Skip to main content

Biogas as a Sustainable and Renewable Energy Source

  • Chapter
  • First Online:
Clean Fuels for Mobility

Abstract

The generation of waste is an inseparable element of human functioning. Among all produced waste, biodegradable waste plays a specific role. This is because waste is formed in every area, every day. One of the methods of biodegradable waste management is the anaerobic digestion process. The product of the discussed process is biogas, which is a source of sustainable and renewable energy. Anaerobic digestion is a biochemical process consisting of four phases: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. As a result of numerous changes, biogas is produced from various substrates rich in organic matter. The advantage of biogas is its many possible uses. The biogas can be used to produce electricity and heat in cogeneration and it can be used as fuel for vehicles or pump to the natural gas grid after purification to biomethane. The paper will include, among others, such information as: construction and operation of biogas plant, biogas production process, substrates and product of anaerobic digestion process, the use of biogas taking into account the possible use in sustainable mobility. Special attention has been targeted at environmental aspects of biogas production and management. The production of renewable energy following sustainable development is one of the tools in the fight against global warming. The effect of rational biodegradable waste management will be energy production, directly related to reducing of the amount of waste intended for landfills. Biogas is a renewable energy source with many advantages. Its production fits perfectly into the activities of sustainable development. Therefore, the growth of the biogas market is expected all over the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefin 3:42–71

    Article  Google Scholar 

  • Abbas I, Liu J, Noor RS, Faheem M, Farhan M, Ameen M, Shaikh SA (2020) Development and performance evaluation of small size household portable biogas plant for domestic use. Biomass Convers Biorefinery

    Google Scholar 

  • Abdelsalam EM, Samer M, Amer MA, Baher MA (2021) Amer biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environ Dev Sustain 23:8746–8757

    Article  Google Scholar 

  • Austgulen MH (2016) Environmentally sustainable textile consumption—what characterizes the political textile consumers? J Consum Policy 39:441–466

    Article  Google Scholar 

  • Baştabak B, Koçar G (2020) A review of the biogas digestate in agricultural framework. J Mater Cycles Waste Manag 22:1318–1327

    Article  Google Scholar 

  • Basumatary S, Das S, Kalita P, Goswami P (2021) Effect of feedstock/water ratio on anaerobic digestion of cattle dung and vegetable waste under mesophilic and thermophilic conditions. Bioresour Technol Rep 14:100675

    Google Scholar 

  • Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26(1):7–13

    Article  Google Scholar 

  • Chanthawong A, Dhakal S (2016) Liquid biofuels development in Southeast Asian countries: an analysis of market, policies and challenges. Waste Biomass Valorization 7:157–173

    Article  Google Scholar 

  • Chidambaram PK, Thamilarasan K, Kumar JB, Mary LA (2021) A review on turbines in power production using wind and hydro Energy. In: Materials today: proceedings (in Press)

    Google Scholar 

  • Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173

    Article  Google Scholar 

  • Czekała W (2017) Concept of in-oil project based on bioconversion of by-products from food processing industry. J Ecol Eng 18(5):180–185

    Article  Google Scholar 

  • Czekała W (2019) Biogas production from raw digestate and its fraction. J Ecol Eng 20(6):97–102

    Article  Google Scholar 

  • Czekała W, Gawrych K, Smurzyńska A, Mazurkiewicz J, Pawlisiak A, Chełkowski D, Brzoski M (2017) The possibility of functioning micro-scale biogas plant in selected farm. J Water Land Dev 35(1):19–25

    Article  Google Scholar 

  • Czekała W, Janczak D, Cieślik M, Mazurkiewicz J, Pulka J (2020) Food waste management using the hermetia illucens insect. J Ecol Eng 21(4):214–216

    Article  Google Scholar 

  • Czekała W, Tarkowski F, Pochwatka P (2021) Social aspects of energy production from renewable sources. Problemy Ekorozwoju 16(1):61–66

    Article  Google Scholar 

  • Czekała W, Smurzyńska A, Cieślik M, Boniecki P, Kozłowski K (2016) Biogas efficiency of selected fresh fruit covered by the Russian embargo. Int Multi Sci GeoConference Surveying Geol Min Ecol Manag SGEM 3(BOOK 4):227–233

    Google Scholar 

  • Czekała W, Cieślik M, Janczak D, Czekała A, Wojcieszak D (2018) Fruit and vegetable waste from markets as a substrate for agricultural biogas plant. Int Multi Sci GeoConference Surveying Geol Min Ecol Manag SGEM 18(4.3):473–478

    Google Scholar 

  • Destek MA, Sarkodie SA, Asamoah EF (2021) Does biomass energy drive environmental sustainability? An SDG perspective for top five biomass consuming countries. Biomass Bioenergy 149:106076

    Google Scholar 

  • Eisenmenger N, Pichler M, Krenmayr N, Noll D, Plank B, Schalmann E, Wandl MT, Gingrich S (2020) The sustainable development goals prioritize economic growth over sustainable resource use: a critical reflection on the SDGs from a socio-ecological perspective. Sustain Sci 15:1101–1110

    Article  Google Scholar 

  • Gunnarsdottir I, Davidsdottir B, Worrell E, Sigurgeirsdottir S (2021) Sustainable energy development: history of the concept and emerging themes. Renew Sustain Energy Rev 141:110770

    Google Scholar 

  • Hassan A, Ilyas SZ, Jalil A, Ullah Z (2021) Monetization of the environmental damage caused by fossil fuels. Environ Sci Pollut Res 28:21204–21211

    Article  Google Scholar 

  • Hosseinipour SA, Mehrpooya M (2019) Comparison of the biogas upgrading methods as a transportation fuel. Renew Energy 130:641–655

    Article  Google Scholar 

  • Igliński B, Piechota G, Iwański P, Skarzatek M, Pilarski G (2020) 15 years of the Polish agricultural biogas plants: their history, current status, biogas potential and perspectives. Clean Technol Environ Policy 22:281–307

    Article  Google Scholar 

  • Jarwar AI, Laghari AQ, Maitlo G, Qureshi K, Bhutto AW, Shah AK, Jatoi AS, Ahmed S (2021) Biological assisted treatment of buffalo dung and poultry manure for biogas generation using laboratory-scale bioreactor. Biomass Convers Biorefinery

    Google Scholar 

  • Jeswani HK, Smith RW, Azapagic A (2013) Energy from waste: carbon footprint of incineration and landfill biogas in the UK. Int J Life Cycle Assess 18:218–229

    Article  Google Scholar 

  • Kapoor R, Ghosh P, Kumar M, Vijay VK (2019) Evaluation of biogas upgrading technologies and future perspectives: a review. Environ Sci Pollut Res 26:11631–11661

    Article  Google Scholar 

  • Kibria A, Akhundjanov SB, Oladi R (2019) Fossil fuel share in the energy mix and economic growth. Int Rev Econ Financ 59:253–264

    Article  Google Scholar 

  • Kowalczyk-Juśko A, Pochwatka P, Zaborowicz M, Czekała W, Mazurkiewicz J, Mazur A, Janczak D, Marczuk A, Dach J (2020) Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy 202:117729

    Google Scholar 

  • Kozłowski K, Dach J, Lewicki A, Cieślik M, Czekała W, Janczak D, Brzoski M (2018) Laboratory simulation of an agricultural biogas plant start-up. Chem Eng Technol 41:711–716

    Article  Google Scholar 

  • Kozłowski K, Pietrzykowski M, Czekała W, Dach J, Kowalczyk-Juśko A, Jóźwiakowski K, Brzoski M (2019) Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy 183:1023–1031

    Article  Google Scholar 

  • Kupryaniuk K, Oniszczuk T, Combrzyński M, Czekała W, Matwijczuk A (2020) The influence of corn straw extrusion pretreatment parameters on methane fermentation performance. Materials 13(3003):1–16

    Google Scholar 

  • Kushkevych I, Vítězová M, Vítěz T, Kováč J, Kaucká P, Jesionek W, Bartoš M, Barton L (2018) A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sci 13(1):119–128

    Article  Google Scholar 

  • Lalander C, Nordberg Å, Vinnerås B (2018) A comparison in product-value potential in four treatment strategies for food waste and faeces—assessing composting, fly larvae composting and anaerobic digestion. GCB Bioenergy 10:84–91

    Article  Google Scholar 

  • Larsson SH, Samuelsson R (2017) Prediction of ISO 17831–1: 2015 mechanical biofuel pellet durability from single pellet characterization. Fuel Process Technol 163:8–15

    Article  Google Scholar 

  • Larsson M, Gronkvist S, Alvfors P (2016) Upgraded biogas for transport in Sweden—effects of policy instruments on production, infra-structure deployment and vehicle sales. J Cleaner Prod 112:3774–3784

    Article  Google Scholar 

  • Lu J, Gao X (2021) Biogas: potential, challenges, and perspectives in a changing China. Biomass Bioenergy 150:106127

    Google Scholar 

  • Malik W, Mohan C, Annachhatre AP (2020) Community based biogas plant utilizing food waste and cow dung. Mater Today Proc 28(3):1910–1915

    Article  Google Scholar 

  • Marchetti R, Vasmara C (2020) Co-digestion of deproteinized dairy waste with pig slurry: effect of recipe and initial pH on biogas and volatile fatty acid production. BioEnergy Res 13:643–658

    Article  Google Scholar 

  • Marks S, Dach J, Morales FJF, Mazurkiewicz J, Pochwatka P, Gierz Ł (2020) New trends in substrates and biogas systems in Poland. J Ecol Eng 21:19–25

    Article  Google Scholar 

  • Mejdoub H, Ksibi H (2015) Regulation of biogas production through waste water anaerobic digestion process: modeling and parameters optimization. Waste Biomass Valorization 6:29–35

    Article  Google Scholar 

  • Mika K, Minna M, Noora V, Luukkanen J, Kaivo-oja J, Alexeeva A, Chea E, Va D, Kallio M, Hogarth N (2021) Situation analysis of energy use and consumption in Cambodia: household access to energy. Environ Dev Sustain

