Skip to main content

Consensus-Based Distributed Control in Microgrid Under Switching Topology

  • Conference paper
  • First Online:
Emergent Converging Technologies and Biomedical Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 841))

  • 401 Accesses

Abstract

Microgrids are an emerging source for emergency as well as remote load centers power supply. It provides power security with generation from the locally available resources. The most probably the resources used for power generation are renewable sources. Where at certain time of a day power production of renewable dependent source may reduce to zero. A centralized controller may handle such problems. However, distributed control under plug and play of DG units is very difficult task in renewable dependent microgrid. In this paper, a consensus-based distributed secondary controller adaptive to switching communication topology is designed for enhanced performance and reliable power supply. The load requirements along with the local load are met satisfactorily by the distributed control strategy devised in this paper. The simulation results show the efficacy of the proposed control strategy to achieve global voltage regulation and proportional load sharing when there is frequent change in the number of DGs operating in a microgrid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green M (2016) Community power. Nat Energy 1:16014

    Article  Google Scholar 

  2. Gumerman E, Bharvirkar, La Commare R, LaCommare KH, Marnay C (2003) Evaluation framework and tools for distributed energy resources. Lawrence Berkeley Natl Lab 1(1):1–59

    Google Scholar 

  3. Ahmadi S, Shokoohi S, Bevrani H (2015) A fuzzy logic-based droop control for simultaneous voltage and frequency regulation in an AC microgrid. Int J Electr Power Energy Syst 64(1):148–155

    Article  Google Scholar 

  4. Unamuno E, Barrena JA (2015) Hybrid AC/DC microgrids - Part I: review and classification of topologies. Renew Sustain Energy Revolut 52(1):1251–1259

    Article  Google Scholar 

  5. Xiao J, Weng P, Setyawan L et al (2015) Hierarchical control of hybrid energy storage system in DC microgrids. IEEE Trans Ind Electron 62(8):4915–4924

    Google Scholar 

  6. Micallef A, Apap M, Spiteri-Staines C, Guerrero JM, Vasquez JC (2014) Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids. IEEE Trans Smart Grid 5(3):1149–1158

    Article  Google Scholar 

  7. Palizban O, Kauhaniemi K (2015) Hierarchical control structure in microgrids with distributed generation: island and grid-connected mode. Renew Sustain Energy Rev 1(44):797–813

    Article  Google Scholar 

  8. Guo F, Wen C (2014) Distributed control subject to constraints on control inputs: a case study on secondary control of droop-controlled inverter-based microgrids. In: Conference 2014, industrial electronics and applications, vol 1. IEEE Hangzhou, China, pp 1119–1124

    Google Scholar 

  9. Bidram A, Davoudi A, Lewis FL et al (2013) Secondary control of microgrids based on distributed cooperative control of multi-agent systems. IET Gener Trans Distrib 7(8):822–831

    Article  Google Scholar 

  10. Meng L, Zhao X, Tang F et al (2016) Distributed voltage unbalance compensation in islanded microgrids by using a dynamic consensus algorithm. IEEE Trans Power Electron 31(1):827–838

    Article  Google Scholar 

  11. Dorfler F, Simpson-Porco J, Bullo F (2016) Breaking the hierarchy: distributed control & economic optimality in microgrids. IEEE Trans Control Netw Syst 3(3):241–253

    Article  MathSciNet  Google Scholar 

  12. Pullaguram D, Mishra S, Senroy N (2018) Event-triggered communication based distributed control scheme for DC microgrid. IEEE Trans Power Syst 33(5):5583–5593

    Article  Google Scholar 

  13. Xin H, Qu Z, Seuss J et al (2011) A self-organizing strategy for power flow control of photovoltaic generators in a distribution network. IEEE Trans Power Syst 26(3):1462–1473

    Article  Google Scholar 

  14. Katiraei F, Iravani MR (2006) Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst 21(4):1821–1831

    Article  Google Scholar 

  15. Simpson-Porco JW, Dorfler F, Bullo F (2013) Sychronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica 49(9):2603–2611

    Article  MathSciNet  Google Scholar 

  16. Meng L, Shafiee Q et al (2017) Review on control of DC microgrids and multiple microgrid clusters. IEEE J Emerg Select Top Power Electron 5(3):928–948

    Google Scholar 

  17. Shafiee Q, Guerrero JM, Vasquez JC (2014) Distributed secondary control for islanded microgrids—a novel approach. IEEE Trans Power Electron 29(2):1018–1031

    Article  Google Scholar 

  18. Godsil C, Royle G (2001) Algebraic graph theory, 1st edn. Springer-Verlag, New York

    Book  Google Scholar 

  19. Diestel R (2000) Graph theory, 1st edn. Springer-Verlag, New York

    MATH  Google Scholar 

  20. Stefano R, Fabio S, Giancarlo FT (2015) Plug-and-play voltage and frequency control of islanded microgrids with meshed topology. IEEE Trans Smart Grid 6(3):1176–1184

    Article  Google Scholar 

  21. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  22. Ren W, Beard RW (2005) Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans Autom Control 50(5):655–661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Mukhija, P., Saini, M.K. (2022). Consensus-Based Distributed Control in Microgrid Under Switching Topology. In: Marriwala, N., Tripathi, C.C., Jain, S., Mathapathi, S. (eds) Emergent Converging Technologies and Biomedical Systems . Lecture Notes in Electrical Engineering, vol 841. Springer, Singapore. https://doi.org/10.1007/978-981-16-8774-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8774-7_51

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8773-0

  • Online ISBN: 978-981-16-8774-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics