strain. Appl. Environ. Microbiol. 55, 1612 (1989). https://doi.org/10.1128/aem.55.6.1612-1616.1989

    Article  Google Scholar 

  110. Zhang, Z., Dong, J., Zhang, D., Wang, J., Qin, X., Liu, B., Xu, X., Zhang, W., Zhang, Y.: Expression and characterization of a pectin methylesterase from Aspergillus niger ZJ5 and its application in fruit processing. J. Biosci. Bioeng. 126, 690–696 (2018). https://doi.org/10.1016/j.jbiosc.2018.05.022

    Article  CAS  Google Scholar 

  111. Lemaire, A., Garzon, C.D., Perrin, A., Habrylo, O., Trezel, P., Bassard, S., Lefebvre, V., Van Wuytswinkel, O., Guillaume, A., Pau-Roblot, C.: Three novel rhamnogalacturonan I-pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr. Polym. 248, 116752 (2020). https://doi.org/10.1016/j.carbpol.2020.116752

    Article  CAS  Google Scholar 

  112. Rahman, M., Choi, Y.S., Kim, Y.K., Park, C., Yoo, J.C.: Production of novel polygalacturonase from Bacillus paralicheniformis CBS32 and application to depolymerization of ramie fiber. Polymers (Basel). 11, 1525 (2019). https://doi.org/10.3390/polym11091525

  113. Andrade, M.V.V. de, Delatorre, A.B., Ladeira, S.A., Martins, M.L.L.: Production and partial characterization of alkaline polygalacturonase secreted by thermophilic Bacillus sp. SMIA-2 under submerged culture using pectin and corn steep liquor. Food Sci. Technol. 31, 204–208 (2011). https://doi.org/10.1590/S0101-20612011000100031

  114. Zhou, C., Xue, Y., Ma, Y.: Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl. Microbiol. Biotechnol. 101, 3663–3676 (2017). https://doi.org/10.1007/s00253-017-8110-2

    Article  CAS  Google Scholar 

  115. Bekli, S., Aktas, B., Gencer, D., Aslim, B.: Biochemical and molecular characterizations of a novel pH-and temperature-stable pectate lyase from Bacillus amyloliquefaciens S6 for industrial application. Mol. Biotechnol. 61, 681–693 (2019). https://doi.org/10.1007/s12033-019-00194-2

    Article  CAS  Google Scholar 

  116. Yuan, P., Meng, K., Wang, Y., Luo, H., Shi, P., Huang, H., Tu, T., Yang, P., Yao, B.: A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range. Appl. Biochem. Biotechnol. 168, 1489–1500 (2012). https://doi.org/10.1007/s12010-012-9872-8

    Article  CAS  Google Scholar 

  117. Cheng, L., Duan, S., Zheng, K., Feng, X., Yang, Q., Liu, Z., Liu, Z., Peng, Y.: An alkaline pectate lyase D from Dickeya dadantii DCE-01: clone, expression, characterization, and potential application in ramie bio-degumming. Text. Res. J. 89, 2075–2083 (2019). https://doi.org/10.1177/0040517518790971

    Article  CAS  Google Scholar 

  118. Liao, C.H., McCallus, D.E., Wells, J.M.: Calcium-dependent pectate lyase production in the soft-rotting bacterium Pseudomonas fluorescens. Phytopathology 83, 813–824 (1993)

    Article  CAS  Google Scholar 

  119. Arbige, M.V., Shetty, J.K., Chotani, G.K.: Industrial enzymology: the next chapter. Trends Biotechnol. 37, 1355–1366 (2019). https://doi.org/10.1016/j.tibtech.2019.09.010

    Article  CAS  Google Scholar 

  120. Tarafdar, A., Sirohi, R., Gaur, V.K., Kumar, S., Sharma, P., Varjani, S., Pandey, H.O., Sindhu, R., Madhavan, A., Rajasekharan, R.: Engineering interventions in enzyme production: Lab to industrial scale. Bioresour. Technol. 124771 (2021). https://doi.org/10.1016/j.biortech.2021.124771

  121. Ramesh, A., Devi, P.H., Chattopadhyay, S., Kavitha, M.: Commercial applications of microbial enzymes. In: Microbial Enzymes: Roles and Applications in Industries, pp. 137–184. Springer, Berlin (2020)