    Google Scholar 

  • Muellner N, Arnold N, Gufler K, Kromp W, Renneberg W, Liebert W (2021) Nuclear energy—the solution to climate change? Energy Policy 155:112363

    Google Scholar 

  • Mugodo K, Magama PP, Dhavu K (2017) Biogas production potential from agricultural and agro-processing waste in South Africa. Waste Biomass Valorization 8:2383–2392

    Article  Google Scholar 

  • Nsair A, Cinar SO, Alassali A, Qdais HA, Kuchta K (2020) Operational parameters of biogas plants: a review and evaluation study. Energies 13:3761

    Article  Google Scholar 

  • Nwokolo N, Mukumba P, Obileke K, Enebe M (2020) Waste to energy: a focus on the impact of substrate type in biogas production. Processes 8:1224

    Article  Google Scholar 

  • Panuccio MR, Attinà E, Basile C, Mallamaci C, Muscolo A (2016) Use of recalcitrant agriculture wastes to produce biogas and feasible biofertilizer. Waste Biomass Valorization 7:267–280

    Article  Google Scholar 

  • Pellegrini L, Arsel M, Orta-Martínez M, Mena CF, Muñoa G (2021) Institutional mechanisms to keep unburnable fossil fuel reserves in the soil. Energy Policy 149:112029

    Google Scholar 

  • Pizarro-Loaiza CA, Antón A, Torrella M, Torres-Lozada P, Palatsi J, Bonmatí A (2021) Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas. J Cleaner Prod 297:126722

    Google Scholar 

  • Pochwatka P, Kowalczyk-Juśko A, Sołowiej P, Wawrzyniak A, Dach J (2020) Biogas plant exploitation in a middle-sized dairy farm in Poland: energetic and economic aspects. Energies 13:6058

    Article  Google Scholar 

  • Rejeb A, Rejeb K, Zailani S (2021) Big data for sustainable agri‐food supply chains: a review and future research perspectives. J Data Inf Manag

    Google Scholar 

  • Sadekin S, Zaman S, Mahfuz M, Sarkar R (2019) Nuclear power as foundation of a clean energy future: a review. In: Proceedings of the energy procedia, vol 160. Elsevier Ltd., pp 513–518

    Google Scholar 

  • Shahbaz M, Ammar M, Korai RM, Ahmad N, Ali A, Khalid MS, Zou D, Li X (2020) Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl Sci 2:1436

    Article  Google Scholar 

  • Silvi C (2008) History and future of renewable solar energy. Development 51:409–414

    Article  Google Scholar 

  • Sołowiej P, Pochwatka P, Wawrzyniak A, Łapiński K, Lewicki A, Dach J (2021) The effect of heat removal during thermophilic phase on energetic aspects of biowaste composting process. Energies 14:1183

    Article  Google Scholar 

  • Sun H, Khan AR, Bashir A, Alemzero DA, Abbas Q, Abudu H (2020) Energy insecurity, pollution mitigation, and renewable energy integration: prospective of wind energy in Ghana. Environ Sci Pollut Res 27:38259–38275

    Article  Google Scholar 

  • Tagne RFT, Dong X, Anagho SG, Kaiser S, Ulgiati S (2021) Technologies, challenges and perspectives of biogas production within an agricultural context. The case of China and Africa. Environ Dev Sustain

    Google Scholar 

  • Velasquez CE, Estanislau FBGL, Costa AL, Pereira C (2020) Assessment of the French nuclear energy system—a case study. Energy Strategy Rev 30:100513

    Google Scholar 

  • Waliszewska H, Zborowska M, Waliszewska B, Borysiak S, Antczak A, Czekała W (2018) Transformation of Miscanthus and Sorghum cellulose during methane fermentation. Cellulose 25(2):1207–1216

    Article  Google Scholar 

  • Wang X, Li Z, Cheng S, Ji H, Shi J, Yang H (2021) Multiple substrates anaerobic co-digestion: a farm-scale biogas project and the GHG emission reduction assessment. Waste Biomass Valorization 12:2049–2057

    Article  Google Scholar 

  • Wawrzyniak A, Lewicki A, Pochwatka P, Sołowiej P, Czekała W (2021) Database system for estimating the biogas potential of cattle and swine feces in Poland. J Ecol Eng 22(3):111–120

    Article  Google Scholar 

  • Wolna-Maruwka A, Dach J (2009) Effect of type and proportion of different structure-creating additions on the inactivation rate of pathogenic bacteria in sewage sludge composting in a cybernetic bioreactor. Arch Environ Prot 35:87–100

    Google Scholar 

  • Żukowska GZ, Mazurkiewicz J, Myszura M, Czekała W (2019) Heat energy and gas emissions during composting of sewage sludge. Energies 12(24):4782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Czekała .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czekała, W. (2022). Biogas as a Sustainable and Renewable Energy Source. In: Di Blasio, G., Agarwal, A.K., Belgiorno, G., Shukla, P.C. (eds) Clean Fuels for Mobility . Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8747-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8747-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8746-4

  • Online ISBN: 978-981-16-8747-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics