Skip to main content

Phytoremediation: A Sustainable Solution to Combat Pollution

  • Chapter
  • First Online:
Biotechnological Innovations for Environmental Bioremediation

Abstract

Plants and microbes are the reservoirs of many structural and biological distinctive properties, which can be used to combat against environmental pollutants. They are the primary producers of ecosystems and transfer the primary productivity in the form of carbon energy to higher trophic levels in the food chain. They play a pivotal role in protecting the environment by reducing greenhouse gas emission, excess nutrients, heavy metal degradation, and other pollutants. They are found in every kind of habitat such as terrestrial, aquatic, and desert. A direct correlation has been identified among different plant and microbial communities, at different pollution levels, and different heavy metals in their habitats. Besides this, species composition of plants and microbes depends on different types of habitats and abiotic environmental factors. They consume excess amount of nutrients from the land and wastewater and take up CO2 from the environment by the process of photosynthesis maintain the biological oxygen demand (BOD) and chemical oxygen demand (COD) of the habitat and restore the original conditions of natural habitat by reducing environmental and soil pollution. Further, their biomass can be used for bioenergy production, food production, and novel biochemical production for human and animal welfare. Further, their residual part can be utilized as fodder to cattle. The main aim of the article is to overview the advances in current and futuristic techniques for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamd G, Nishat Y, Haris M, Danish M, Hussain T (2019) Efficiency of soil, plant and microbes for the healthy plant immunity and sustainable agricultural system. In: Varma A, Tripathi S, Prasad R (eds) Plant-microbe interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_15

    Chapter  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metals polluted soils. Ecotox Environ Safe 174:714–727

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94

    Article  PubMed Central  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Booth SC, Weljie AM, Turner RJ (2015) Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 6:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Cempel M, Nikel G (2016) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15:375–382

    Google Scholar 

  • Chen S, Yin H, Ye J (2014) Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation. Bioresour Technol 158:181–187

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Stem AF, Castell N, Gonzalez Caslanedo Y, De La Campa AS, La D, Rosa J (2016) Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Sci Total Environ 539:17–25

    Article  CAS  PubMed  Google Scholar 

  • Dhankar R, Goyal S, Kumar K, Hussain T (2021) Bacterial community response to pesticides polluted soil. In: Mandal S et al (eds) Recent advancement in microbial biotechnology-agricultural and industrial approach. Elsevier, San Diego, pp 339–355. https://doi.org/10.1016/B978-0-12-822098-6.00010-0

    Chapter  Google Scholar 

  • Dhankar R, Tyagi P, Kamble SS, Gupta D, Hussain T (2020) Advances in fungi: rejuvenation of polluted sites. In: Sharma VK, Shah MP, Parmar S, Kumar A (eds) Fungi bio-prospects in sustainable agriculture, environment and nano-technology, vol 2. Elsevier, San Diego, pp 251–275. https://doi.org/10.1016/B978-0-12-821925-6.00012-5. isbn:978-0-12-821925-6

    Chapter  Google Scholar 

  • Chaurasia U, Kumar A, Maurya DK, Yadav SK, Hussain T, Maurya VK (2021) Role of nano-biotechnology in agriculture and allied sciences. In: Mallick MA, Solanki MK, Kumari B, Verma SK (eds) Nanotechnology in sustainable agriculture. CRC Press, Boca Raton, pp 69–96

    Google Scholar 

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151(1):185–193

    Article  CAS  PubMed  Google Scholar 

  • Dal Carso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollution: state of the art and initiation in phytoremediation. Int J Mol Sci 20:3412

    Article  CAS  Google Scholar 

  • Dhanker R, Kumar R, Tseng LC, Hwang JS (2013) Ciliate (Euplotes sp.) predation by Pseudodiaptomus annandalei (Copepoda: Calanoida) and effects of mono- and pluri-algal diets. Zool Stud 52:34–44

    Article  CAS  Google Scholar 

  • Dhanker R, Molinero JC, Kumar R, Tseng LC, Ianora A, Hwang JS (2015) Responses of the estuarine copepod Pseudodiaptomus annandalei to diatom polyunsaturated aldehydes: Reproduction, survival and postembryonic development. Harmful Algae 43:74–81

    Article  CAS  Google Scholar 

  • Dhanker R, Tiwari A, Dahms HU, Kumar R, Hwang JS (2020) Influence of three diatom aldehydes against the dengue vector Aedes aegypti (Diptera: Culicidae). Am J Plant Sci 10(10):1749–1762

    Article  CAS  Google Scholar 

  • Dixit R, Wasiullah D, Malaviya (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustain For 7(2):2189–2212

    Article  Google Scholar 

  • Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175. https://doi.org/10.1023/A:1022527207359

    Article  CAS  Google Scholar 

  • Ekperusi O, Aigbodion F (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. Biotech 5:957–965

    CAS  Google Scholar 

  • Farahat E, Linderholm HW (2015) The effects of long-term wastewater irrigation on accumulation and transfer of heavy metals in cupressus sempervirens leaves and adjacent soil. Sci Total Environ 51:1–7

    Article  CAS  Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, Dal Corso G (2018) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232

    Article  CAS  PubMed  Google Scholar 

  • Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res 13(11):1047

    Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Frers CE (2009) El uso de plantasacuáticasen el tratamiento de aguasresiduales. El Planeta Azul, Carmen de Areco

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Guleri S, Singh K, Kaushik R, Dhankar R, Tiwari A (2020) Phycogenic synthesis of nanoparticles supported on adsorbent models for the water remediation. J Microbiol Biotechnol Food Sci 10(1):98–106

    Article  CAS  Google Scholar 

  • Hamzah A, Hapsari RI, Wisnubroto EJ (2016) Phytoremediation of cadmium contaminated agricultural land using indigenous plants. Int J Environ Agric 2:8–14

    Google Scholar 

  • Haris M, Shakeel A, Ansari MA, Hussain T, Khan AA, Dhankar R (2020) Sustainable crop production and improvement through bio-prospecting of fungi. In: Sharma VK, Shah MP, Parmar S, Kumar A (eds) Fungi bio-prospects in sustainable agriculture, environment and nano-technology, vol 1. Elsevier, San Diego. https://doi.org/10.1016/B978-0-12-821394-0.00016-0. isbn:978-0-12-821394-0

    Chapter  Google Scholar 

  • Haris M, Shakeel A, Hussain T, Ahmad G, Khan AA (2021) New trends in removing heavy metals from industrial wastewater through microbes. In: Shah MP (ed) Removal of emerging contaminants through microbial processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-5901-3_9

    Google Scholar 

  • Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3:221–240

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Hussain T, Dhanker R (2021) Science of microorganisms for the restoration of polluted sites for safe and healthy environment. In: Shah M, Rodriguez-Couto S (eds) Microbial ecology of wastewater treatment plants. Elsevier, Amsterdam, pp 127–144. https://doi.org/10.1016/C2019-0-04695-X

    Chapter  Google Scholar 

  • Hussain K, Haris M, Qamar H, Hussain T, Ahmad G, Ansari MS, Khan AA (2021) Bioremediation of waste gases and polluted soils. In: Panpatte DG, Jhala YK (eds) Microbial rejuvenation of polluted environment. Microorganisms for sustainability, vol 26. Springer, Singapore. https://doi.org/10.1007/978-981-15-7455-9_5

    Chapter  Google Scholar 

  • Iqbal M, Iqbal N, Bhatti IA, Ahmad N, Zahid M (2016) Response surface methodology application in optimization of cadmium adsorption by shoe water: a good option of waste mitigation by waste. Ecol Eng 88:265–275

    Article  Google Scholar 

  • Jacob J, Chinnannan K, Saratale R, Prabakar KS, Desika KK, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

    Article  CAS  Google Scholar 

  • Jain S, Arnepalli D (2016) Biominerlisation as a remediation technique: a critical review. In Proceedings of the Indian Geotechnical Conference (IGC2016); Chennai, India, pp 15–17

    Google Scholar 

  • Janani S, Kumar S (2018) Performance analysis of different textile effluent treatment processes involving marine diatom Odontella aurita. Environ Technol Innov 11:153–164

    Article  Google Scholar 

  • Javed M, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Chapter 20 – phytoremediation of cadmium-polluted water/sediment by aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic, London, pp 495–529

    Chapter  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Hussain T, Susmita C, Maurya DK, Danish M, Farooqui SA (2021) Microbial remediation and detoxification of heavy metals by plants and microbes. In: Shah M et al (eds) The future of effluent treatment plants-biological treatment systems. Elsevier, Amsterdam, pp 589–614. https://doi.org/10.1016/B978-0-12-822956-9.00030-1

    Chapter  Google Scholar 

  • Lone MI, Zhen L, He L, Stoffella PJ, Yang X (2008) Phytoremed Heavy Metals Pollut Soils Water 9(3):210–220

    CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation heavy metals contaminated soils. Phytoremediation as a potentially promising clean up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Maurya DK, Kumar A, Chaurasiya U, Hussain T, Singh SK (2020) Modern era of microbial biotechnology: opportunities and future prospects. In: Solanki MK, Kashyap PL, Ansari RA, Kumari B (eds) Microbiomes and plant health. Elsevier, Massachusett, pp 317–343. https://doi.org/10.1016/B978-0-12-819715-8.00011-2

    Chapter  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:14

    Article  Google Scholar 

  • Muradoglu F, Gundoglo M, Ercisli S, Encu T, Balta F, Jaafar HZ (2015) Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Research 48:11

