Skip to main content

Detection and Prevention of Virus Infection

  • Chapter
  • First Online:
Translational Informatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1368))

Abstract

The pathogenic mechanism of viral infection is a complex process involving viral mutation, viral integration, and various aspects of the interaction between the viral genome and the host. Moreover, the virus mutation will lead to the failure of related vaccines, leading to the increasing of vaccine development costs and difficulties in virus prevention. With the accumulation of various types of data, using bioinformatics methods to mine the potential viral characteristics of the pathogenic process can help virus detection and diagnosis, to take intervention measures to prevent disease development or develop effective antiviral therapies. In this chapter, we first outlined traditional approaches and emerging technologies of virus detection and prevention, and then summarized the latest developments in the bioinformatics methods application in different fields of virus researches. The emergence of artificial intelligence provides advanced analysis techniques for revealing key factors of virus infection and has been widely used in the virology community. In particular, we highlight machine learning and deep learning algorithms to identify factors/categories from complex multidimensional data and uncover novel patterns of virus or disease risk prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolhouse M et al (2012) Human viruses: discovery and emergence. Philos Trans R Soc Lond Ser B Biol Sci 367(1604):2864–2871

    Article  Google Scholar 

  2. Roubidoux EK, Schultz-Cherry S (2021) Animal models utilized for the development of influenza virus vaccines. Vaccines (Basel) 9(7):787

    Article  Google Scholar 

  3. Bukasov R, Dossym D, Filchakova O (2021) Detection of RNA viruses from influenza and HIV to Ebola and SARS-CoV-2: a review. Anal Methods 13(1):34–55

    Article  CAS  PubMed  Google Scholar 

  4. Dziabowska K, Czaczyk E, Nidzworski D (2018) Detection methods of human and animal influenza virus-current trends. Biosensors (Basel) 8(4):94

    Article  CAS  Google Scholar 

  5. Wozniak-Kosek A, Kempinska-Miroslawska B, Hoser G (2014) Detection of the influenza virus yesterday and now. Acta Biochim Pol 61(3):465–470

    Article  PubMed  Google Scholar 

  6. Koski RR, Klepser ME (2017) A systematic review of rapid diagnostic tests for influenza: considerations for the community pharmacist. J Am Pharm Assoc (2003) 57(1):13–19

    Article  Google Scholar 

  7. Kim DK, Poudel B (2013) Tools to detect influenza virus. Yonsei Med J 54(3):560–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox NJ, Subbarao K (1999) Influenza. Lancet 354(9186):1277–1282

    Article  CAS  PubMed  Google Scholar 

  9. Pedersen JC (2008) Neuraminidase-inhibition assay for the identification of influenza A virus neuraminidase subtype or neuraminidase antibody specificity. Methods Mol Biol 436:67–75

    CAS  PubMed  Google Scholar 

  10. Zhang H, Miller BL (2019) Immunosensor-based label-free and multiplex detection of influenza viruses: state of the art. Biosens Bioelectron 141:111476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poon LL et al (2005) Detection of human influenza A viruses by loop-mediated isothermal amplification. J Clin Microbiol 43(1):427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McMullen AR et al (2016) Pathology consultation on influenza diagnostics. Am J Clin Pathol 145(4):440–448

    Article  CAS  PubMed  Google Scholar 

  13. Lau LT, Fung YW, Yu AC (2006) Detection of animal viruses using nucleic acid sequence-based amplification (NASBA). Dev Biol (Basel) 126:7–15; discussion 323

    CAS  Google Scholar 

  14. Malanoski AP, Lin B (2013) Evolving gene targets and technology in influenza detection. Mol Diagn Ther 17(5):273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitehead TA et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30(6):543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quesada-Gonzalez D, Merkoci A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47(13):4697–4709

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y et al (2017) A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens Bioelectron 89(Pt 2):906–912

