Skip to main content

Degradation Effects of Completely Biodegradable Composites to Moisture Absorption and Water Aging

  • Chapter
  • First Online:
Aging Effects on Natural Fiber-Reinforced Polymer Composites

Part of the book series: Composites Science and Technology ((CST))

  • 462 Accesses

Abstract

Employing of biodegradable polymers and reinforcements for the development of composites is important for the reduction of environmental problems of non-biodegradable and petro-based polymers. Completely biodegradable composites (biocomposites, ecocomposites or green composites) are composed of natural fibers and natural matrices or synthetic biodegradable matrices. Completely biodegradable composites can replace synthetic fiber based composites due to excellent mechanical properties, low cost and low density. However, biodegradable composites have hydrophilic nature thus, tend to absorb a significant amount of moisture. Mechanical properties of biodegradable composites immersed in water degrade over time limiting the potential applications of these materials. Not only mechanical properties of biodegradable composites but also dimensions of biodegradable composites are affected by water content. Therefore, in this chapter, the works about processing, applications and water aging of completely biodegradable polymer composites were presented. Also, the results derived from literature studies after water aging of completely biodegradable polymer composites were stated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesina OT, Jamiru T, Sadiku ER et al (2019) Water absorption and thermal degradation behavior of graphene reinforced poly(lactic) acid nanocomposite. IOP Conf Ser: Mater Sci Eng 627:012015

    Google Scholar 

  • Ali SZ, Nahian MK, Islam MA (2018) Effect of fiber content and post stress on moisture absorption of jute polyester composite. IOP Conf Ser: Mater Sci Eng 438:012024

    Google Scholar 

  • Almgren KM, Gamstedt EK, Berthold F et al (2009) Moisture uptake and hygroexpansion of wood fiber composite materials with polylactide and polypropylene matrix materials. Polym Compos 30:1809–1816

    Article  CAS  Google Scholar 

  • Alvarez VA, Vázquez A (2004) Effect of water sorption on the flexural properties of a fully biodegradable composite. J Compos Mater 38:1165–1181

    Article  CAS  Google Scholar 

  • Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C Polym Reviews 44:231–274

    Article  CAS  Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  • Betancourt NG, Cree DE (2017) Mechanical properties of poly (lactic acid) composites reinforced with CaCO3 eggshell based fillers. MRS Adv 2545–2550

    Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1998) Thermoplastics reinforced with wood fillers: a literature review. Polym-Plast Technol Eng 37:451–468

    Article  CAS  Google Scholar 

  • Bruni GP, de Oliveira JP, Fonseca LM et al (2020) Biocomposite films based on phosphorylated wheat starch and cellulose nanocrystals from rice, oat, and eucalyptus husks. Starch 72:1900051

    Article  CAS  Google Scholar 

  • Chan CM, Vandi L-J, Pratt S et al (2020) Mechanical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs). J Polym Environ 28:1571–1577

    Article  CAS  Google Scholar 

  • Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinylester composites. Compos Part A 40:2013–2019

    Article  CAS  Google Scholar 

  • Chethana M, Prashantha K, Siddaramaiah, (2015) Studies on thermal behavior, moisture absorption, and biodegradability of ginger spent incorporated polyurethane green composites. J Appl Polym Sci 132:41614

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Bristol, England

    Google Scholar 

  • Cree D, Rutter A (2015) Sustainable bio-inspired limestone eggshell powder for potential industrialized applications. ACS Sustain Chem Eng 3:941–949

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M et al (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8:1–12

    Article  CAS  Google Scholar 

  • Davies P, Choqueuse D (2008) Ageing of composite in marine vessels. In: Martin R (ed) Ageing of composites. Woodhead Publishing, Cambridge

    Google Scholar 

  • Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683

    Article  CAS  Google Scholar 

  • Dhakal HN, Ismail SO, Zhang Z et al (2018) Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Compos Part A 113:350–358

    Article  CAS  Google Scholar 

  • Farag MM (2017) Design and manufacture of biodegradable products from renewable resources. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials, vol 2. Wiley, New York

    Google Scholar 

  • Fontana JD, Joerke CG, Baron M et al (1997) Acetobacter cellulosic biofilms search for new modulators of cellulogenesis and native membrane treatments. Appl Biochem Biotechnol 63–65:327–338

    Article  Google Scholar 

  • Fu Z, Wei W, Jin T et al (2015) Moisture absorption properties of biomimetic laminated boards made from cross-linking starch/maize stalk fiber. Int J Agric Biol Eng 8:65–71

    Google Scholar 

  • Gabr MH, Phong NT, Abdelkareem MA et al (2013) Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites. Cellulose 20:819–826

    Article  CAS  Google Scholar 

  • Gáspár M, Zs B, Dogossy G et al (2005) Reducing water absorption in compostable starch-based plastics. Polym Degrad Stabil 90:563–569

    Article  CAS  Google Scholar 

  • Gautier L, Mortaigne B, Bellenger V (1999) Interface damage study of hydro-thermally aged glass-fibre-reinforced polyester composites. Compos Sci Technol 59:2329–2337

    Article  CAS  Google Scholar 

  • Grammatikos SA, Zafari B, Evernden MC et al (2015) Moisture uptake characteristics of a pultruded fibre reinforced polymer flat sheet subjected to hot/wet aging. Polym Degrad Stab 121:407–419

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537

    Article  CAS  Google Scholar 

  • Hossain MK, Dewan MW, Hosur MV et al (2011) Physical, mechanical, and degradability properties of chemically treated jute fiber reinforced biodegradable nanocomposites. J Eng Mater Technol 133:041003

    Google Scholar 

  • Jiang N, Yu T, Li Y et al (2019) Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Compos Sci Technol 173:15–23

    Article  CAS  Google Scholar 

  • Khalili P, Liu X, Zhao Z et al (2019) Fully biodegradable composites: thermal, flammability, moisture absorption and mechanical properties of natural fibre-reinforced composites. Materials 12:1145

    Article  CAS  Google Scholar 

  • Kim H-S, Yang H-S, Kim H-J (2005) Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. J Appl Polym Sci 97:1513–1521

    Article  CAS  Google Scholar 

  • Kuram (2019) Thermal and water ageing effect on mechanical, rheological and morphological properties of glass-fibrereinforced poly(oxymethylene) composite. Proc IMechE Part E: J Process Mech Eng 233:211–224

    Google Scholar 

  • Le Duigou A, Davies P, Baley C (2013) Exploring durability of interfaces in flax fibre/epoxy micro-composites. Compos Part A 48:121–128

    Article  CAS  Google Scholar 

  • Le Duigou A, Bourmaud A, Davies P et al (2014) Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng 90:140–148

    Article  Google Scholar 

  • Lee JM, Ishak ZAM, Taib RM et al (2013) Mechanical, thermal and water absorption properties of kenaf-fiber-based polypropylene and poly(butylene succinate) composites. J Polym Environ 21:293–302

    Article  CAS  Google Scholar 

  • Liu L, Yu J, Cheng L et al (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stabil 94:90–94

    Article  CAS  Google Scholar 

  • Malik N, Shrivastava S, Ghosh S B (2018) Moisture absorption behaviour of biopolymer polycapralactone (PCL)/organo modified montmorillonite clay (OMMT) biocomposite films. IOP Conf Ser: Mater Sci Eng 346:012027

    Google Scholar 

  • Mazur K, Kuciel S (2019) Mechanical and hydrothermal aging behaviour of polyhydroxybutyrate-co-valerate (PHBV) composites reinforced by natural fibres. Molecules 24:3538

    Article  CAS  Google Scholar 

  • Mercy JL, Velmurugan R, Sasipraba T et al (2020) Neurofuzzy modelling of moisture absorption kinetics and its effect on the mechanical properties of pineapple fibre-reinforced polypropylene composite. J Compos Mater 54:899–912

    Article  CAS  Google Scholar 

  • Nair AB, Sivasubramanian P, Balakrishnan P et al (2014) Environmental effects, biodegradation, and life cycle analysis of fully biodegradable ‘‘green’’ composites. In: Thomas S, Joseph K, Malhotra SK et al (eds) Polymer composite, vol 3. Wiley, New York

    Google Scholar 

  • Onal L, Cozien-Cazuc S, Jones IA et al (2008) Water absorption properties of phosphate glass fiber-reinforced poly-ε-caprolactone composites for craniofacial bone repair. J Appl Polym Sci 107:3750–3755

    Article  CAS  Google Scholar 

  • Petchwattana N, Covavisaruch S, Wibooranawong S et al (2016) Antimicrobial food packaging prepared from poly (butylene succinate) and zinc oxide. Measurement 93:442–448

    Article  Google Scholar 

  • Petchwattana N, Sanetuntikul J, Sriromreun P et al (2017) Wood plastic composites prepared from biodegradable poly(butylene succinate) and Burma padauk sawdust (pterocarpus macrocarpus): water absorption kinetics and sunlight exposure investigations. J Bionic Eng 14:781–790

    Article  Google Scholar 

  • Radkar SS, Amiri A, Ulven CA (2019) Tensile behavior and diffusion of moisture through flax fibers by desorption method. Sustainability 11:3558

    Article  CAS  Google Scholar 

  • Ramírez MGL, Satyanarayana KG, Iwakiri S et al (2011) Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohyd Polym 86:1712–1722

    Article  CAS  Google Scholar 

  • Regazzi A, Corn S, Ienny P et al (2016a) Coupled hydro-mechanical aging of short flax fiber reinforced composites. Polym Degrad Stab 130:300–306

    Article  CAS  Google Scholar 

  • Regazzi A, Corn S, Ienny P et al (2016b) Reversible and irreversible changes in physical and mechanical properties of biocomposites during hydrothermal aging. Ind Crop Prod 84:358–365

    Article  CAS  Google Scholar 

  • Robert M, Roy R, Benmokrane B (2010) Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications. Polym Compos 31:604–611

    CAS  Google Scholar 

  • Roy SB, Ramaraj B, Shit SC (2011) Polypropylene and potato starch biocomposites: physicomechanical and thermal properties. J Appl Polym Sci 120:3078–3086

    Article  CAS  Google Scholar 

  • Saleh AA, Saleh MA, Al Haron MH et al (2017) Insights into the effect of moisture absorption and fiber content on the mechanical behavior of starch-date-palm fiber composites. Starch 69:1600254

    Google Scholar 

  • Sature P, Mache A (2017) Experimental and numerical study on moisture diffusion phenomenon of natural fiber based composites. Mater Today: Proc 4:10293–10297

    Google Scholar 

  • Shahzad A, Isaac DH (2014) Weathering of lignocellulosic polymer composites. In: Thakur VK (ed) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley, New York

    Google Scholar 

  • Shen C-H, Springer GS (1976) Moisture absorption and desorption of composite materials. J Compos Mater 10:2–20

    Article  Google Scholar 

  • Shi D, Wang R (2017) The test of tensile properties and water resistance of a novel cross-linked starch prepared by adding oil-flax. IOP Conf Ser: Mater Sci Eng 274:012047

    Google Scholar 

  • Singh I, Debnath K, Dvivedi A (2014) Mechanical behavior of biocomposites under different operating environments. In: Thakur V K (ed) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley, New York

    Google Scholar 

  • Smoca A (2019) Water absorption properties of hemp fibres reinforced PLA bio-composites. Eng Rural Develop 1079–1083

    Google Scholar 

  • Spiridon I, Leluk K, Resmerita AM et al (2015) Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering. Compos B Eng 69:342–349

    Article  CAS  Google Scholar 

  • Syed MA, Siddaramaiah SRT et al (2010) Investigation on physico-mechanical properties, water, thermal and chemical ageing of unsaturated polyester/turmeric spent composites. Polym-Plast Technol Eng 49:555–559

    Article  CAS  Google Scholar 

  • Taib RM, Ramarad S, Ishak ZAM et al (2010) Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym Compos 31:1213–1222

    CAS  Google Scholar 

  • Thirmizir MZA, Ishak ZAM, Taib RM et al (2011) Kenaf-bast-fiber-filled biodegradable poly(butylene succinate) composites: effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063

    Article  CAS  Google Scholar 

  • Wan YZ, Hong L, Jia SR et al (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864

    Article  CAS  Google Scholar 

  • Wan YZ, Luo H, He F et al (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217

    Article  CAS  Google Scholar 

  • Wang H, Ji J, Zhang W et al (2009) Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate). Acta Biomater 5:279–287

    Article  CAS  Google Scholar 

  • Wu C-S (2015) Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polym Degrad Stabil 121:51–59

    Article  CAS  Google Scholar 

  • Zhang F, Wu N, Tong J et al (2009) Preparation and flexural properties of biomimetic laminated boards made from starch and maize stalk fiber. Int J Agric Biol Eng 2:24–31

    Google Scholar 

  • Živković I, Fragassa C, Pavlović et al (2017) Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos Part B 111:148–164

    Google Scholar 

Download references

Acknowledgements

Words cannot describe how grateful I am to my doctor interventional neurologist Assoc. Prof. Hasan Huseyin Karadeli for giving me a second chance in life after my brain operation. Without his operation and treatment, I would be unable to do all the things I am able do now. I am forever grateful to him for saving my life in August 2019. I also dedicate this chapter to my family and Assoc. Prof. Hasan Huseyin Karadeli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Kuram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuram, E. (2022). Degradation Effects of Completely Biodegradable Composites to Moisture Absorption and Water Aging. In: Muthukumar, C., Krishnasamy, S., Thiagamani, S.M.K., Siengchin, S. (eds) Aging Effects on Natural Fiber-Reinforced Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8360-2_6

Download citation

Publish with us

Policies and ethics