Skip to main content

The Halide Perovskite Gain Media

  • Chapter
  • First Online:
Halide Perovskite Lasers

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANOSCIENCE))

  • 477 Accesses

Abstract

Perovskites rose to fame due to its rapid improvements in solar-cell conversion efficiencies, starting from 3.8% (in 2009) to 22.1% (in 2014) and exceeding 25% (in 2019) while silicon solar cells took several decades of intense research efforts to reach conversion efficiencies ~25%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r

  2. W.S. Yang et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  ADS  Google Scholar 

  3. N. NREL, Best Research-Cell Efficiencies (National Renewable Energy Laboratory, Golden, Colorado, 2019)

    Google Scholar 

  4. N.G. Park, Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10(13), 1903106 (2020)

    Article  Google Scholar 

  5. M.A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009)

    Article  Google Scholar 

  6. G. Xing et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13(5), 476–480 (2014)

    Article  ADS  Google Scholar 

  7. M. Cadelano et al., Can trihalide lead perovskites support continuous wave lasing? Adv. Opt. Mater. 3(11), 1557–1564 (2015)

    Article  Google Scholar 

  8. T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7(8), 2518–2534 (2014)

    Article  Google Scholar 

  9. W. Ke, M.G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10(1), 965 (2019)

    Article  ADS  Google Scholar 

  10. M. Becker, T. Klüner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46(11), 3500–3509 (2017)

    Article  Google Scholar 

  11. J.C. Thomas, J.S. Bechtel, A.R. Natarajan, A. Van der Ven, Machine learning the density functional theory potential energy surface for the inorganic halide perovskite CsPbBr3. Phys. Rev. B 100(13), 134101 (2019)

    Google Scholar 

  12. K. Brown, S. Parker, I.R. García, S. Mukhopadhyay, V.G. Sakai, C. Stock, Molecular orientational melting within a lead-halide octahedron framework: the order-disorder transition in CH3NH3PbBr3. Phys. Rev. B 96(17), 174111 (2017)

    Google Scholar 

  13. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

    Article  Google Scholar 

  14. R.X. Yang, J.M. Skelton, E.L. Da Silva, J.M. Frost, A. Walsh, Spontaneous octahedral tilting in the cubic inorganic cesium halide perovskites CsSnX3 and CsPbX3 (X= F, Cl, Br, I). J. Phys. Chem. Lett. 8(19), 4720–4726 (2017)

    Article  Google Scholar 

  15. T. Whitcher et al., Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. NPG Asia Materials 11(1), 1–12 (2019)

    Article  Google Scholar 

  16. N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, perovskite solar cells: progress and advancements. Energies 9(11), 861 (2016)

    Article  Google Scholar 

  17. Y. Jia, R.A. Kerner, A.J. Grede, A.N. Brigeman, B.P. Rand, N.C. Giebink, Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16(7), 4624–4629 (2016)

    Article  ADS  Google Scholar 

  18. Y. Jia, R.A. Kerner, A.J. Grede, B.P. Rand, N.C. Giebink, Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11(12), 784–788 (2017)

    Article  ADS  Google Scholar 

  19. T. Ungár, Industrial Applications of X-ray Diffraction, ed. by F.H. Chung, D.K. Smith (Marcel Dekker, New York, 2000)

    Google Scholar 

  20. G.W. Adhyaksa et al., Understanding detrimental and beneficial grain boundary effects in halide perovskites. Adv. Mater. 30(52), 1804792 (2018)

    Article  Google Scholar 

  21. P. Lindley, D. Moss, Elements of X-ray crystallography by LV Azaroff. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 26(6), 701–701 (1970)

    Article  ADS  Google Scholar 

  22. J. Ding, X. Cheng, L. Jing, T. Zhou, Y. Zhao, S. Du, Polarization-dependent optoelectronic performances in hybrid halide perovskite MAPbX3 (X= Br, Cl) single-crystal photodetectors. ACS Appl. Mater. Interfaces 10(1), 845–850 (2018)

    Article  Google Scholar 

  23. W. Peng et al., Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 28(17), 3383–3390 (2016)

    Article  Google Scholar 

  24. F. Zhang et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4), 4533–4542 (2015)

    Article  Google Scholar 

  25. S.A. Veldhuis et al., Benzyl alcohol-treated CH3NH3PbBr3 nanocrystals exhibiting high luminescence, stability, and ultralow amplified spontaneous emission thresholds. Nano Lett. 17(12), 7424–7432 (2017)

    Article  ADS  Google Scholar 

  26. L.-C. Chen, K.-L. Lee, C.-Y. Huang, J.-C. Lin, Z.-L. Tseng, Preparation and characteristics of MAPbBr3 perovskite quantum dots on NiOx film and application for high transparent solar cells. Micromachines 9(5), 205 (2018)

    Article  Google Scholar 

  27. M. Li et al., Amplified spontaneous emission based on 2D Ruddlesden-Popper perovskites. Adv. Funct. Mater. 28(17), 1707006 (2018). https://doi.org/10.1002/adfm.201707006

    Article  Google Scholar 

  28. C.C. Stoumpos et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016)

    Article  Google Scholar 

  29. Y. Hua et al., Identification of the band gap energy of two-dimensional (OA)2(MA)n−1PbnI3n+1 perovskite with up to 10 layers. J. Phys. Chem. Lett. 10(22), 7025–7030 (2019)

    Article  Google Scholar 

  30. C.M. Raghavan et al., Low-threshold lasing from 2D homologous organic–inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano Lett. 18(5), 3221–3228 (2018)

    Article  ADS  Google Scholar 

  31. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 126(42), 11414–11417 (2014)

    Article  ADS  Google Scholar 

  32. Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. Liang, 2D Ruddlesden-Popper perovskites for optoelectronics. Adv. Mater. 30(2), 1703487 (2018)

    Article  Google Scholar 

  33. T. Ishihara, J. Takahashi, T. Goto, Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69(9), 933–936 (1989)

    Article  ADS  Google Scholar 

  34. T. Ishihara, Optical Properties of Pb-based inorganic-organic perovskites, in Optical Properties of Low–Dimensional Materials (World Scientific, 1995), pp. 288–339

    Google Scholar 

  35. I. Koutselas, L. Ducasse, G.C. Papavassiliou, Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys.: Condens. Matter 8(9), 1217 (1996)

    ADS  Google Scholar 

  36. Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang, Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2(7), 1571–1572 (2017)

    Article  Google Scholar 

  37. M.R. Leyden, T. Matsushima, C. Qin, S. Ruan, H. Ye, C. Adachi, Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Phys. Chem. Chem. Phys. 20(22), 15030–15036 (2018)

    Article  Google Scholar 

  38. Y.-H. Kim, H. Cho, T.-W. Lee, Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. 113(42), 11694–11702 (2016)

    Article  ADS  Google Scholar 

  39. S. Cohen, QLED vs. OLED TV: what’s the difference, and why does it matter? Digital Trends. https://www.digitaltrends.com/home-theater/qled-vs-oled-tv/

  40. L. Duan et al., Solution processable small molecules for organic light-emitting diodes. J. Mater. Chem. 20(31), 6392–6407 (2010)

    Article  Google Scholar 

  41. S. Reineke et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature 459(7244), 234–238 (2009)

    Article  ADS  Google Scholar 

  42. K. Shanmugasundaram, M.S. Subeesh, C.D. Sunesh, Y. Choe, Non-doped deep blue light-emitting electrochemical cells from charged organic small molecules. RSC Adv. 6(34), 28912–28918 (2016)

    Article  ADS  Google Scholar 

  43. M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15(2), 141–153 (2016)

    Article  ADS  Google Scholar 

  44. C. Pal et al., Charge transport in lead sulfide quantum dots/phthalocyanines hybrid nanocomposites. Org. Electron. 44, 132–143 (2017)

    Article  Google Scholar 

  45. C. Dang, A. Nurmikko, Beyond quantum dot LEDs: optical gain and laser action in red, green, and blue colors. MRS Bull. 38(9), 737–742 (2013)

    Article  Google Scholar 

  46. D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, P. Hinze, Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes. Appl. Phys. Lett. 88(7), 071105 (2006)

    Google Scholar 

  47. J. Lingrong et al., GaN-based green laser diodes. J. Semicond. 37(11), 111001 (2016)

    Google Scholar 

  48. J.M. Phillips et al., Research challenges to ultra-efficient inorganic solid-state lighting. Laser Photonics Rev. 1(4), 307–333 (2007)

    Article  ADS  Google Scholar 

  49. J. Wu, When group-III nitrides go infrared: New properties and perspectives. J. Appl. Phys. 106(1), 5 (2009)

    Article  Google Scholar 

  50. C.K. Ng, W. Yin, H. Li, J.J. Jasieniak, Scalable synthesis of colloidal CsPbBr3 perovskite nanocrystals with high reaction yields through solvent and ligand engineering. Nanoscale 12(8), 4859–4867 (2020)

    Article  Google Scholar 

  51. G. Nedelcu, L. Protesescu, S. Yakunin, M.I. Bodnarchuk, M.J. Grotevent, M.V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 15(8), 5635–5640 (2015)

    Article  ADS  Google Scholar 

  52. S. Yakunin et al., Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6(1), 1–9 (2015)

    MathSciNet  Google Scholar 

  53. B.R. Sutherland, E.H. Sargent, perovskite photonic sources. Nat. Photonics 10(5), 295 (2016)

    Article  ADS  Google Scholar 

  54. A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. 127(51), 15644–15648 (2015)

    Article  ADS  Google Scholar 

  55. H. Zhu et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015)

    Article  ADS  Google Scholar 

  56. B.R. Sutherland et al., perovskite thin films via atomic layer deposition. Adv. Mater. 27(1), 53–58 (2015)

    Article  Google Scholar 

  57. Y. Xu et al., Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 138(11), 3761–3768 (2016)

    Article  Google Scholar 

  58. E.E. Hoover, J.A. Squier, Advances in multiphoton microscopy technology. Nat. Photonics 7(2), 93–101 (2013)

    Article  ADS  Google Scholar 

  59. Z. Gu et al., Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4(3), 472–479 (2016)

    Article  Google Scholar 

  60. Y. Mi, Y. Zhong, Q. Zhang, X. Liu, Continuous-wave pumped perovskite lasers. Adv. Opt. Mater. 7(17), 1900544 (2019)

    Article  Google Scholar 

  61. T.C. Sum, M. Righetto, S.S. Lim, Quo vadis, perovskite emitters? J. Chem. Phys. 152(13), 130901 (2020)

    Google Scholar 

  62. J. Moon et al., Environmentally stable room temperature continuous wave lasing in defect-passivated perovskite (2019). arXiv:1909.10097

    Google Scholar 

  63. C. Tian, S. Zhao, W. Zhai, C. Ge, G. Ran, Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity. RSC Adv. 9(62), 35984–35989 (2019)

    Article  ADS  Google Scholar 

  64. L. Wang et al., Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett. 10(12), 3248–3253 (2019)

    Article  Google Scholar 

  65. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27(44), 7101–7108 (2015)

    Article  Google Scholar 

  66. G.E. Eperon, E. Jedlicka, D.S. Ginger, Biexciton auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J. Phys. Chem. Lett. 9(1), 104–109 (2018)

    Article  Google Scholar 

  67. F. Staub, U. Rau, T. Kirchartz, Statistics of the auger recombination of electrons and holes via defect levels in the band gap—application to lead-halide perovskites. ACS Omega 3(7), 8009–8016 (2018)

    Article  Google Scholar 

  68. N.S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V.I. Klimov, Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium–lead-halide perovskite quantum dots. Nano Lett. 16(4), 2349–2362 (2016)

    Article  ADS  Google Scholar 

  69. K. Chen, A.J. Barker, F.L. Morgan, J.E. Halpert, J.M. Hodgkiss, Effect of carrier thermalization dynamics on light emission and amplification in organometal halide perovskites. J. Phys. Chem. Lett. 6(1), 153–158 (2015)

    Article  Google Scholar 

  70. J.M. Richter et al., Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun. 8(1), 1–7 (2017)

    Article  Google Scholar 

  71. Y. Fang, H. Wei, Q. Dong, J. Huang, Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat. Commun. 8, 14417 (2017)

    Article  ADS  Google Scholar 

  72. L.M. Pazos-Outón et al., Photon recycling in lead iodide perovskite solar cells. Science 351(6280), 1430–1433 (2016)

    Article  ADS  Google Scholar 

  73. P. Geiregat et al., Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano 12(10), 10178–10188 (2018)

    Article  Google Scholar 

  74. J. Shi et al., Low-threshold stimulated emission of hybrid perovskites at room temperature through defect-mediated bound excitons (2019). arXiv:1902.07371

    Google Scholar 

  75. Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, Y. Chan, Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett. 18(8), 4976–4984 (2018)

    Article  ADS  Google Scholar 

  76. G. Yumoto et al., Hot biexciton effect on optical gain in CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 9(9), 2222–2228 (2018)

    Article  Google Scholar 

  77. J. Navarro-Arenas, I. Suárez, V.S. Chirvony, A.F. Gualdrón-Reyes, I. Mora-Seró, J. Martínez-Pastor, Single-exciton amplified spontaneous emission in thin films of CsPbX3 (X= Br, I) perovskite nanocrystals. J. Phys. Chem. Lett. 10(20), 6389–6398 (2019)

    Article  Google Scholar 

  78. S. Chen, A. Nurmikko, Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica 5(9), 1141–1149 (2018)

    Article  ADS  Google Scholar 

  79. M.A. Green, A. Ho-Baillie, perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett. 2(4), 822–830 (2017)

    Article  Google Scholar 

  80. W. Tress et al., Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4(7), 568–574 (2019)

    Article  ADS  Google Scholar 

  81. Y. Zhang et al., Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett. 5(2), 360–366 (2019)

    Article  Google Scholar 

  82. N.A.N. Ouedraogo et al., Stability of all-inorganic perovskite solar cells. Nano Energy 67, 104249 (2020)

    Google Scholar 

  83. S.F. Leung et al., A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30(8), 1704611 (2018)

    Article  Google Scholar 

  84. L. Shen et al., A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28(48), 10794–10800 (2016)

    Article  Google Scholar 

  85. H. Sun, W. Tian, F. Cao, J. Xiong, L. Li, Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv. Mater. 30(21), 1706986 (2018)

    Article  Google Scholar 

  86. C. Bao et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), 1803422 (2018)

    Article  Google Scholar 

  87. W. Wu et al., Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real-time photosensing and imaging. Adv. Mater. 31(3), 1805913 (2019)

    Article  Google Scholar 

  88. X.Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015)

    Article  ADS  Google Scholar 

  89. W. Yu et al., Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9(1), 1–10 (2018)

    Article  ADS  Google Scholar 

  90. O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, I. Mora-Sero, Bright visible-infrared light emitting diodes based on hybrid halide perovskite with Spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 6(10), 1883–1890 (2015)

    Article  Google Scholar 

  91. Q. Wang et al., Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10(1), 1–8 (2019)

    Article  ADS  Google Scholar 

  92. Z.-K. Tan et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9(9), 687–692 (2014)

    Article  ADS  Google Scholar 

  93. S. Pathak et al., perovskite crystals for tunable white light emission. Chem. Mater. 27(23), 8066–8075 (2015)

    Article  Google Scholar 

  94. H. Huang et al., Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7(9), 5699–5703 (2016)

    Article  Google Scholar 

  95. J.R. Harwell, G.L. Whitworth, G.A. Turnbull, I.D.W. Samuel, Green perovskite distributed feedback lasers. Sci. Rep. 7(1), 1–8 (2017)

    Article  Google Scholar 

  96. N. Pourdavoud et al., Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 29(12), 1605003 (2017)

    Article  Google Scholar 

  97. M. Saliba et al., Structured organic–inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28(5), 923–929 (2016)

    Article  Google Scholar 

  98. F. Mathies, P. Brenner, G. Hernandez-Sosa, I.A. Howard, U.W. Paetzold, U. Lemmer, Inkjet-printed perovskite distributed feedback lasers. Opt. Express 26(2), A144–A152 (2018)