    Article  CAS  PubMed  Google Scholar 

  18. Kim SM et al (2020) Recent development of aptasensor for influenza virus detection. Biochip J 14:327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beck CR et al (2013) Neuraminidase inhibitors for influenza: a review and public health perspective in the aftermath of the 2009 pandemic. Influenza Other Respir Viruses 7(Suppl 1):14–24

    Article  CAS  PubMed  Google Scholar 

  20. Ferraris O, Lina B (2008) Mutations of neuraminidase implicated in neuraminidase inhibitors resistance. J Clin Virol 41(1):13–19

    Article  CAS  PubMed  Google Scholar 

  21. Musharrafieh R et al (2019) The L46P mutant confers a novel allosteric mechanism of resistance toward the influenza A virus M2 S31N proton channel blockers. Mol Pharmacol 96(2):148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li YD et al (2020) Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci 27(1):104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Islam N et al (2021) Thoracic imaging tests for the diagnosis of COVID-19. Cochrane Database Syst Rev 3:CD013639

    PubMed  Google Scholar 

  24. Pokhrel P, Hu C, Mao H (2020) Detecting the coronavirus (COVID-19). ACS Sens 5(8):2283–2296

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J et al (2020) COVID-19: coronavirus vaccine development updates. Front Immunol 11:602256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stockman LJ, Bellamy R, Garner P (2006) SARS: systematic review of treatment effects. PLoS Med 3(9):e343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang C et al (2019) Combining a fusion inhibitory peptide targeting the MERS-CoV S2 protein HR1 domain and a neutralizing antibody specific for the S1 protein receptor-binding domain (RBD) showed potent synergism against pseudotyped MERS-CoV with or without mutations in RBD. Viruses 11(1):31

    Article  CAS  PubMed Central  Google Scholar 

  28. Zhao G et al (2013) A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol J 10:266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li H et al (2020) Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol Sin 41(9):1133–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nandi S et al (2020) Biosensor platforms for rapid HIV detection. Adv Clin Chem 98:1–34

    Article  CAS  PubMed  Google Scholar 

  31. Mozhgani SH et al (2020) Nanotechnology based strategies for HIV-1 and HTLV-1 retroviruses gene detection. Heliyon 6(5):e04048

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu X (2018) HIV broadly neutralizing antibodies: VRC01 and beyond. Adv Exp Med Biol 1075:53–72

    Article  CAS  PubMed  Google Scholar 

  33. Baden LR et al (2016) Assessment of the safety and immunogenicity of 2 novel vaccine platforms for HIV-1 prevention: a randomized trial. Ann Intern Med 164(5):313–322

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chahine EB, Durham SH (2021) Ibalizumab: the first monoclonal antibody for the treatment of HIV-1 infection. Ann Pharmacother 55(2):230–239

    Article  CAS  PubMed  Google Scholar 

  35. Giraudy I et al (2021) In vitro inhibitory effect of maraviroc on the association of the simian immunodeficiency virus envelope glycoprotein with CCR5. Virus Genes 57(1):106–110

    Article  CAS  PubMed  Google Scholar 

  36. Poveda E et al (2002) Evolution of the gp41 env region in HIV-infected patients receiving T-20, a fusion inhibitor. AIDS 16(14):1959–1961

    Article  PubMed  Google Scholar 

  37. Futsch N, Mahieux R, Dutartre H (2017) HTLV-1, the other pathogenic yet neglected human retrovirus: from transmission to therapeutic treatment. Viruses 10(1):1

    Article  PubMed Central  CAS  Google Scholar 

  38. Arroyo Muhr LS et al (2020) Deep sequencing detects human papillomavirus (HPV) in cervical cancers negative for HPV by PCR. Br J Cancer 123(12):1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Venuti A, Paolini F (2012) HPV detection methods in head and neck cancer. Head Neck Pathol 6(Suppl 1):S63–S74

    Article  PubMed  Google Scholar 

  40. Capone RB et al (2000) Detection and quantitation of human papillomavirus (HPV) DNA in the sera of patients with HPV-associated head and neck squamous cell carcinoma. Clin Cancer Res 6(11):4171–4175

    CAS  PubMed  Google Scholar 

  41. Athanasiou A et al (2020) HPV vaccination and cancer prevention. Best Pract Res Clin Obstet Gynaecol 65:109–124

    Article  CAS  PubMed  Google Scholar 

  42. Shin CH et al (2003) Detection and typing of HSV-1, HSV-2, CMV and EBV by quadruplex PCR. Yonsei Med J 44(6):1001–1007

    Article  CAS  PubMed  Google Scholar 

  43. Yip CCY et al (2019) Evaluation of RealStar(R) alpha herpesvirus PCR kit for detection of HSV-1, HSV-2, and VZV in clinical specimens. Biomed Res Int 2019:5715180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kimberlin DW, Whitley RJ (2007) Chapter 64: Antiviral therapy of HSV-1 and -2. In: Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  45. Grossi P, Baldanti F (1997) Treatment of ganciclovir-resistant human cytomegalovirus infection. J Nephrol 10(3):146–151

    CAS  PubMed  Google Scholar 

  46. Lurain K, Yarchoan R, Uldrick TS (2018) Treatment of Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Hematol Oncol Clin North Am 32(1):75–88

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ma SD et al (2016) PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog 12(5):e1005642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fang W et al (2015) PD-L1 is remarkably over-expressed in EBV-associated pulmonary lymphoepithelioma-like carcinoma and related to poor disease-free survival. Oncotarget 6(32):33019–33032

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abutaleb A, Kottilil S (2020) Hepatitis A: epidemiology, natural history, unusual clinical manifestations, and prevention. Gastroenterol Clin N Am 49(2):191–199

    Article  Google Scholar 

  50. Song JE, Kim DY (2016) Diagnosis of hepatitis B. Ann Transl Med 4(18):338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ansaldi F et al (2014) Hepatitis C virus in the new era: perspectives in epidemiology, prevention, diagnostics and predictors of response to therapy. World J Gastroenterol 20(29):9633–9652

    Article  PubMed  PubMed Central  Google Scholar 

  52. Prakash S, Jain A, Jain B (2016) Development of novel triplex single-step real-time PCR assay for detection of Hepatitis Virus B and C simultaneously. Virology 492:101–107

    Article  CAS  PubMed  Google Scholar 

  53. Melgaco JG et al (2018) Hepatitis E: update on prevention and control. Biomed Res Int 2018:5769201

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chang MH, Chen DS (2015) Prevention of hepatitis B. Cold Spring Harb Perspect Med 5(3):a021493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Vigano M et al (2018) Treatment of hepatitis B: is there still a role for interferon? Liver Int 38(Suppl 1):79–83

    Article  CAS  PubMed  Google Scholar 

  56. Koumbi L (2015) Current and future antiviral drug therapies of hepatitis B chronic infection. World J Hepatol 7(8):1030–1040

    Article  PubMed  PubMed Central  Google Scholar 

  57. Caviglia GP, Rizzetto M (2020) Treatment of hepatitis D: an unmet medical need. Clin Microbiol Infect 26(7):824–827

    Article  CAS  PubMed  Google Scholar 

  58. Drosten C et al (2002) Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40(7):2323–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boga JA et al (2019) Simultaneous detection of Dengue virus, Chikungunya virus, Zika virus, Yellow fever virus and West Nile virus. J Virol Methods 268:53–55

    Article  CAS  PubMed  Google Scholar 

  60. Batovska J et al (2017) Metagenomic arbovirus detection using MinION nanopore sequencing. J Virol Methods 249:79–84

    Article  CAS  PubMed  Google Scholar 

  61. Basso CR et al (2018) An easy way to detect dengue virus using nanoparticle-antibody conjugates. Virology 513:85–90

    Article  CAS  PubMed  Google Scholar 

  62. Luo L et al (2019) Fast and sensitive detection of Japanese encephalitis virus based on a magnetic molecular imprinted polymer-resonance light scattering sensor. Talanta 202:21–26

    Article  CAS  PubMed  Google Scholar 

  63. Li X et al (2014) Immunogenicity and safety of currently available Japanese encephalitis vaccines: a systematic review. Hum Vaccin Immunother 10(12):3579–3593

    Article  PubMed  Google Scholar 

  64. Emperador DM et al (2019) Diagnostics for filovirus detection: impact of recent outbreaks on the diagnostic landscape. BMJ Glob Health 4(Suppl 2):e001112

    Article  PubMed  PubMed Central  Google Scholar 

  65. Keshtkar-Jahromi M et al (2018) Treatment-focused Ebola trials, supportive care and future of filovirus care. Expert Rev Anti-Infect Ther 16(1):67–76

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y et al (2017) Ebola vaccines in clinical trial: the promising candidates. Hum Vaccin Immunother 13(1):153–168

    Article  PubMed  Google Scholar 

  67. Realegeno S et al (2018) An ELISA-based method for detection of rabies virus nucleoprotein-specific antibodies in human antemortem samples. PLoS One 13(11):e0207009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Woldehiwet Z (2005) Clinical laboratory advances in the detection of rabies virus. Clin Chim Acta 351(1–2):49–63

    Article  CAS  PubMed  Google Scholar 

  69. Du Pont V et al (2020) Identification and characterization of a small-molecule rabies virus entry inhibitor. J Virol 94(13):e00321–e00320

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu ZP et al (2014) Systematic identification of transcriptional and post-transcriptional regulations in human respiratory epithelial cells during influenza A virus infection. BMC Bioinformatics 15:336

    Article  PubMed  PubMed Central  Google Scholar 

  71. Savidis G et al (2016) Identification of Zika virus and Dengue virus dependency factors using functional genomics. Cell Rep 16(1):232–246

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Wang L, Yan Y (2020) Identification of potential key genes and pathways in hepatitis B virus-associated hepatocellular carcinoma by bioinformatics analyses. Oncol Lett 19(5):3477–3486

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeng XC et al (2020) Screening and identification of potential biomarkers in hepatitis B virus-related hepatocellular carcinoma by bioinformatics analysis. Front Genet 11:555537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang Y, Zhang Y, Hu X (2020) Identification of potential hub genes related to diagnosis and prognosis of hepatitis B virus-related hepatocellular carcinoma via integrated bioinformatics analysis. Biomed Res Int 2020:4251761

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen Z et al (2019) Identification of potential key genes for hepatitis B virus-associated hepatocellular carcinoma by bioinformatics analysis. J Comput Biol 26(5):485–494

    Article  CAS  PubMed  Google Scholar 

  76. Khan AA, Khan Z (2021) Comparative host-pathogen protein-protein interaction analysis of recent coronavirus outbreaks and important host targets identification. Brief Bioinform 22(2):1206–1214

    Article  PubMed  CAS  Google Scholar 

  77. Rasheed S, Hashim R, Yan JS (2015) Possible biomarkers for the early detection of HIV-associated heart diseases: a proteomics and bioinformatics prediction. Comput Struct Biotechnol J 13:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang H et al (2021) Screening and identification of key genes in EBV-associated gastric carcinoma based on bioinformatics analysis. Pathol Res Pract 222:153439

    Article  CAS  PubMed  Google Scholar 

  79. Mokhtari AM et al (2021) Association of routine hepatitis B vaccination and other effective factors with hepatitis B virus infection: 25 years since the introduction of National Hepatitis B Vaccination in Iran. Iran J Med Sci 46(2):93–102

    PubMed  Google Scholar 

  80. Mueller-Breckenridge AJ et al (2019) Machine-learning based patient classification using hepatitis B virus full-length genome quasispecies from Asian and European cohorts. Sci Rep 9(1):18892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yin Y et al (2021) A noninvasive prediction model for hepatitis B virus disease in patients with HIV: based on the population of Jiangsu, China. Biomed Res Int 2021:6696041