    Google Scholar 

  122. Taragano, V.M., Pilosof, A.M.R.: Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation. Enzyme Microb. Technol. 25, 411–419 (1999)

    Article  CAS  Google Scholar 

  123. Mandalari, G., Bennett, R.N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C.B., Gasson, M.J., Narbad, A.: Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J. Appl. Microbiol. 103, 2056–2064 (2007). https://doi.org/10.1111/j.1365-2672.2007.03456.x

    Article  CAS  Google Scholar 

  124. Zema, D.A., Calabrò, P.S., Folino, A., Tamburino, V., Zappia, G., Zimbone, S.M.: Valorisation of citrus processing waste: a review. Waste Manag. 80, 252–273 (2018). https://doi.org/10.1016/j.wasman.2018.09.024

    Article  CAS  Google Scholar 

  125. Kozłowski, R.M., Różańska, W.: Enzymatic treatment of natural fibres. In: Handbook of Natural Fibres, pp. 227–244. Elsevier, Amsterdam (2020)

    Google Scholar 

  126. Pasha, K.M., Anuradha, P., Subbarao, D.: Applications of pectinases in industrial sector. Int. J. pure Appl. Sci. Technol. 16, 89 (2013)

    Google Scholar 

  127. Brando, C.H.J., Brando, M.F.: Methods of coffee fermentation and drying. Cocoa coffee Ferment, pp. 367–396 (2014)

    Google Scholar 

  128. Costa, J.A. V, Treichel, H., Kumar, V., Pandey, A.: Advances in solid-state fermentation (Chap. 1). In: Pandey, A., Larroche, C., Soccol, C.R. (eds.) Current Developments in Biotechnology and Bioengineering, pp. 1–17. Elsevier, Amsterdam (2018)

    Google Scholar 

  129. Srivastava, N., Srivastava, M., Ramteke, P.W., Mishra, P.K.: Chapter 23 - Solid-state fermentation strategy for microbial metabolites production: an overview. In: Gupta, V.K., Pandey, A. (eds.) New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 345–354. Elsevier, Amsterdam (2019)

    Chapter  Google Scholar 

  130. Pandey, A.: Solid-state fermentation. Biochem. Eng. J. 13, 81–84 (2003). https://doi.org/10.1016/S1369-703X(02)00121-3

    Article  CAS  Google Scholar 

  131. López-Gómez, J.P., Manan, M.A., Webb, C.: Solid-state fermentation of food industry wastes (Chap. 7). In: Kosseva, M.R., Webb, C. (eds.) Food Industry Wastes, 2nd edn, pp. 135–161. Academic Press, Cambridge (2020)

    Google Scholar 

  132. de Castro, R.J.S., Sato, H.H.: Enzyme production by solid state fermentation: general aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valorizat. 6, 1085–1093 (2015). https://doi.org/10.1007/s12649-015-9396-x

    Article  CAS  Google Scholar 

  133. Couto, S.R., Sanromán, M.A.: Application of solid-state fermentation to food industry—a review. J. Food Eng. 76, 291–302 (2006). https://doi.org/10.1016/j.jfoodeng.2005.05.022

    Article  CAS  Google Scholar 

  134. Irfan, M., Nadeem, M., Syed, Q.: One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7, 317–326 (2014). https://doi.org/10.1016/j.jrras.2014.04.004

    Article  Google Scholar 

  135. Huerta, S., Favela, E., Lopez-Ulibarri, R., Fonseca, A., Viniegra-Gonzalez, G., Gutierrez-Rojas, M.: Absorbed substrate fermentation for pectinase production with Aspergillus niger. Biotechnol. Tech. 8, 837–842 (1994)

    Article  CAS  Google Scholar 

  136. Panchami, P.S., Gunasekaran, S.: Extraction and characterization of pectin from fruit waste. Int. J. Curr. Microbiol. Appl. Sci. 6, 943–948 (2017). https://doi.org/10.20546/ijcmas.2017.602.116

    Article  CAS  Google Scholar 

  137. Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G.: Industrial Microbiology: An Introduction. Wiley, Hoboken (2009)

    Google Scholar 

  138. Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013). https://doi.org/10.1016/j.bej.2013.10.013

    Article  CAS  Google Scholar 

  139. Oumer, O.J., Abate, D.: Screening and molecular identification of pectinase producing microbes from coffee pulp. Biomed. Res. Int. 2018, 2961767 (2018). https://doi.org/10.1155/2018/2961767

    Article  CAS  Google Scholar 

  140. Karthik, L., Kumar, G., Rao, K.V.B.: Screening of pectinase producing microorganisms from agricultural waste dump soil. Asian J. Biochem. Pharm. Res. 1(2), 329–337 (2011)

    Google Scholar 

  141. Sandhya, R., Kurup, G.: Screening and isolation of pectinase from fruit and vegetable wastes and the use of orange waste as a substrate for pectinase production. Int. Res. J. Biol. Sci. 2, 34–39 (2013)

    Google Scholar 

  142. Manan, M.A., Webb, C.: Design aspects of solid state fermentation as applied to microbial bioprocessing. J. Appl. Biotechnol. Bioeng. 4, 91 (2017). https://doi.org/10.15406/jabb.2017.04.00094

    Article  Google Scholar 

  143. Ali, H.K.Q., Zulkali, M.M.D.: Design aspects of bioreactors for solid-state fermentation: a review. Chem. Biochem. Eng. Q. 25, 255–266 (2011)

    CAS  Google Scholar 

  144. Manpreet, S., Sawraj, S., Sachin, D., Pankaj, S., Banerjee, U.C.: Influence of process parameters on the production of metabolites in solid-state fermentation. Malays. J. Microbiol. 2, 1–9 (2005)

    Google Scholar 

  145. Siddiqui, M., Pande, V., Arif, M.: Production, purification, and characterization of polygalacturonase from Rhizomucor pusillus isolated from decomposting orange peels. Enzyme Res. 2012 (2012). https://doi.org/10.1155/2012/138634

  146. Roopesh, K., Ramachandran, S., Nampoothiri, K.M., Szakacs, G., Pandey, A.: Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresour. Technol. 97, 506–511 (2006). https://doi.org/10.1016/j.biortech.2005.02.046

    Article  CAS  Google Scholar 

  147. Erdal, S., Taskin, M.: Production of alpha-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste Loquat (Eriobotrya japonica Lindley) kernels as substrate. Rom. Biotechnol. Lett. 15, 5342–5350 (2010)

    CAS  Google Scholar 

  148. Mitchell, D.A., Krieger, N., Berovič, M.: Group I bioreactors: unaerated and unmixed. In: Solid-State Fermentation Bioreactors, pp. 65–76. Springer, Berlin (2006)

    Google Scholar 

  149. Nava, I., Favela-Torres, E., Saucedo-Castañeda, G.: Effect of mixing on the solid-state fermentation of coffee pulp with Aspergillus tamarii. Food Technol. Biotechnol. 49, 391 (2011)

    CAS  Google Scholar 

  150. Valdez, A.L., Babot, J.D., Schmid, J., Delgado, O.D., Fariña, J.I.: Scleroglucan production by Sclerotium rolfsii ATCC 201126 from amylaceous and sugarcane molasses-based media: promising insights for sustainable and ecofriendly scaling-up. J. Polym. Environ. 27, 2804–2818 (2019). https://doi.org/10.1007/s10924-019-01546-4

    Article  CAS  Google Scholar 

  151. Mamo, J., Kangwa, M., Fernandez-Lahore, H.M., Assefa, F.: Optimization of media composition and growth conditions for production of milk-clotting protease (MCP) from Aspergillus oryzae DRDFS13 under solid-state fermentation. Brazilian J. Microbiol. 1–14 (2020). https://doi.org/10.1007/s42770-020-00243-y

  152. Mazutti, M., Ceni, G., Di Luccio, M., Treichel, H.: Production of inulinase by solid-state fermentation: effect of process parameters on production and preliminary characterization of enzyme preparations. Bioprocess Biosyst. Eng. 30, 297–304 (2007). https://doi.org/10.1007/s00449-006-0096-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Hawani Salikin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salikin, N.H., Makhtar, M.M.Z. (2022). Microbial Factory; Utilization of Pectin-Rich Agro-Industrial Wastes for the Production of Pectinases Enzymes Through Solid State Fermentation (SSF). In: Yaser, A.Z., Tajarudin, H.A., Embrandiri, A. (eds) Waste Management, Processing and Valorisation. Springer, Singapore. https://doi.org/10.1007/978-981-16-7653-6_10

Download citation

Publish with us

Policies and ethics