    Article  ADS  Google Scholar 

  99. Z. Wei, H. Chen, K. Yan, S. Yang, Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53(48), 13239–13243 (2014)

    Article  Google Scholar 

  100. L. Shi et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Func. Mater. 29(37), 1903648 (2019)

    Article  Google Scholar 

  101. W. Nie et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)

    Article  ADS  Google Scholar 

  102. D. Shi et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347(6221), 519–522 (2015)

    Article  ADS  Google Scholar 

  103. V. Adinolfi et al., The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28(17), 3406–3410 (2016)

    Article  Google Scholar 

  104. Q. Dong et al., Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015)

    Article  ADS  Google Scholar 

  105. B. Wu et al., Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals. Adv. Energy Mater. 6(14), 1600551 (2016)

    Article  Google Scholar 

  106. D. Yang et al., Amplified spontaneous emission from organic–inorganic hybrid lead iodide perovskite single crystals under direct multiphoton excitation. Adv. Opt. Mater. 4(7), 1053–1059 (2016)

    Article  Google Scholar 

  107. C. Zhao et al., Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett. 10(10), 2357–2362 (2019)

    Article  Google Scholar 

  108. A.O. Murzin et al., Amplified spontaneous emission and random lasing in MAPbBr3 halide perovskite single crystals. Adv. Opt. Mater. 2000690 (2020)

    Google Scholar 

  109. B. Li et al., Dynamic growth of pinhole-free conformal CH3NH3PbI3 film for perovskite solar cells. ACS Appl. Mater. Interfaces 8(7), 4684–4690 (2016)

    Article  ADS  Google Scholar 

  110. S.S. Lim et al., Modulating carrier dynamics through perovskite film engineering. Phys. Chem. Chem. Phys. 18(39), 27119–27123 (2016)

    Article  Google Scholar 

  111. C. Bi et al., Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2(43), 18508–18514 (2014)

    Article  Google Scholar 

  112. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Func. Mater. 24(21), 3250–3258 (2014)

    Article  Google Scholar 

  113. N. Yantara et al., Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 6(21), 4360–4364 (2015)

    Article  Google Scholar 

  114. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Func. Mater. 24(1), 151–157 (2014)

    Article  Google Scholar 

  115. L. Huang et al., CH3NH3PbI3–xClx films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Phys. Chem. Chem. Phys. 17(34), 22015–22022 (2015)

    Article  Google Scholar 

  116. H. Cho et al., Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015). https://doi.org/10.1126/science.aad1818

    Article  ADS  Google Scholar 

  117. J.J. Yoo et al., An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12(7), 2192–2199 (2019)

    Article  Google Scholar 

  118. D.-Y. Son et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1(7), 1–8 (2016)

    Article  ADS  Google Scholar 

  119. D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016)

    Article  Google Scholar 

  120. Y. Shao et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9(5), 1752–1759 (2016)

    Article  Google Scholar 

  121. Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)

    Article  Google Scholar 

  122. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014)

    Article  ADS  Google Scholar 

  123. E. Lafalce, C. Zhang, Y. Zhai, D. Sun, Z. Vardeny, Enhanced emissive and lasing characteristics of nano-crystalline MAPbBr3 films grown via anti-solvent precipitation. J. Appl. Phys. 120(14), 143101 (2016)

    Google Scholar 

  124. A. Gharajeh et al., Amplified spontaneous emission in nanoimprinted perovskite nanograting metasurface, in 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO) (IEEE, 2017), pp. 534–536

    Google Scholar 

  125. F. Deschler et al., High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5(8), 1421–1426 (2014)

    Article  Google Scholar 

  126. N. Arora et al., Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films. Adv. Func. Mater. 26(17), 2846–2854 (2016)

    Article  Google Scholar 

  127. L. Zhang et al., One-step co-evaporation of all-inorganic perovskite thin films with room-temperature ultralow amplified spontaneous emission threshold and air stability. ACS Appl. Mater. Interfaces 10(47), 40661–40671 (2018)

    Article  Google Scholar 

  128. M.L. De Giorgi, A. Perulli, N. Yantara, P.P. Boix, M. Anni, Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films. J. Phys. Chem. C 121(27), 14772–14778 (2017)

    Article  Google Scholar 

  129. N. Pourdavoud et al., Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films. Adv. Mater. 31(39), 1903717 (2019)

    Article  Google Scholar 

  130. S.D. Stranks et al., Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 15(8), 4935–4941 (2015)

    Article  ADS  Google Scholar 

  131. J. Li, J. Si, L. Gan, Y. Liu, Z. Ye, H. He, Simple approach to improving the amplified spontaneous emission properties of perovskite films. ACS Appl. Mater. Interfaces 8(48), 32978–32983 (2016)

    Article  Google Scholar 

  132. L. Qin et al., Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films. RSC Adv. 5(125), 103674–103679 (2015)

    Article  ADS  Google Scholar 

  133. H. Ren et al., Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 14(3), 154–163 (2020)

    Article  ADS  Google Scholar 

  134. C. Fang et al., High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces 11(8), 8419–8427 (2019)

    Article  Google Scholar 

  135. R. Dong et al., Novel series of quasi-2D Ruddlesden-Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces 10(22), 19019–19026 (2018)

    Article  Google Scholar 

  136. T. Matsushima et al., Solution-processed organic-inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28(46), 10275–10281 (2016)

    Article  Google Scholar 

  137. X. Yang et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9(1), 1–8 (2018)

    ADS  Google Scholar 

  138. L. Mao, Y. Wu, C.C. Stoumpos, M.R. Wasielewski, M.G. Kanatzidis, White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc. 139(14), 5210–5215 (2017)

    Article  Google Scholar 

  139. K. Thirumal et al., Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton–phonon coupling to the organic framework. Chem. Mater. 29(9), 3947–3953 (2017)

    Article  Google Scholar 

  140. W. Deng, X. Jin, Y. Lv, X. Zhang, X. Zhang, J. Jie, 2D Ruddlesden-popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv. Func. Mater. 29(40), 1903861 (2019)

    Article  Google Scholar 

  141. P. Vashishtha, M. Ng, S.B. Shivarudraiah, J.E. Halpert, High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31(1), 83–89 (2018)

    Article  Google Scholar 

  142. T. Kondo, T. Azuma, T. Yuasa, R. Ito, Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 105(4), 253–255 (1998)

    Article  ADS  Google Scholar 

  143. W. Zhai et al., Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature. Appl. Phys. Lett. 114(13), 131107 (2019)

    Google Scholar 

  144. M. Xia et al., Two-dimensional perovskites as sensitive strain sensors. J. Mater. Chem. C 8(11), 3814–3820 (2020)

    Article  Google Scholar 

  145. A. Feng et al., Shape control of metal halide perovskite single crystals: from bulk to nanoscale. Chem. Mater. 32(18), 7602–7617 (2020)

    Article  Google Scholar 

  146. C. Huang et al., Up-conversion perovskite nanolaser with single mode and low threshold. J. Phys. Chem. C 121(18), 10071–10077 (2017)

    Article  Google Scholar 

  147. M. Li et al., Enhanced exciton and photon confinement in Ruddlesden-Popper perovskite microplatelets for highly stable low-threshold polarized lasing. Adv. Mater. 30(23), 1707235 (2018)

    Article  Google Scholar 

  148. B. Yang et al., Low threshold two-photon-pumped amplified spontaneous emission in CH3NH3PbBr3 microdisks. ACS Appl. Mater. Interfaces 8(30), 19587–19592 (2016)

    Article  Google Scholar 

  149. W. Zhang et al., Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 28(21), 4040–4046 (2016)

    Article  Google Scholar 

  150. M.K. Hossain et al., Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition. Nano Res. 13(11), 2939–2949 (2020)

    Article  ADS  Google Scholar 

  151. Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14(10), 5995–6001. https://doi.org/10.1021/nl503057g

  152. Q. Zhang, R. Su, X. Liu, J. Xing, T.C. Sum, Q. Xiong, High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Func. Mater. 26(34), 6238–6245 (2016)

    Article  Google Scholar 

  153. P. Perumal, C.-S. Wang, K.M. Boopathi, G. Haider, W.-C. Liao, Y.-F. Chen, Whispering gallery mode lasing from self-assembled hexagonal perovskite single crystals and porous thin films decorated by dielectric spherical resonators. ACS Photonics 4(1), 146–155 (2017)

    Article  Google Scholar 

  154. A. Zhizhchenko et al., Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13(4), 4140–4147 (2019)

    Article  Google Scholar 

  155. J. Ward, O. Benson, WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5(4), 553–570 (2011)

    Article  ADS  Google Scholar 

  156. G. Li et al., Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite. Adv. Func. Mater. 29(2), 1805553 (2019)

    Article  Google Scholar 

  157. R. Su et al., Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17(6), 3982–3988 (2017)

    Article  ADS  Google Scholar 

  158. X. Liu et al., Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. 3(11), 1600137 (2016)

    Article  Google Scholar 

  159. J. Feng et al., “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 28(19), 3732–3741 (2016)

    Article  Google Scholar 

  160. K. Wang, Z. Gu, S. Liu, J. Li, S. Xiao, Q. Song, Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation. Opt. Lett. 41(3), 555–558 (2016)

    Article  ADS  Google Scholar 

  161. S.A. Veldhuis et al., perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016)

    Article  Google Scholar 

  162. K. Wang et al., High-density and uniform lead halide perovskite nanolaser array on silicon. J. Phys. Chem. Lett. 7(13), 2549–2555 (2016)

    Article  Google Scholar 

  163. Y. Fu et al., Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16(2), 1000–1008 (2016)

    Article  ADS  Google Scholar 

  164. J. Xing et al., Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 15(7), 4571–4577 (2015)

    Article  ADS  Google Scholar 

  165. E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6(1), 613–617 (2015)

    Article  Google Scholar 

  166. S. Zhang et al., Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater. 6(2), 1701032 (2018)

    Article  Google Scholar 

  167. X. Wang et al., High-quality in-plane aligned CsPbX3 perovskite nanowire lasers with composition-dependent strong exciton–photon coupling. ACS Nano 12(6), 6170–6178 (2018)

    Article  Google Scholar 

  168. K. Park et al., Light–matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7(18), 3703–3710 (2016)

    Article  Google Scholar 

  169. W. Du et al., Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 5(5), 2051–2059 (2018)

    Article  Google Scholar 

  170. Q. Shang et al., Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton. Nano Lett. 20(2), 1023–1032 (2020)

    Article  ADS  Google Scholar 

  171. A.P. Schlaus et al., How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun. 10(1), 1–8 (2019)

    Article  ADS  Google Scholar 

  172. F. Li et al., Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids. Sci. Bull. 64(10), 698–704 (2019)

    Article  Google Scholar 

  173. Z.-Y. Zhang et al., Size-dependent one-photon-and two-photon-pumped amplified spontaneous emission from organometal halide CH3NH3PbBr3 perovskite cubic microcrystals. Phys. Chem. Chem. Phys. 19(3), 2217–2224 (2017)

    Article  Google Scholar 

  174. Z. Hu et al., Robust cesium lead halide perovskite microcubes for frequency upconversion lasing. Adv. Opt. Mater. 5(22), 1700419 (2017)

    Article  Google Scholar 

  175. D. Yang, S. Chu, Y. Wang, C.K. Siu, S. Pan, S.F. Yu, Frequency upconverted amplified spontaneous emission and lasing from inorganic perovskite under simultaneous six-photon absorption. Opt. Lett. 43(9), 2066–2069 (2018)

    Article  ADS  Google Scholar 

  176. B. Zhou et al., Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. J. Mater. Chem. C 6(43), 11740–11748 (2018)

    Article  Google Scholar 

  177. A. Chiasera et al., Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 4(3), 457–482 (2010)

    Article  ADS  Google Scholar 

  178. F. Chen et al., Detachable surface plasmon substrate to enhance CH3NH3PbBr3 lasing. Opt. Commun. 452, 400–404 (2019)

    Article  ADS  Google Scholar 

  179. Q.A. Akkerman et al., Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137(32), 10276–10281 (2015)

    Article  Google Scholar 

  180. C. Guhrenz, A. Benad, C. Ziegler, D. Haubold, N. Gaponik, A. Eychmüller, Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 28(24), 9033–9040 (2016)

    Article  Google Scholar 

  181. G. Li, J.Y.-L. Ho, M. Wong, H.S. Kwok, Reversible anion exchange reaction in solid halide perovskites and its implication in photovoltaics. J. Phys. Chem. C 119(48), 26883–26888 (2015)

    Article  Google Scholar 

  182. D. Parobek, Y. Dong, T. Qiao, D. Rossi, D.H. Son, Photoinduced anion exchange in cesium lead halide perovskite nanocrystals. J. Am. Chem. Soc. 139(12), 4358–4361 (2017)

    Article  Google Scholar 

  183. L. Protesescu et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015)

    Article  ADS  Google Scholar 

  184. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Room-temperature and gram-scale synthesis of CsPbX3 (X= Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chem. Commun. 52(45), 7265–7268 (2016)

    Article  Google Scholar 

  185. X. Li et al., Healing all-inorganic perovskite films via recyclable dissolution–recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv. Func. Mater. 26(32), 5903–5912 (2016)

    Article  ADS  Google Scholar 

  186. F. Zhang et al., Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects. Chem. Mater. 29(8), 3793–3799 (2017)

    Article  Google Scholar 

  187. C.J. Chang-Hasnain, Tunable VCSEL. IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000)

    Article  ADS  Google Scholar 

  188. M. Imran et al., Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140(7), 2656–2664 (2018)

    Article  Google Scholar 

  189. S. Chang, Z. Bai, H. Zhong, In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv. Opt. Mater. 6(18), 1800380 (2018)

    Article  Google Scholar 

  190. M.-H. Park et al., Unravelling additive-based nanocrystal pinning for high efficiency organic-inorganic halide perovskite light-emitting diodes. Nano Energy 42, 157–165 (2017)

    Article  Google Scholar 

  191. J.-W. Lee et al., In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 11(3), 3311–3319 (2017)

    Article  Google Scholar 

  192. L. Zhao et al., In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano 11(4), 3957–3964 (2017)

    Article  Google Scholar 

  193. D. Di et al., Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix. J. Phys. Chem. Lett. 6(3), 446–450 (2015)

    Article  MathSciNet  Google Scholar 

  194. Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, H. Zhong, In situ fabrication of halide perovskite nanocrystal‐embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 28(41), 9163–9168 (2016)

    Google Scholar 

  195. Y. Xin, H. Zhao, J. Zhang, Highly stable and luminescent perovskite–polymer composites from a convenient and universal strategy. ACS Appl. Mater. Interfaces 10(5), 4971–4980 (2018)

    Article  Google Scholar 

  196. L.N. Quan et al., Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 29(21), 1605945 (2017)

    Article  Google Scholar 

  197. X. Chen et al., Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications. Adv. Func. Mater. 28(16), 1706567 (2018)

    Article  Google Scholar 

  198. Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, H. Sun, Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 16(1), 448–453 (2016)

    Article  ADS  Google Scholar 

  199. F. Todescato et al., Soft-lithographed up-converted distributed feedback visible lasers based on CdSe–CdZnS–ZnS quantum dots. Adv. Func. Mater. 22(2), 337–344 (2012)

    Article  Google Scholar 

  200. J.J. Jasieniak et al., Highly efficient amplified stimulated emission from CdSe-CdS-ZnS quantum dot doped waveguides with two-photon infrared optical pumping. Adv. Mater. 20(1), 69–73 (2008)

    Article  Google Scholar 

  201. Z. Liu et al., Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals. ACS Photonics 6(12), 3150–3158 (2019)

    Article  Google Scholar 

  202. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26(4), 760–769 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kang Eugene Tay .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tay, Y.K.E., He, H., Tian, X., Li, M., Sum, T.C. (2022). The Halide Perovskite Gain Media. In: Halide Perovskite Lasers. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-16-7973-5_2

Download citation

Publish with us

Policies and ethics