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang N et al (2014) Serum peptide pattern that differentially diagnoses hepatitis B virus-related hepatocellular carcinoma from liver cirrhosis. J Gastroenterol Hepatol 29(7):1544–1550

    Article  CAS  PubMed  Google Scholar 

  83. Wang Y et al (2019) Predicting hepatitis B virus infection based on health examination data of community population. Int J Environ Res Public Health 16(23):4842

    Article  PubMed Central  Google Scholar 

  84. Yao H et al (2020) Severity detection for the coronavirus disease 2019 (COVID-19) patients using a machine learning model based on the blood and urine tests. Front Cell Dev Biol 8:683

    Article  PubMed  PubMed Central  Google Scholar 

  85. Albahri AS et al (2020) Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. J Med Syst 44(7):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Khan S et al (2018) Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning. Photodiagn Photodyn Ther 23:89–93

    Article  CAS  Google Scholar 

  87. Luckett P et al (2019) Deep learning analysis of cerebral blood flow to identify cognitive impairment and frailty in persons living with HIV. J Acquir Immune Defic Syndr 82(5):496–502

    Article  PubMed  PubMed Central  Google Scholar 

  88. Klein S et al (2021) Deep learning predicts HPV association in oropharyngeal squamous cell carcinomas and identifies patients with a favorable prognosis using regular H&E stains. Clin Cancer Res 27(4):1131–1138

    Article  CAS  PubMed  Google Scholar 

  89. Wray TB et al (2019) Using smartphone survey data and machine learning to identify situational and contextual risk factors for HIV risk behavior among men who have sex with men who are not on PrEP. Prev Sci 20(6):904–913

    Article  PubMed  Google Scholar 

  90. Zheng C, Wang W, Young SD (2021) Identifying HIV-related digital social influencers using an iterative deep learning approach. AIDS 35(Suppl 1):S85–S89

    Article  PubMed  Google Scholar 

  91. Xiang Y et al (2019) Network context matters: graph convolutional network model over social networks improves the detection of unknown HIV infections among young men who have sex with men. J Am Med Inform Assoc 26(11):1263–1271

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang CR et al (2020) FluConvert and IniFlu: a suite of integrated software to identify novel signatures of emerging influenza viruses with increasing risk. BMC Bioinformatics 21(1):316

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yu C et al (2011) [Analysis on nucleoprotein gene sequence of 25 rabies virus isolates in Guizhou Province, China]. Bing Du Xue Bao 27(6):549–556

    Google Scholar 

  94. Cai L et al (2011) Molecular characteristics and phylogenetic analysis of N gene of human derived rabies virus. Biomed Environ Sci 24(4):431–437

    CAS  PubMed  Google Scholar 

  95. Miotto O et al (2008) Identification of human-to-human transmissibility factors in PB2 proteins of influenza A by large-scale mutual information analysis. BMC Bioinformatics 9(Suppl 1):S18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Holman AG, Gabuzda D (2012) A machine learning approach for identifying amino acid signatures in the HIV env gene predictive of dementia. PLoS One 7(11):e49538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nwankwo N (2013) A digital signal processing-based bioinformatics approach to identifying the origins of HIV-1 non B subtypes infecting US Army personnel serving abroad. Curr HIV Res 11(4):271–280

    Article  CAS  PubMed  Google Scholar 

  98. Chrysostomou C, Seker H (2013) Signal-processing-based bioinformatics approach for the identification of influenza A virus subtypes in neuraminidase genes. Annu Int Conf IEEE Eng Med Biol Soc 2013:3066–3069

    PubMed  Google Scholar 

  99. Fischer S et al (2018) Defining objective clusters for rabies virus sequences using affinity propagation clustering. PLoS Negl Trop Dis 12(1):e0006182

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cleemput S et al (2020) Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes. Bioinformatics 36(11):3552–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Han L et al (2019) Graph-guided multi-task sparse learning model: a method for identifying antigenic variants of influenza A(H3N2) virus. Bioinformatics 35(1):77–87

    Article  CAS  PubMed  Google Scholar 

  102. Lun AT, Wong JW, Downard KM (2012) FluShuffle and FluResort: new algorithms to identify reassorted strains of the influenza virus by mass spectrometry. BMC Bioinformatics 13:208

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang M et al (2021) Viral quasispecies quantitative analysis: a novel approach for appraising the immune tolerant phase of chronic hepatitis B virus infection. Emerg Microbes Infect 10(1):842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen S et al (2021) Using quasispecies patterns of hepatitis B virus to predict hepatocellular carcinoma with deep sequencing and machine learning. J Infect Dis 223(11):1887–1896

    Article  CAS  PubMed  Google Scholar 

  105. Lei H et al (2013) Identification and characterization of EBV genomes in spontaneously immortalized human peripheral blood B lymphocytes by NGS technology. BMC Genomics 14:804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Meshram RJ, Gacche RN (2015) Effective epitope identification employing phylogenetic, mutational variability, sequence entropy, and correlated mutation analysis targeting NS5B protein of hepatitis C virus: from bioinformatics to therapeutics. J Mol Recognit 28(8):492–505

    Article  CAS  PubMed  Google Scholar 

  107. Southgate JA et al (2020) Influenza classification from short reads with VAPOR facilitates robust mapping pipelines and zoonotic strain detection for routine surveillance applications. Bioinformatics 36(6):1681–1688

    Article  CAS  PubMed  Google Scholar 

  108. Jain G et al (2020) A deep learning approach to detect Covid-19 coronavirus with X-ray images. Biocybern Biomed Eng 40(4):1391–1405

    Article  PubMed  PubMed Central  Google Scholar 

  109. El Asnaoui K, Chawki Y (2021) Using X-ray images and deep learning for automated detection of coronavirus disease. J Biomol Struct Dyn 39(10):3615–3626

    Article  PubMed  CAS  Google Scholar 

  110. Brunese L et al (2020) Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Methods Prog Biomed 196:105608

    Article  Google Scholar 

  111. Brunese L et al (2020) Machine learning for coronavirus covid-19 detection from chest x-rays. Procedia Comput Sci 176:2212–2221

    Article  PubMed  PubMed Central  Google Scholar 

  112. Albahli S, Albattah W (2020) Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms. J Xray Sci Technol 28(5):841–850

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang X et al (2021) A deep learning integrated radiomics model for identification of coronavirus disease 2019 using computed tomography. Sci Rep 11(1):3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Waleed Salehi A, Baglat P, Gupta G (2020) Review on machine and deep learning models for the detection and prediction of Coronavirus. Mater Today Proc 33:3896–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Younis MC (2021) Evaluation of deep learning approaches for identification of different corona-virus species and time series prediction. Comput Med Imaging Graph 90:101921

    Article  PubMed  PubMed Central  Google Scholar 

  116. Aversano L et al (2021) Deep neural networks ensemble to detect COVID-19 from CT scans. Pattern Recogn 120:108135

    Article  Google Scholar 

  117. Balaha HM, El-Gendy EM, Saafan MM (2021) CovH2SD: a COVID-19 detection approach based on Harris Hawks Optimization and stacked deep learning. Expert Syst Appl 186:115805

    Article  PubMed  PubMed Central  Google Scholar 

  118. Banerjee A et al (2022) COFE-Net: an ensemble strategy for computer-aided detection for COVID-19. Measurement (Lond) 187:110289

    Article  Google Scholar 

  119. Verma SS, Prasad A, Kumar A (2022) CovXmlc: high performance COVID-19 detection on X-ray images using Multi-Model classification. Biomed Signal Process Control 71:103272

    Article  PubMed  Google Scholar 

  120. Elharrouss O, Subramanian N, Al-Maadeed S (2022) An encoder-decoder-based method for segmentation of COVID-19 lung infection in CT images. SN Comput Sci 3(1):13

    Article  PubMed  Google Scholar 

  121. Kumar A et al (2022) SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network. Pattern Recogn 122:108255

    Article  Google Scholar 

  122. Aviles-Rivero AI et al (2022) GraphXCOVID: explainable deep graph diffusion pseudo-labelling for identifying COVID-19 on chest X-rays. Pattern Recogn 122:108274

    Article  Google Scholar 

  123. Liu X et al (2022) Weakly supervised segmentation of COVID19 infection with scribble annotation on CT images. Pattern Recogn 122:108341

    Article  Google Scholar 

  124. Barshooi AH, Amirkhani A (2022) A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-ray images. Biomed Signal Process Control 72:103326

    Article  PubMed  Google Scholar 

  125. Ghosh SK, Ghosh A (2022) ENResNet: a novel residual neural network for chest X-ray enhancement based COVID-19 detection. Biomed Signal Process Control 72:103286

    Article  PubMed  Google Scholar 

  126. Nikolaou V et al (2021) COVID-19 diagnosis from chest x-rays: developing a simple, fast, and accurate neural network. Health Inf Sci Syst 9(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  127. Abdel-Basset M et al (2021) Two-stage deep learning framework for discrimination between COVID-19 and community-acquired pneumonia from chest CT scans. Pattern Recogn Lett 152:311–319

    Article  Google Scholar 

  128. Li Z et al (2021) A deep-learning-based framework for severity assessment of COVID-19 with CT images. Expert Syst Appl 185:115616

    Article  PubMed  PubMed Central  Google Scholar 

  129. Verma AK et al (2021) Wavelet and deep learning-based detection of SARS-nCoV from thoracic X-ray images for rapid and efficient testing. Expert Syst Appl 185:115650

    Article  PubMed  PubMed Central  Google Scholar 

  130. Moris DI et al (2021) Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images. Expert Syst Appl 185:115681

    Article  PubMed  PubMed Central  Google Scholar 

  131. Guarrasi V et al (2022) Pareto optimization of deep networks for COVID-19 diagnosis from chest X-rays. Pattern Recogn 121:108242

    Article  Google Scholar 

  132. Togacar M et al (2022) Detection of COVID-19 findings by the local interpretable model-agnostic explanations method of types-based activations extracted from CNNs. Biomed Signal Process Control 71:103128

    Article  PubMed  Google Scholar 

  133. Bhattacharyya A et al (2022) A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images. Biomed Signal Process Control 71:103182

    Article  PubMed  Google Scholar 

  134. Chakraborty S, Paul S, Hasan KMA (2022) A transfer learning-based approach with deep CNN for COVID-19- and pneumonia-affected chest X-ray image classification. SN Comput Sci 3(1):17

    Article  PubMed  Google Scholar 

  135. Malhotra A et al (2022) Multi-task driven explainable diagnosis of COVID-19 using chest X-ray images. Pattern Recogn 122:108243

    Article  Google Scholar 

  136. Ye Y et al (2014) Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. J Am Med Inform Assoc 21(5):815–823

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lopez Pineda A et al (2015) Comparison of machine learning classifiers for influenza detection from emergency department free-text reports. J Biomed Inform 58:60–69

    Article  PubMed  Google Scholar 

  138. Marcus JL et al (2019) Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. Lancet HIV 6(10):e688–e695

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhang L et al (2017) Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget 8(47):83142–83154

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chang S, Wang LH, Chen BS (2020) Investigating core signaling pathways of hepatitis B virus pathogenesis for biomarkers identification and drug discovery via systems biology and deep learning method. Biomedicine 8(9):320

    Google Scholar 

  141. Tomar NR et al (2010) Molecular docking studies with rabies virus glycoprotein to design viral therapeutics. Indian J Pharm Sci 72(4):486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andrianov AM et al (2021) Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors. J Biomol Struct Dyn 2021:1–19

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bairong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Shen, B. (2022). Detection and Prevention of Virus Infection. In: Shen, B. (eds) Translational Informatics. Advances in Experimental Medicine and Biology, vol 1368. Springer, Singapore. https://doi.org/10.1007/978-981-16-8969-7_2

Download citation

Publish with us

Policies and ethics