    Google Scholar 

  • Sabir M, Ejaz A, Waraich K, Rehman H, Öztürk M, Ahmad HR, Muhamad S (2015) Phytoremediation: mechanisms and adaptations soil remediation and plants (prospects and challenges). Elsevier, London, pp 85–105

    Google Scholar 

  • Neff J, Lee K, Deblois EM (2011) Produced water overview of composition, fates and effects. In: Lees K, Neff J (eds) Produced water, environmental risks and advances in mitigation technologies. Springer, New York, pp 3–54

    Google Scholar 

  • Nanthi S, Jin B, Park H, Robinson B, Naidu R, Young K (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:147–159

    Google Scholar 

  • Okolo VN, Olowolafe EA, Akawu I, Okoduwa S (2016) Effects of industrial effluents 581 on soil resource in challawa industrial area. J Global Ecol Environ 5(1):10

    Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Othman Yahia A, Daniel L (2018) Organic soil amendments influence soil health, yield and phytochemicals of globe artichoke head. Biol Agric Hortic 34:1–10

    Article  Google Scholar 

  • Poirier I, Hammann P, Kuhn L, Bertrand M (2013) Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquat Toxicol 128–129:215–232

    Article  PubMed  CAS  Google Scholar 

  • Paliwal V, Puranik S, Purohit HJ (2012) Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 166(4):903–924

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 345–391

    Chapter  Google Scholar 

  • Pratas J, Favas PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytoremediation 14:221–234

    Article  CAS  PubMed  Google Scholar 

  • Pitche RJ (2016) Oil and gas production waste water: soil contamination and pollution prevention. Appl Environ. Soil Sci 2016:2707989

    Google Scholar 

  • Rafique N, Tariq SR (2016) Distribution and source apportionment studies of heavy metals in soil cotton/wheat field. Environ Monit Assess 188:309

    Article  PubMed  CAS  Google Scholar 

  • Rehman MZU, Rizwan M, Ali S, Ok YS, Ishaque W, Saifullah (2017) Remediation of heavy metal contaminated soil by using Solanum nigrum: a review. Ecotox Environ Safe 143:236–248

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metals accumulating plants: how and why do they do so? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(7):73–81

    PubMed  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation current opinion. Biotechnology 20:213–219

    CAS  Google Scholar 

  • Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–646

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Azad SA (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microbial Biochem Technol 7(6):384–393

    Article  CAS  Google Scholar 

  • Siddiqua KS, Farooqui SA, Hussain T, Mohamed HI (2021) Microbial enzymes and their role in phytoremediation. In: Mohamed HI, El-Beltagi HEDS, Abd-Elsalam KA (eds) Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham. https://doi.org/10.1007/978-3-030-66587-6_22

    Chapter  Google Scholar 

  • Saghafi D, Delangiz N, Lajayer BA, Ghorbanpour M (2019) An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. Biotech 9(7):261

    Google Scholar 

  • Suman J, Uhlik O, Viktorona J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean up polluted environment. Front Plant Sci 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing Cadmium accumulation by plants. J Sci Food Agric 90:925–937

    Article  CAS  PubMed  Google Scholar 

  • Sheoron V, Sheoron A, Ponia P (2011) Role of hyperaccumulators in Phytoextraction of metals from contaminated mining sites: a review function for Cadmium binding peptides. Plant Physiol 92:1086–1093

    Google Scholar 

  • Su C (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skept Crit 3:24–38

    Google Scholar 

  • Tripathi S, Hussain T (2021) Treatment of industrial wastewater through new approaches using algae biomass. In: Shah M (ed) The future of effluent treatment plants-biological treatment systems. Elsevier, Amsterdam, pp 89–112. https://doi.org/10.1016/B978-0-12-822956-9.00006-4

    Chapter  Google Scholar 

  • Tripathi S, Hussain T (2022) Biofilltration treatment of wastewater through microbial ecology. In: Shah M (ed) An innovative role of Biofilltration in Wastewater Treatment Plants (WWTPs). Elsevier, pp 19–44. https://doi.org/10.1016/B978-0-12-823946-9.00005-X

    Chapter  Google Scholar 

  • Van der Ent A, Baker A, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1-3):1–8

    Article  CAS  PubMed  Google Scholar 

  • Wuanna RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Yang T, Chen M, Wang J (2015) Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends Anal Chem 66:90–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, K., Hussain, T., Dhanker, R., Jain, P., Goyal, S. (2022). Phytoremediation: A Sustainable Solution to Combat Pollution. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Biotechnological Innovations for Environmental Bioremediation. Springer, Singapore. https://doi.org/10.1007/978-981-16-9001-3_11

Download citation

Publish with us

Policies and ethics