Skip to main content

Low-Temperature Stress and Nitrogen Metabolism in Plants: A Review

  • Chapter
  • First Online:
Physiological Processes in Plants Under Low Temperature Stress

Abstract

Cold stress can lead to major crop losses. In natural ecosystems, there are several inputs of soil nitrogen. Even though our atmosphere consists of nearly 80% of N2, it is the limiting element in most ecosystems. Bio-available nitrogen can enter an ecosystem via atmospheric nitrogen deposition, mostly in the form of ammonium and nitrogen oxides. Larger input of nitrogen comes from nitrogen fixed by microorganisms, called diazotrophs. Nitrogen input from legumes can be a sustainable source of nitrogen in agricultural systems. The symbiotic microorganisms in the root nodules, the rhizobia, can take up gaseous di-nitrogen from the air and “fix” the nitrogen into molecules that can be assimilated by the plant. In return, the plant provides the rhizobia with a carbon source in the form of di-carboxylic acids. The enzyme responsible for the nitrogen fixation, nitrogenase, is irreversibly damaged when exposed to oxygen. The use of nitrogen from soil by plants involves several steps, including uptake, assimilation, translocation, and, when the plant is aging, recycling and remobilization. Although generally low, soil nitrogen availability can fluctuate greatly in both space and time due to factors such as precipitation, temperature, wind, soil type, and pH. Therefore, the preferred form in which nitrogen is taken up depends on plant adaptation to soil conditions. Generally, plants adapted to low pH and reducing soils as found in mature forests or arctic tundra tend to take up ammonium or amino acids, whereas plants adapted to higher pH and more aerobic soils prefer nitrate. Nitrate is easily transported in the plant and can be assimilated both in leaves and roots. The partitioning of nitrate reduction between roots and shoots may vary with plant species, age, and environmental factors. After nitrate reduction, nitrite is translocated to the chloroplast, where it is reduced to ammonium by the second enzyme of the pathway, the nitrite reductase. Ammonium, originating from nitrate reduction, and also from photorespiration or amino acid recycling, is mainly assimilated in the plastid/chloroplast by the so-called GS/GOGAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Wahab AM, Zahran HH, Abd-Alla MH (1996) Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer. Folia Microbiol 41(4):303–308

    Article  Google Scholar 

  • Abiri R, Azmi N, Maziah M, Norhana Z, Yusof B, Atabaki N, Sahebi M, Valdiani A, Kalhori N, Azizi P, Hanafi MM (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44

    Article  CAS  Google Scholar 

  • Adamovich A, Klasens V (2001) Symbiotically fixed nitrogen in forage legume–grass mixture. Grassland Science in Europe 6:12

    Google Scholar 

  • Adams S, Cockshull K, Cave C (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88(5):1–9

    Article  Google Scholar 

  • Adgo E, Schulze J (2002) Nitrogen fixation and assimilation efficiency in Ethiopian and German pea varieties. Plant Soil 239(2):291–299

    Article  CAS  Google Scholar 

  • Ahmad I, Basra SMA, Wahid A (2014a) Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize at low temperature stress. Int J Agric Biol 16(4):825–830

    CAS  Google Scholar 

  • Ahmad P, Wani MR, Azooz MM, Tran LSP (2014b) Improvement of crops in the era of climatic changes. Springer, New York

    Book  Google Scholar 

  • Albrecht SL, Bennett JM, Boote KJ (1984) Relationship of nitrogenase activity to plant water stress in field-grown soybeans. Field Crops Res 8:61–71

    Article  Google Scholar 

  • Alcantar-Gonzales GM, Migianac-Maslow A, Champigny ML (1988) Effect of nitrate supply on energy balance and acetylene reduction and nitrate reductase activities of soybean root nodules infected with Bradyrhizobium japonicum. CR Acad Sci Paris 307:145–152

    CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344

    Article  CAS  Google Scholar 

  • Al-Falih AMK (2002) Factors affecting the efficiency of symbiotic nitrogen fixation by Rhizobium. Pak J Biol Sci 5(11):1277–1293

    Article  Google Scholar 

  • Ali Q, Ashraf M (2011) Exogenously applied glycinebetaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ Exp Bot 71(2):249–259

    Article  CAS  Google Scholar 

  • Ali Q, Anwar F, Ashraf M, Saari N, Perveen R (2013) Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int J Mol Sci 14(1):818–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali F, Bano A, Fazal A (2017) Recent methods of drought stress tolerance in plants. Plant Growth Regul 82:363–375

    Article  CAS  Google Scholar 

  • Ali Q, Rehman H, Haider MZ, Shahid S, Aslam N, Shehzad F, Naseem J, Ashraf R, Ali S, Hussain SM (2019) Chapter 12. Role of amino acids in improving abiotic stress tolerance to plants. In: Hasanuzzaman M, Fujita M, Oku H, Islam MT (eds) Plant tolerance to environmental stress. Taylor & Francis Group, Abingdon, pp 175–204

    Chapter  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139(3):1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral JAT, Da Matta FM, Rena AB (2001) Effects of fruiting on the growth of arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Braz J Plant Physiol 13(1):66–74

    CAS  Google Scholar 

  • Amthor JS (2000) Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous tree species is small. Tree Physiol 20(2):139–144

    Article  PubMed  Google Scholar 

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24(4):324–331

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54(392):2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Anderson J, Dahlberg JE, Bretscher MS, Revel M, Clark BFC (1967) GTP stimulated binding of initiator tRNA to ribosomes directed by f2 bacteriophage RNA. Nature 216(5120):1072–1076

    Article  CAS  PubMed  Google Scholar 

  • Anjana A, Umar S, Iqbal M, Abrol YP (2006) Are nitrate concentrations in leafy vegetables within safe limits? In Proceedings of the Workshop on Nitrogen in Environment, Industry and Agriculture, New Delhi, India, pp 81–84

    Google Scholar 

  • Anjana A, Umar S, Iqbal M (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron Sustain Dev 27(1):45–57

    Article  CAS  Google Scholar 

  • Anjum SA, Xie Y, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2014) Nitric oxide: an effective weapon of the plant or the pathogen? Mol Plant Pathol 15(4):406–416

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Irigoyen JJ, Sánchez-Díaz M (2003) Drought enhances maize chilling tolrerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117(4):540–549

    Article  CAS  PubMed  Google Scholar 

  • Arora R (2013) Physiological study of the components of winter-hardiness in Rhododendron: cold acclimation, deacclimation kinetics, and reacclimation ability. Acta Hortic 990:67–81

    Article  Google Scholar 

  • Arrese-Igor C, Garcia-Plazaola JI, Hernandez A, Aparicio-Tejo PM (1990) Effect of low nitrate supply to nodulated lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolism. Physiol Plant 80(2):185–190

    Article  CAS  Google Scholar 

  • Arrese-Igor C, Minchin FR, Gordon AJ, Nath AK (1997) Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate. J Exp Bot 48(4):905–913

    Article  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13(11):15193–15208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin OK, Cummins WR (1994) The effect of root temperature on the induction of nitrate reductase activities and nitrogen uptake rates in arctic plant species. Plant Soil 159(2):187–197

    Article  CAS  Google Scholar 

  • Attardi G (1967) The mechanism of protein synthesis. Ann Rev Microbiol 21:383–416

    Article  CAS  Google Scholar 

  • Aydin B, Nalbantoğlu B (2011) Effects of cold and salicylic acid treatments on nitrate reductase activity in spinach leaves. Turk J Biol 35:443–448

    CAS  Google Scholar 

  • Bafeel SO, Ibrahim MM (2008) Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa. Int J Agric Biol 10:593–598

    CAS  Google Scholar 

  • Bagdi DL, Shaw BP (2013) Analysis of proline metabolic enzymes in Oryza sativa under NaCl stress. J Environ Biol 34(4):677–681

    CAS  PubMed  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbasprillum seropedicae and Burkholderia spp. Biol Fertil Soils 30(5):485–491

    Article  Google Scholar 

  • Banilas G, Korkas E, Englezos V, Nisiotou AA, Hatzopoulos P (2012) Genome wide analysis of the heat shock protein 90 gene family in grapevine (Vitis vinifera L.). Aust J Grape Wine Res 18(1):29–38

    Article  CAS  Google Scholar 

  • Bannister P, Neuner G (2001) Frost resistance and the distribution of conifers. In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness, Tree physiology, vol 1. Springer, Dordrecht, pp 3–21

    Chapter  Google Scholar 

  • Barnett T, Altschuler M, McDaniel CN, Mascarenhas JP (1979) Heat shock induced proteins in plant cells. Dev Genet 1(4):331–340

    Article  Google Scholar 

  • Barraco G, Chatelet P, Balsemin E, Decourcelle T, Sylvestre I, Engelmann F (2012) Cryopreservation of Prunus cerasus through vitrification and replacement of cold hardening with preculture on medium enriched with sucrose and/or glycerol. Sci Hort 148:104–108

    Article  CAS  Google Scholar 

  • Bashri G, Singh M, Mishra RK, Kumar J, Singh VP, Mohan S (2018) Kinetin regulates UV-B- induced damage to growth, photosystem II photochemistry, and nitrogen metabolism in tomato seedlings. J Plant Growth Regul 37(1):233–245

    Article  CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000 Res 5:1554

    Article  CAS  Google Scholar 

  • Baum G, Chen Y, Arazi T, Takatsuji H, Fromm H (1993) A plant glutamate decarboxylase containing a calmodulin binding domain: cloning, sequence, and functional analysis. J Biol Chem 268(26):19610–19617

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Klucas RV (1992) Oxidation and reduction of leghemoglobin in root nodules of leguminous plants. Plant Physiol 98(4):1217–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29(4):449–459

    Article  PubMed  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32(3):501–510

    Article  CAS  PubMed  Google Scholar 

  • Beilharz TH, Preiss T (2004) Widespread use of poly (A) tail length control to accentuate expression of the yeast transcriptome. RNA 13(7):982–997

    Article  CAS  Google Scholar 

  • Ben-Haj-Salah H, Tardieu F (1995) Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiol 109(3):861–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182(3):608–620

    Article  CAS  PubMed  Google Scholar 

  • Beuve N, Rispail N, Lainé P, Cliquet J-B, Ourry A, Le Deunff E (2004) Putative role of γ- aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant Cell Environ 27(8):1035–1046

    Article  CAS  Google Scholar 

  • Beverly RB, Jarrell WM (1984) Cowpea response to N form, rate, and timing of application. Agron J 76(4):663–668

    Article  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132(1):21–32

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504

    Article  CAS  Google Scholar 

  • Bhattacharya A (2018) Abiotic stress and heat shock proteins (HSPs) in plants. In: Abiotic stress and plant physiology, Metabolic activities, vol 1. New India Publishing Agency, New Delhi, pp 359–445

    Google Scholar 

  • Bhattacharya A (2019) Effect of high temperature on protein metabolism. In: Effect of high temperature on crop productivity and metabolism of macro molecules. Elsevier, San Diego, pp 217–310

    Chapter  Google Scholar 

  • Bhyan SB, Minami A, Kaneko Y, Suzuki S, Arakawa K, Sakata Y, Takezawa D (2012) Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. J Plant Physiol 169(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • Bian Z, Wang Y, Zhang X, Grundy S, Yang Q, Cheng R (2020) A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Food 9(6):732

    Article  CAS  Google Scholar 

  • Bilska A, Pawe S (2010) Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann Bot 106(5):675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bixby JA, Brown GN (1975) Ribosomal changes during induction of cold hardiness in black locust seedlings. Plant Physiol 56(5):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Randall LB, Meyerhof PA, St. Clair, D.A. (1998) The chilling sensitivity of root ammonium influx in a cultivated and wild tomato. Plant Cell Environ 21(2):191–199

    Article  Google Scholar 

  • Bloom A, Zwieniecki M, Passioura J, Randall L, Holbrook N, St. Clair D (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ 27(8):971–979

    Article  Google Scholar 

  • Bollman MI, Vessey JK (2006) Differential effects of nitrate and ammonium supply on nodule initiation, development, and distribution on roots of pea (Pisum sativum). Can J Bot 84(6):893–903

    Article  CAS  Google Scholar 

  • Boote KJ, Hoogenboom G, Jones JW, Ingram KT (2008) Modeling nitrogen fixation and its relationship to nitrogen uptake in the CROPGRO model. In: Ma L, Ahuja LR, Bruulsem TW (eds) Modeling. CRC Press, Florence, pp 13–46

    Google Scholar 

  • Bordeleau LM, Prevost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125

    Article  CAS  Google Scholar 

  • Borsani O, Diaz P, Monza J (1999) Proline is involved in water stress. J Plant Physiol 155(2):269–273

    Article  CAS  Google Scholar 

  • Botta A (2013) Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Hortic 1009:29–35

    Article  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic semialdehyde dehydrogenase of the c-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci U S A 100(11):6843–6848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouniols A, Cabelguenne M, Jones CA, Chalamet A, Charpenteau JL, Marty JR (1991) Simulation of soybean nitrogen nutrition for a silty clay soil in southern France. Field Crops Res 26:19–34

    Article  Google Scholar 

  • Bown AW, Shelp BJ (1989) The metabolism and physiological roles of γ-aminobutyric acid. Biochemistry (Life Science Advances) 8:21–25

    Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandi A, Pietroni P, Gualerzi CO, Pon CL (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol Microbiol 19(2):231–240

    Article  CAS  PubMed  Google Scholar 

  • Bredow M (2017) Characterization and knockdown of a family of ice-binding proteins from freeze- tolerant grasses. PhD thesis, Queen’s University; Canada.

    Google Scholar 

  • Bredow M, Walker VK (2017) Ice-binding proteins in plants. Front Plant Sci 8:2153

    Article  PubMed  PubMed Central  Google Scholar 

  • Breitkreuz KE, Shelp BJ (1995) Subcellular distribution of the 4-aminobutyrate shunt in developing soybean cotyledon protoplasts. Plant Physiol 108(1):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GN (1972) Changes in ribosomal patterns and a related membrane fraction during induction of cold hardiness in Mimosa epicotyl tissues. Plant Cell Physiol 13(2):345–351

    Article  CAS  Google Scholar 

  • Brown GN, Bixby JA (1975) Soluble and insoluble protein patterns during induction of freezing tolerance in black locust seedlings. Physiol Plant 34(3):187–191

    Article  Google Scholar 

  • Brüggemann W, Linger P (1994) Long term chilling of young tomato plants under low light. IV. Differential responses of chlorophyll fluorescence quenching coefficients in Lycopersicon species of different chilling sensitivity. Plant Cell Physiol 35(4):585–591

    Article  Google Scholar 

  • Bruno T, Grignon N, Grignon C (1988) Charge balance of NO3-fed soybean estimation of K+ and carboxylate regirculation. Plant Physiol 88(3):605–612

    Article  Google Scholar 

  • Bruno T, Muller B, Grignon C (1992) Effect of phloem translocated malate on NO3-uptake by roots of intact soybean plants. Plant Physiol 99(3):1118–1123

    Article  Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Cabelguenne M, Debaeke P, Bouniols A (1999) EPIC phase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat. Agric Syst 60(3):175–196

    Article  Google Scholar 

  • Cabello P, de la Haba P, Govzales-Fontes A, Maldonado JM (1998) Induction of nitrate reductase, nitrite reductase, and glutamine synthetase isoforms in sunflower cotyledons as affected by nitrate, light and plastid integrity. Protoplasma 201(1–2):1–7

    Article  CAS  Google Scholar 

  • Calatayud Á, Gorbe E, Roca D, Martínez PF (2008) Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environ Exp Bot 64(1):65–74

    Article  CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383(1–2):3–41

    Article  CAS  Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  CAS  PubMed  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85(1):45–54

    Article  CAS  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189(2):415–427

    Article  CAS  PubMed  Google Scholar 

  • Cao YY, Yang MT, Li X, Zhou ZQ, Wang XJ, Bai JG (2014) Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic 179:67–77

    Article  CAS  Google Scholar 

  • Carelli MLC, Fahl JI (1991) Distribuição da assimilação de nitrato e de matéria seca em plantas jovens de café cultivadas em diferentes níveis de nitrogênio. Bragantia 50(1):29–37

    Article  CAS  Google Scholar 

  • Carelli ML, Fahl JI (2005) Partitioning of nitrate reductase activity in Coffea arabica L. and its relation to carbon assimilation under different irradiance regimes. Braz J Plant Physiol 18(3):397–406

    Article  Google Scholar 

  • Carelli MLC, Fahl JI (2006) Partitioning of nitrate reductase activity and its relation to carbon assimilation under different irradiance regimes. Braz J Plant Physiol 18(3):397–406

    Article  Google Scholar 

  • Carelli MLC, Magalhães AC (1981) Development of nitrate reductase activity in green tissues of soybean seedlings (Glycine max L. Merr.). Z Pflanzenphysiol 104(1):17–24

    Article  CAS  Google Scholar 

  • Catalá R, López-Cobollo R, Castellano MM, Angosto T, Alonso JM, Ecker JR, Salinasa J (2014) The Arabidopsis 14-3-3 protein rare cold inducible 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26(8):3326–3342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cattivelli L, Bartels D (1989) Cold-induced mRNAs accumulate with different kinetics in barley coleoptiles. Planta 178(2):184–188

    Article  CAS  PubMed  Google Scholar 

  • Cechin I, Rossi SC, Oliveira VC, Fumis TF (2006) Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44(1):143–146

    Article  CAS  Google Scholar 

  • Chadjaa H, Vezina L-P, Dorais M, Gosselin A (2001) Effects of lighting on the growth, quality and primary nitrogen assimilation of greenhouse lettuce (Lactuca sativa L.). Acta Hortic 559:325–331

    Article  Google Scholar 

  • Chamber-Perez MA, Serrano A (1991) C-N balance, nitrate and nitrite reductases in Bradyrhizobium sp. (Lupinus) nodules exposed to nitrate, and the relationships to nitrogenase activities. J Plant Physiol 139(1):70–75

    Article  CAS  Google Scholar 

  • Chamber-Perez MA, Camacho-Martinez M, Soriano-Niebla JJ (1997) Nitrate-reductase activities of Bradyrhizobium sp. in tropical legumes: effects of nitrate on O2 diffusion in nodules and carbon costs of N2 fixation. J Plant Physiol 150(1–2):92–96

    Article  CAS  Google Scholar 

  • Chandra R, Pareak RP (1990) Influence the soil temperature on nodulation, nitrogen fixation and compactiveness of chickpea (Cicer arietinum L) Rhizobium spp. Leg Res 13:95–99

    Google Scholar 

  • Chang CY, Unda F, Zubilewich A, Mansfield SD, Ensminger I (2015) Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobes seedlings. Front Plant Sci 6:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Charollais J, Dreyfus M, Iost I (2004) CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32(9):2751–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55(407):2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73(1):71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Thelen JJ (2016) Acyl-lipid desaturase 1 primes cold acclimation response in Arabidopsis. Physiol Plant 158(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Kessler B, Monselise SP (1964) Studies on water regime and nitrogen metabolism of citrus seedlings grown under water stress. Plant Physiol 39(3):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen THH, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71(2):362–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B-M, Wang Z-H, Li S-X, Wang G-X, Song H-X, Wang X-N (2004) Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci 167(3):635–643

    Article  CAS  Google Scholar 

  • Chen X, Song F, Liu F, Tian C, Liu S, Xu H, Zhu X (2014) Effect of different Arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. Sci World J 2014:956141

    Google Scholar 

  • Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K (2018) Os MADS 57 together with Os TB 1 coordinates transcription of its target Os WRKY 94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol 218(1):219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary A, Singh RP (2000) Cadmium induced change in diamine oxidase activity and polyamine levels in Vigna radiata Wilcrez seedling. J Plant Physiol 156(5–6):704–710

    Article  CAS  Google Scholar 

  • Christopher MD (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15:3–16

    Article  CAS  Google Scholar 

  • Chu TM, Aspinall D, Paleg LG (1974) Stress metabolism. VI. Temperature stress and the accumulation of proline in barley and radish. Aust J Plant Physiol 191):87–97

    Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Res 90(2):323–334

    Article  Google Scholar 

  • Cloutier Y (1983) Changes in the electrophoretic patterns of the soluble proteins of winter wheat and rye following cold acclimation and desiccation stress. Plant Physiol 71(2):400–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier Y (1984) Changes of protein patterns in winter rye following cold acclimation and desiccation stress. Can J Bot 62(2):366–371

    Article  CAS  Google Scholar 

  • Colombo SJ, Zhao S, Blumwald E (1995) Frost hardiness gradients in shoots and roots of Picea mariana seedlings. Scand J For Res 10(1):32–36

    Article  Google Scholar 

  • Cooper P, Ort DR (1988) Changes in protein synthesis induced in tomato by chilling. Plant Physiol 88(2):454–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Aragunde N, Foresi N, Lamattina L (2015) Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J Exp Bot 66(10):2913–2921

    Article  CAS  PubMed  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125(1):61–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskan A, Dogan K (2011) Symbiotic nitrogen fixation in soybean. In: Soybean physiology and biochemistry. INTECH Open Access Publisher, pp 167–182

    Google Scholar 

  • Costa-Broseta A, Perea-Resa C, Castillo MC, Ruiz MF, Salinas J, León J (2018) Nitric oxide controls constitutive freezing tolerance in Arabidopsis by attenuating the levels of osmoprotectants, stress-related hormones and anthocyanins. Sci Rep 8(1):9268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford LA, Bown AW, Breitkreuz KE, Guinel FC (1994) The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104(3):865–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz R, Milach S (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agric 61:1–8

    Article  Google Scholar 

  • Cruz CM, Soares MIM, Martins-Loução MA (1991) Nitrate reduction in seedlings of carob (Ceratonia siliqua L.). New Phytol 119(3):413–419

    Article  CAS  Google Scholar 

  • Cruz CM, Lips SH, Martins-Loução MA (1993) Nitrogen assimilation and transport in carrot plants. Physiol Plant 89(3):524–531

    Article  CAS  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148(2):1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Custic M, Poljak M, Coga L, Cosic T, Toth N, Pecina M (2003) The influence of organic and mineral fertilization on nutrient status, nitrate accumulation, and yield of head chicory. Plant Soil Environ 49(5):218–222

    Article  Google Scholar 

  • Cutforth HW, Shaykewich CF, Cho CM (1986) Effect of soil water and temperature on corn (Zea mays L.) root growth during emergence. Can J Soil Sci 66(1):51–58

    Article  Google Scholar 

  • Czapski TR, Trun N (2014) Expression of csp gene in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene 547(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Da Matta FM, Amaral JAT, Rena AB (1999) Growth periodicity in trees of Coffea arabica L. in relation to nitrogen supply and nitrate reductase activity. Field Crops Res 60(3):223–229

    Article  Google Scholar 

  • Dabessa A, Abebe Z, Bekele S (2018) Limitations and strategies to enhance biological nitrogen fixation in sub-humid tropics of Western Ethiopia. J Agric Biotechnol Sustain Dev 10(7):122–131

    Article  CAS  Google Scholar 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1(3):235–239

    Article  CAS  PubMed  Google Scholar 

  • Dart P, Day J (1971) Effects of incubation temperature and oxygen tension on nitrogenase activity of legume root nodules. Plant Soil 35:167–184

    Article  Google Scholar 

  • Dawson JO (2008) Chapter 8. Ecology of actinorhizal plants. In: Nitrogen fixing actinorhizal symbiosis. Nitrogen fixation: origin, application and research progress. Springer, pp 199–234

    Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11(1):1–12

    Article  PubMed  Google Scholar 

  • Deivanai S, Xavier R, Vinod V, Timalata K, Lim OF (2011) Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J Stress Physiol Biochem 7(4):157–174

    Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65(5):1259–1270

    Article  CAS  PubMed  Google Scholar 

  • den Camp RO, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JSS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R (2010) LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in non-legume Parasponia. Science 331(6019):909–912

    Article  CAS  Google Scholar 

  • Deng B, Du W, Liu C, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66(1):37–47

    Article  CAS  Google Scholar 

  • Derman Y, Söderholm H, Lindström M, Korkeala H (2015) Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502. Food Microbiol 46:463–470

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10(4):348–358

    Article  CAS  PubMed  Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158(3):455–463

    Article  CAS  Google Scholar 

  • Dickens BF, Thompson GA (1981) Rapid membrane response during low temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Biochim Biophys Acta 644(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Lei L, Yao L, Wang L, Hao X, Li N, Wang Y, Yin P, Guo G, Yang Y (2019) The involvements of calcium-dependent protein kinases and catechins in tea plant [Camellia sinensis (L.) O. Kuntze] cold responses. Plant Physiol Biochem 143:190–202

    Article  CAS  PubMed  Google Scholar 

  • Doll H, Haahr V, Segaard B (1989) Relationships between vernalization requirement and winter hardiness in doubled haploids of barley. Euphytica 42(3):209–213

    Article  Google Scholar 

  • Dong C-H, Hu X, Tang W, Zheng X, Kim YS, Lee B, Zhu J-K (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26(24):9533–9543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dortch Q (1990) The interaction between nitrate and ammonium in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Dowgert MF, Steponkus PL (1984) Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle. Plant Physiol 75(4):1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drevon JJ, Derensard C, Iretki H, Payre H, Roy G, Serraj R (1995) La salinité abaisse la conductans des nodosités á la diffusion de l’oxygéne. In: Drevon JJ, editor. Facteurs Limitant la Fixation Symbiotique de l’Azote dans le Bassin Méditerranen. INRA, Les Colleques nr 77, Paris, pp 73–84

    Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic 196:3–14

    Article  CAS  Google Scholar 

  • Dubey RS, Pessarakli M (2002) Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Handbook of plant and crop physiology, 2nd edn. Marcel Dekkar Inc, New York, pp 637–656

    Google Scholar 

  • Duhamel M, Vandenkoornhuyse P (2013) Sustainable agriculture: possible trajectories from mutualistic symbiosis and plant neodomestication. Trends Plant Sci 18(11):597–600

    Article  CAS  PubMed  Google Scholar 

  • Duke SH, Schrader LE, Miller MG (1978) Low temperature effects on soybean (Glycine max [L.] Merr. cv. Wells) free amino acid pools during germination. Plant Physiol 62(4):642–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan DR, Widholm JM (1987) Proline accumulation and its implication in cold tolerance of regenerable maize callus. Plant Physiol 83(3):703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20(14):4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Duval BD, Mathew A, Satola SW, Shafer WM (2010) Altered growth, pigmentation, and antimicrobial susceptibility properties of Staphylococcus aureus due to loss of the major cold shock gene cspB. Antimicrob Agents Chemother 54(6):2283–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi P, Raghvendra AS (2004) Modulation of osmotic stress effects on photosynthesis and respiration by temperature in mesophyll protoplast of pea. Indian J Exp Biol 42(12):1208–1211

    PubMed  Google Scholar 

  • Eaglesham ARJ (1989) Nitrate inhibition of root-nodule symbiosis in doubly rooted soybean plants. Crop Sci 29(1):115–119

    Article  Google Scholar 

  • Elia A, Conversa G, Gonnella M (2000) Dosi di azoto, produzione e accumulo di nitrati di lattuga allevata in idrocoltura, Atti V Giornate Scientifiche SOI. Sirmione 1:229–230

    Google Scholar 

  • Elizondo R, Oyanedel E (2010) Field testing of tomato chilling tolerance under varying light and temperature conditions. Chilean J Agric Res 70(4):552–558

    Article  Google Scholar 

  • Epand RM, Shai Y, Segrest JP, Anantharamaiah GM (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37(5):319–328

    Article  CAS  PubMed  Google Scholar 

  • Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73(4):797–810

    Article  CAS  PubMed  Google Scholar 

  • Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913

    Article  CAS  PubMed  Google Scholar 

  • Espevig T, DaCosta M, Hoffman L, Aamlid TS, Ronsmo AM, Clarke B, Huang B (2011) Freezing tolerance and carbohydrate changes of two species during cold acclimation. Crop Sci 51(3):1188–1197

    Article  Google Scholar 

  • Espevig T, Höglind M, Aamlid TS (2014) Dehardening resistance of six turfgrasses used on golf greens. Environ Exp Bot 106:182–188

    Article  Google Scholar 

  • Etchegaray JP, Inouya M (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181(6):1827–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahl JI, Carelli MLC, Magalhães AC (1992) Asimilación de carbono y nitrógeno en hojas de café. Turrialba 42:523–527

    CAS  Google Scholar 

  • Falkowski PG (1975a) Nitrate uptake in marine pehytoplankton: (nitrate, chloride)-activated adenosine triphosphatase from Skeletonema costatum (Bacillariophyceae). J Phycol 11(3):323–326

    CAS  Google Scholar 

  • Falkowski PG (1975b) Nitrate uptake in manne phytoplank-comparison of half saturation constants from seven species. Lirnnol Oceanogr 20(3):412–417

    CAS  Google Scholar 

  • Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol Microbiol 23(2):355–364

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194(5):325–333

    Article  CAS  Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009a) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60(6):501–516

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009b) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  • Farrell TC, Fox KM, William RL, Fukai S, Lewin LG (2006) Minimizing cold damage during reproductive development among temperate rice genotypes. II. Genotypic variation and flowering traits related to cold tolerance screening. Aust J Agric Res 57(1):89–100

    Article  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bucking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109(7):2666–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNutty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in north American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8(3):706–733

    Article  Google Scholar 

  • Flaig H, Mohr H (1992) Assimilation of nitrate and ammonium by the Scots pine (Pinus sylvestris) seedling under conditions of high nitrogen supply. Physiol Plant 84(4):568–576

    Article  CAS  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze protein of teleost fishes. Annu Rev Physiol 63:359–390

    Article  CAS  PubMed  Google Scholar 

  • Flynn KJ (1999) Nitrate transport and ammonium-nitrate interaction at high nitrate concentration and low temperature. Mar Ecol Prog Ser 187:283–287

    Article  CAS  Google Scholar 

  • Flynn KJ, Fasham MJR, Hipkin CR (1997) Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton. Philos Trans R Soc Lond B Biol Sci 352(1361):1625–1645

    Article  CAS  PubMed Central  Google Scholar 

  • Flynn KJ, Page S, Wood G, Hipkin CR (1999) Variations in the maximum transport rates for ammonium and nitrate in the prymnesiophyte Emiliania huxleyi and the raphidophyte Heterosigma carterae. J Plankton Res 21(2):355–371

    Article  Google Scholar 

  • Foolad M, Lin G (2000) Relationship between cold tolerance during seed germination and vegetative growth in tomato: Germplasm evaluation. J Am Soc Hortic Sci 125(6):679–683

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Valadier MH, Migge A, Becker TW (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the co-ordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol 117(1):283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frame J, Newbould P (1986) Agronomy of white clover. Adv Agron 40:1–88

    Article  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1–2):35–59

    Article  CAS  Google Scholar 

  • Fujita M, Kawada N, Tahir M (1992) Relationship between cold resistance, heading traits and ear primordia development of wheat cultivars. Euphytica 64(1–2):123–130

    Article  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global concensus of nitrogenase diversity. Environ Microbiol 13(7):1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Gal TZ, Glaer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577(1–2):21–26

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Townseed AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Stulen I, van Keulen H, Kuiper PJC (2004) Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g−1 root dry weight) and specific N2 fixation (N2 fixed g−1 root dry weight) in soybean. Plant Soil 258:281–292

    Article  CAS  Google Scholar 

  • Gantar M, Elhai J (1999) Colonization of wheat para nodules by the nitrogen fixing cyanobacterium Nostoc spp. strain 2S9B. New Phytol 141(3):373–379

    Article  Google Scholar 

  • Gao Y, Smith GJ, Alberte RS (2000) Temperature dependence of nitrate reductase activity in marine phytoplankton: biochemical analysis and ecological implications. J Physiol 36(2):304–313

    CAS  Google Scholar 

  • Garcia-Plazaola JI, Beccerril JM, Arrese-Igor C, Hernandez A, Gonzales-Murua C, Aparicio-Tejo PM (1993) Denitrifying ability of thirteen Rhizobium meliloti strains. Plant Soil 149(1):43–50

    Article  CAS  Google Scholar 

  • Gaudet D, Loroche A, Frick M, Huel R, Puchelski B (2003) Cold induced expression of plant defense in and lipid transfer protein transcript in winter wheat. Physiol Plant 117(2):195–205

    Article  CAS  Google Scholar 

  • Ghezzi P, Bonetto V (2003) Redox proteomics: identification of oxidatively modified proteins. Proteomics 3(7):1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Giannakis C, Nicholas DJD, Wallace W (1988) Utilization of nitrate by bacteroids of Bradyrhizobium japonicum in the soybean root nodule. Planta 174(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Gibson A (1971) Factors in the physical and biological environment affecting nodulation and nitrogen fixation by legumes. Plant Soil 35:139–152

    Article  Google Scholar 

  • Gilmour SJ, Thomashow MF (1991) Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol 17(6):1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87(3):745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124(4):1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh KM, Bruce GE (2005) Comparison of biomass production and biological nitrogen fixation of multi-species pastures (mixed herb leys) with perennial ryegrass-white clover pasture with and without irrigation in Canterbury, New Zealand. Agric Ecosyst Environ 110(3–4):230–240

    Article  Google Scholar 

  • Gojon A, Bussi C, Grignon C, Salsac L (1991) Distribution of NO3- reduction between roots and shoots of peach-tree seedlings as affected by NO3- uptake rate. Physiol Plant 82(4):505–512

    Article  CAS  Google Scholar 

  • Gojon A, Plassard C, Bussi C (1994) Root/shoot distribution of NO3- assimilation in herbaceous and woody species. In: Garnier RJE (ed) A whole plant perspective on carbon-nitrogen interactions. SPB Academic Publishing, The Hague, pp 131–147

    Google Scholar 

  • Goldenberg D, Azar I, Oppenheim AB (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 19(2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87:283–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu J-K (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci U S A 99(17):11507–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Dong C-H, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17(1):256–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS (2009) Molecule of the month: antifreeze proteins. The Scripps Research Institute and the RCSB PDB, Educational portal for learning macro-biomolecules

    Google Scholar 

  • Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuvderduvn SD, Jones SJ, Marra MA (2003) A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 13(4):358–363

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435(7043):819–823

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevents protein aggregation due to water stress. Biochem J 388(1):151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace J (1987) Climatic tolerance and the distribution of plants. New Phytol 106(Suppl):113–130

    Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperature: proteins, metabolism, and acclimation. Annu Rev Plant Physiol 33:347–372

    Article  CAS  Google Scholar 

  • Graumann PL, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166(5):293–300

    Article  CAS  PubMed  Google Scholar 

  • Greaves JA (1996) Improving suboptimal temperature tolerance in maize-the search for variation. J Exp Bot 47:307–323

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9(8):399–405

    Article  CAS  PubMed  Google Scholar 

  • Groß F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzebelus D, Baranski R (2001) Identification of accessions showing low nitrate accumulation in a germplasm collection of garden beet. Acta Hortic 563:253–255

    Article  Google Scholar 

  • Guerra DD, Callis J (2012) Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol 160(1):56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulden R, Vessey JK (1997) The stimulating effect of ammonium on nodulation in Pisum sativum L. is not long lived once ammonium supply is discontinued. Plant Soil 195:195–205

    Article  CAS  Google Scholar 

  • Guo L, Chen Q, Fang F, Hu Z, Wu J, Miao A, Xiao L, Chen X, Yang L (2013) Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water. Bioresour Technol 142:45–51

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of an antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Prot Res 11(5):2684–2696

    Article  CAS  Google Scholar 

  • Gupta R, Deswal R (2014) Antifreeze proteins enable plants to survive in freezing conditions. J Biosci 39(5):931–944

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16(3):160–168

    Article  CAS  PubMed  Google Scholar 

  • Gusta LV, O’Connor BJ, Lafond GL (1999) Phosphorus and nitrogen effect on the freezing tolerance of norstar winter wheat. Can J Plant Sci 79(2):191–195

    Article  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  • Guy CL, Carter JV (1984) Characterization of partially purified glutathione reductase’ from cold hardened and non-hardened spinach leaf tissue. Cryobiology 21(4):454–464

    Article  CAS  Google Scholar 

  • Guy CL, Haskell D (1987) Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol 84:872–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CL, Haskell D (1988) Detection of polypeptides associated with the cold acclimation process in spinach. Electrophoresis 9(11):787–796

    Article  CAS  PubMed  Google Scholar 

  • Guy CL, Haskell D (1989) Preliminary characterization of high molecular mass proteins associated with cold acclimation in spinach. Plant Physiol Biochem 27:777–784

    CAS  Google Scholar 

  • Guy C, Li QB (1998) The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10(4):539–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci U S A 81:3673–3677

    Article  Google Scholar 

  • Guy C, Haskell D, Li QB (1998) Association of proteins with the stress 70 molecular chaperones at low temperature: evidence for the existence of cold labile proteins in spinach. Cryobiology 36(4):301–314

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Hirsch AM, Moulin L, Chen W-M, Elliott GN, Bontemps C, de Los Santos PE, Gross E, Dos Reis FB, Sprent JL, Young JPW, James EK (2011) Legume- nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24(11):1276–1288

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Ellis RP, Forster BP, McNlcol JW, Macaulay M (1992) Statistical analysis of a linkage experiment in barley involving quantitative trait loci for height and ear-emergence time and two genetic markers on chromosome 4. Theor Appl Genet 85(1):120–126

    Article  CAS  PubMed  Google Scholar 

  • Hahn M, Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91(3):930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TC, McLeester RC, McCown BH, Beck GE (1970) Enzyme changes during deaccilmation of willow stem. Cryobiology 7(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Halliday J (1975) An interpretation of seasonal and short term fluctuations in nitrogen fixation. PhD thesis, University of Western Australia, Perth

    Google Scholar 

  • Halliday J, Pate JS (1976) Symbiotic nitrogen fixation by coralloid roots of the Cycad Macrozamia riedlei: physiological characteristics and ecological significance. Aust J Plant Physiol 3(3):349–358

    CAS  Google Scholar 

  • Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T (2004) A post genomic characterization of Arabidopsis ferredoxins. Plant Physiol 134(1):255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanower P, Brzozowska J (1975) Effects of osmotic stress on composition of free amino acids in cotton leaves. Phytochemistry 14:1691–1694

    Article  CAS  Google Scholar 

  • Hao J, Yang J, Dong J, Fei SZ (2017) Characterization of BdCBF genes and genome-wide transcriptome profiling of BdCBF3-dependent and -independent cold stress responses in Brachypodium distachyon. Plant Sci 262:52–61

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Wang B, Wang L, Zeng J, Yang Y, Wang X (2018) Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves. Sci Hortic 240:354–368

    Article  CAS  Google Scholar 

  • Harber RM, Fuchigami LH (1989) Ethylene-induced stress resistance. In: Li PH (ed) Low temperature stress physiology in crops. CRC Press, Boca Raton, pp 81–89

    Google Scholar 

  • Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E, Thöni L, Abrol JR, Carballeira A, Coskun M, De Temmerman L, Froloval M, González-Miqueo L, Jeran Z, Leblond S, Liiv S, Maňkovská B, Pesch R, Poikolainen J, Rühling A, Santamaria JM, Simonéié P, Schröder W, Suchara I, Yurukova L, Zechmeister HG (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159(10):2852–2860

    Article  CAS  PubMed  Google Scholar 

  • Hassanein RA, Hassanein AA, Haider AS, Hashem HA (2009) Improving salt tolerance of Zea mays L. plants by presoaking their grains in glycine betaine. Aust J Basic Appl Sci 3(2):928–942

    CAS  Google Scholar 

  • Hassanein RA, El-Khawas SA, Ibrahim SK, El-Bassiouny HM, Mostafa HA, Abdel-Monem AA (2013) Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pak J Bot 45(1):111–118

    CAS  Google Scholar 

  • Havelka UD, Boyle MG, Hardy RWF (1982) Biological nitrogen fixation. In: Stevenson FJ (ed) Nitrogen in agricultural soils. ASA, Madison, pp 365–422

    Google Scholar 

  • He T, Ye Q, Sun Q, Cai X, Ni J, Li Z, Xie D (2018) Removal of nitrate in simulated water at low temperature by a novel psychrotrophic and aerobic bacterium, Pseudomonas taiwanensis strain J. Int Biomed Res 2018:4984087

    Article  Google Scholar 

  • Hébraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1(2):211–219

    PubMed  Google Scholar 

  • Heckmann MO, Drevon JJ (1987) Nitrate metabolism in soybean root nodules. Physiol Plant 69(4):721–725

    Article  CAS  Google Scholar 

  • Heidarvand L, Millar AH, Taylor NL (2017) Responses of the mitochondrial respiratory system to low temperature in plants. Crit Rev Plant Sci 36(4):1–24

    Article  Google Scholar 

  • Herridge DF, Pate JS (1977) Utilization of net photosynthate for nitrogen fixation and protein production in an annual legume. Plant Physiol 60(5):759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287(7):4411–4418

    Article  CAS  PubMed  Google Scholar 

  • Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt- stressed tomato plants. Plant Sci 165(4):693–699

    Article  CAS  Google Scholar 

  • Hildebrandt TM, Nunes Nesi A, Araujo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5(7):304–308

    Article  CAS  PubMed  Google Scholar 

  • Hoffman L, DaCosta M, Ebdon JS, Watkins W (2010) Physiological changes during cold acclimation of perennial ryegrass accessions differing in freeze tolerance. Crop Sci 50(3):1037–1047

    Article  CAS  Google Scholar 

  • Hoffman BM, Lukovanov D, Dean DR, Seefeldt LC (2013) Nitrogenase: a draft mechanism. Acc Chem Res 46(2):587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman L, DaCosta M, Bertrand A, Castonguay Y, Ebdon JS (2014) Comparative assessment of metabolic responses to cold acclimation and deacclimation in annual bluegrass and creeping bentgrass. Environ Exp Bot 106:197–206

    Article  Google Scholar 

  • Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krüger D (2014) network analysis reveals ecological links between N-fixation bacteria and wood decaying fungi. PLOS One 9(2):e88141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164(5):553–561

    Article  CAS  PubMed  Google Scholar 

  • Howarth CJ, Ougham HJ (1993) Gene expression under temperature stress. New Phytol 125(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Hsu YT, Kao CH (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant 46:73–78

    Article  CAS  Google Scholar 

  • Hu WH, Zhou YD, Du YS, Xia XJ, Yu JQ (2006) Differential response of photosynthesis in greenhouse and field ecotypes of tomato to long-term chilling under low light. J Plant Physiol 163(12):1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Hu ZR, Fan JB, Xie Y, Amombo E, Liu A, Gitau MM, Khaldun ABM, Chen L, Fu JM (2016) Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol Biochem 100:94–104

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50(10):1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Hughes MA, Dunn MA (1990) The effect of temperature on plant growth and development. Biotechnol Genet Eng Rev 8(1):161–188

    Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47(296):291–305

    Article  CAS  Google Scholar 

  • Hughes MA, Pearce RS (1988) Low temperature treatment of barley plants causes altered gene expression in shoot meristems. J Exp Bot 39(10):1461–1467

    Article  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding sense in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hungria M, Franco AA (1993) Effects of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L. Plant Soil 49(1):95–102

    Article  Google Scholar 

  • Hungria M, Vargas MA (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65(2):151–164

    Article  Google Scholar 

  • Hunter WJ (1983) Soybean root and nodule nitrate reductase. Physiol Plant 59(3):471–475

    Article  CAS  Google Scholar 

  • Hur J, Jung KH, Lee CH, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167(3):417–426

    Article  CAS  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Ianetta PPM, de Lorenzo C, James EK, Fernandez-Pascual M, Sprent JI, Lucas MM, Witty JF, de Felipe MR, Minchin FR (1993) Oxygen diffusion in lupin nodules. I. Visualisation of diffusion barrier operation. J Exp Bot 44(9):1461–1467

    Article  Google Scholar 

  • Imsande J (1986) Inhibition of nodule development in soybean by nitrate or reduced nitrogen. J Exp Bot 37:348–355

    Article  Google Scholar 

  • Iqbal N, Farooq S, Arshad R, Hameed A (2010) Differential accumulation of high and low molecular weight heat shock proteins in Basmati rice (Oryza sativa L.) cultivars. Genet Resour Crop Evol 57(1):65–70

    Article  CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166(15):1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Ismade J (1991) Regulation of the nodule efficiency by the undisturbed soybean plant. J Exp Bot 42:687–691

    Article  Google Scholar 

  • Izmailov SF (2004) Saturation and utilization of nitrate pools in pea and sugar beet leaves. Russ J Plant Physiol 51(2):189–193

    Article  CAS  Google Scholar 

  • Jackson LE, Schimel JP, Firestone MK (1989) Short term partitioning of ammonium and nitrate between plants and microbes in annual grassland. Soil Biol Biochem 21(3):409–415

    Article  Google Scholar 

  • James EK, Sprent JI, Minchin FR, Brewin NJ (1991) Intracellular location of glycoprotein in soybean nodules: effect of altered rhizosphere oxygen concentration. Plant Cell Environ 14(5):467–476

    Article  CAS  Google Scholar 

  • Jan N, Mahbiib-ul-Hussain, Andrabi KI (2009) Cold resistance in plants: a mystery unresolved. Mol Biol Genet 12(3)

    Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208(2):175–180

    Article  CAS  Google Scholar 

  • Janská A, Marsik P, Zelenkova S, Ovesna J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12(3):395–405

    Article  PubMed  CAS  Google Scholar 

  • Jensen ES (1987) Seasonal patterns of growth and nitrogen fixation in field-grown pea. Plant Soil 101:29–37

    Article  Google Scholar 

  • Jha UC, Bohra A, Jha R (2017) Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. Plant Cell Rep 36(1):1–35

    Article  CAS  PubMed  Google Scholar 

  • Jin B, Jeong KW, Kim Y (2014) Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun 451(3):402–407

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Flanagan AM, Singh J (1987) Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures. Plant Physiol 85(3):699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PG, Inouya M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21(6):1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Inouye M (1994) The cold-shock response—a hot topic. Mol Microbiol 11(5):811–818

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Krah R, Tafuri SR, Wolffe AP (1992) DNA Gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol 174(18):5798–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones T, Tucker D, Ort D (1998) Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol 118(1):149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongdee B, Fukai S, Cooper M (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76(2–3):153–163

    Article  Google Scholar 

  • Joshi R (2018) Biosynthesis of protein in plants under different environmental factors. J Med Plant Stud 6(2):261–264

    Article  Google Scholar 

  • Jouyban Z, Hasanzade R, Sharafi S (2013) Chilling stress in plants. Int J Agric Crop Sci 5:2961–2968

    Google Scholar 

  • Junttila O, Kaurin Å (1990) Environmental control of cold acclimation in Salix pentandra. Scand J For Res 5(1–4):195–204

    Article  Google Scholar 

  • Jwa NS, Hwang BK (2017) Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front Plant Sci 8:1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52(363):1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100(11):6872–6877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimzadeh G, Francis D, Davies MS (2000) Low temperature-induced accumulation of protein is sustained both in root meristems and in callus in winter wheat but not in spring wheat. Ann Bot 85(6):769–777

    Article  CAS  Google Scholar 

  • Karlson D, Imai R (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol 131(1):12–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277(38):35248–35256

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low- temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Asthir B (2017) Molecular responses to drought stress in plants. Biol Plant 61(2):201–209

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37(2):300–311

    Article  CAS  PubMed  Google Scholar 

  • Kenis JD, Silvent ST, Luna CM, Campbell WH (1992) Induction of nitrate reductase in detached corn leaves: the effect of the age of the leaves. Physiol Plant 85(1):49–56

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141:98–118

    Article  Google Scholar 

  • Keough JT (2016) Physiological and metabolic factors associated with cold and freezing tolerance and induced recovery in cool season and warm season grass species. MSc thesis in plant biology, New Brunswick

    Google Scholar 

  • Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindstrom M, Korkeala H (2016) Cold shock proteins: a minireview with special emphasis on csp-family of enteropathogenic Yersinia. Front Microbiol 7(3991):1151

    PubMed  PubMed Central  Google Scholar 

  • Key JL, Lin CY, Chen YM (1981) Heat shock proteins of higher plants. Proc Natl Acad Sci U S A 78(6):3526–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keys A, Bird I, Cornelius M, Lea P, Wallsgrove R, Miflin B (1978) Photorespiratory nitrogen cycle. Nature 275:741–743

    Article  Google Scholar 

  • Khan H, Shah SH, Uddin N, Azhar N, Asim M, Syed S, Ullah F, Tawab F, Inayat J (2015) Biochemical and physiological changes of different plants species in response to heat and cold stress. ARPN J Agric Biol Sci 10(6):213–216

    CAS  Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172(4):773–787

    Article  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo C-M, Lee SI, Chun HJ, Yun D-J, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25(3):247–259

    Article  CAS  PubMed  Google Scholar 

  • Kim S, An CS, Hong YN, Lee KW (2004) Cold-inducible transcription factor, CaCBF, is associated with a homeodomain leucine zipper protein in hot pepper (Capsicum annuum L.). Mol Cell 18(3):300–308

    CAS  Google Scholar 

  • Kim Y-O, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA- binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42(6):890–900

    Article  CAS  PubMed  Google Scholar 

  • King BJ, Layzell DB, Canvin DT (1986) The role of dark carbon dioxide fixation in root nodules of soybean. Plant Physiol 81:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkby EA, Knight AH (1977) Influence of the levels of nitrate nitrogen on ion uptake and assimilation, organic acid accumulation and cation-anion balance in whole tomato plants. Plant Physiol 60(3):349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishinevsky BD, Sen D, Weaver RW (1992) Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant Soil 143:275–282

    Article  Google Scholar 

  • Kiyomiya S, Nakanishi H, Uchida H, Tsuji A, Nishiyama S, Futatsubashi M, Tsukada H, Ishioka NS, Watanabe S, Ito T, Mizuniwa C, Osa A, Matsuhashi S, Hashimoto S, Sekine T, Mori S (2001) Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiol 124(4):1743–1753

    Article  Google Scholar 

  • Klimenko S, Peshkova A, Dorofeev NV (2006) Nitrate reductase activity during heat shock in winter wheat. J Stress Physiol Biochem 2(1):50–55

    Google Scholar 

  • Klucas RV (1974) Studies on soybean nodule senescence. Plant Physiol 54:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8(3):489–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105(2):601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaksazov M, Laporte F, Ananieva K, Dobrev P, Herzog M, Ananiev ED (2013) Effect of chilling and freezing stresses on jasmonate content in Arabis alpina. Bulg J Agric Sci 19(2):15–17

    Google Scholar 

  • Koranda M, Kerschbaum S, Wanek W, Zechmeister H, Richter A (2007) Physiological responses of bryophytes Thuidium tamariscinum and Hylocomium splendens to increased nitrogen deposition. Ann Bot 99(1):161–169

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk K, Zielony T, Gajewski M (2008) Effect of aminoplant and Asahi on yield and quality of lettuce grown on rockwool. In: Dąbrow ZT, editor. Biostimulators in modern agriculture vegetable crops. Wieś Jutra, Warsaw, pp 35–43

    Google Scholar 

  • Krasnuk M, Jung GA, Witham FH (1975) Electrophoretic studies of the relationship of peroxidases, polyphenol oxidase, and indoleacetic acid oxidase to cold tolerance of alfalfa. Cryobiology 12(1):62–80

    Article  CAS  PubMed  Google Scholar 

  • Krasnuk M, Jung GA, Witham FH (1976a) Electrophoretic studies of several dehydrogenases in relation to cold tolerance of alfalfa. Cryobiology 13(2):375–393

    Article  CAS  PubMed  Google Scholar 

  • Krasnuk M, Witham FH, Jung GA (1976b) Electrophoretic studies of several hydrolytic enzymes in relation to cold tolerance of alfalfa. Cryobiology 13(2):225–242

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper J (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C (2010) Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environ Exp Bot 78:99–108

    Article  Google Scholar 

  • Krishna P (2003) Plant responses to heat stress. Topics Curr Genet 4:73–101

    Article  Google Scholar 

  • Krivokapich SJ, Molina V, Bergagna HFJ, Guarnera EA (2006) Epidemiological survey of Trichinella infection in domestic, synanthropic and sylvatic animals from Argentina. J Helminthol 80(3):267–269

    CAS  PubMed  Google Scholar 

  • Kumar R, Chaurasiya PC, Singh RN, Singh S (2018) A review report: low temperature stress for crop production. Int J Pure Appl Biosci 6(2):575–598

    Article  CAS  Google Scholar 

  • Kuo T, Boersma L (1971) Soil water suction and root temperature effects on nitrogen fixation in soybeans. Agron J 63(3):901–904

    Article  Google Scholar 

  • Kurkela S, Franck M, Heino P, Lang V, Palva ET (1988) Cold induced gene expression in Arabidopsis thaliana L. Plant Cell Rep 7:495–498

    Article  CAS  PubMed  Google Scholar 

  • Kusano M, Fukushima A, Redestig H, Saito K (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62(4):1439–1453

    Article  CAS  PubMed  Google Scholar 

  • Kushad MM, Yelenosky G (1987) Evaluation of polyamine and proline levels during low temperature acclimation of citrus. Plant Physiol 84(3):692–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2011) The microbial nitrogen-cycling network. Nat Rev Microbiol 1(1):1–14

    Google Scholar 

  • Kuznetsov VV, Kimpel JA, Goekjian G, Key JL (1987) Elements of non specificity in responses on the plant genome to chilling and heat stress. Sov Plant Physiol 34:685–693

    Google Scholar 

  • Ladha JK, Tirol-Padre A, Punzulan GC, Watanabe I (1987) Nitrogen fixing (C2H2- reducing) activity and plant growth characters of 16 wetland rice varieties. Soil Sci Plant Nutr 33(1–2):187–200

    Article  Google Scholar 

  • Laine P, Bigot J, Ourry A, Boucaud J (1994) Effects of low temperature on nitrate uptake, and xylem and phloem flows of nitrogen, in Secale cereale L. and Brassica napus L. New Phytol 127(4):675–683

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular- genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Wong P, Chan HK, Yam K-M, Chen L, Chow C-M, Coruzzi GM (2003) Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol 132(2):926–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb JFS, Barnes DK, Russelle MP, Vance CP, Heichel GH, Henjum KI (1995) Ineffectively and effectively nodulated alfalfas demonstrate biology nitrogen fixation continues with high nitrogen fertilization. Crop Sci 35:153–157

    Article  Google Scholar 

  • Lang V, Mantyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104(4):1341–1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Laroche A, Hopkins WG (1987) Polysomes from winter rye seedlings grown at low temperature I. Size class distribution, composition, and stability. Plant Physiol 85(3):648–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103(4):561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrie AC, Wheeler CT (1973) The supply of photosynthetic assimilates to nodules of Pisum Sativum L. in relation to the fixation of nitrogen. New Phytol 72:1341–1348

    Article  CAS  Google Scholar 

  • Layzell DB, Hunt S (1990) Oxygen and the regulation of nitrogen fixation in legume nodules. Physiol Plant 80(2):322–327

    Article  CAS  Google Scholar 

  • Layzell DB, Rainbird RM, Atkins CA, Pate JS (1979) Economy of photosynthate use in nitrogen-fixing legume nodules: observations on two contrasting symbioses. Plant Physiol 64:888–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layzell DB, Pate JS, Atkins CA, Canvin DT (1981) Partitioning of carbon and nitrogen and the nutrition of root and shoot apex in a nodulated legume. Plant Physiol 67:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea PJ, Forde BG (1994) The use of mutants and transgenic plants to study amino acid metabolism. Plant Cell Environ 17(5):541–556

    Article  CAS  Google Scholar 

  • Lea PJ, Miffins BJ (2003) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41(6–7):555–564

    Article  CAS  Google Scholar 

  • Lea P, Miflin B (1974) Alternative route for nitrogen assimilation in higher plants. Nature 251(5476):614–616

    Article  CAS  PubMed  Google Scholar 

  • Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grass Pastures. Plant Soil 141:137–153

    Article  CAS  Google Scholar 

  • Lee HJ, Titus JS (1992) Nitrogen accumulation and nitrate reductase activity in MM.106 apple trees as affected by nitrate supply. J Hortic Sci 67(2):273–281

    Article  CAS  Google Scholar 

  • Lee J, Jeong KW, Jin B, Ryu KS, Kim EH, Ahn JH, Kim Y (2013) Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium. Biochemistry 52(14):2492–2504

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Ribbe MW, Hu Y (2014) Cleaving the N,N triple bond: The transformation of dinitrogen to ammonia by nitrogenases. In: Metal driven biogeochemistry of gaseous compounds in the environment. Metal ion in life science, vol. 14, pp 147–174

    Google Scholar 

  • Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147(1):316–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Less H, Angelovici R, Tzin V, Galili G (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23(4):1264–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic, New York, p 697

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. In: Chilling, freezing and high temperature stresses, vol 1, 2nd edn. Academic, New York, p 497

    Google Scholar 

  • Leyva-Díaz JC, González-Martínez A, González-López L, Muñío MM, Poyatos JM (2015) Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor for wastewater treatment. Chem Eng J 259:692–702

    Article  CAS  Google Scholar 

  • Li PH (1984) Sub zero temperature stress physiology of herbaceous plants. Hortic Rev 6:373–416

    CAS  Google Scholar 

  • Li YL, Fan XR, Shen QR (2007) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31(1):73–85

    PubMed  Google Scholar 

  • Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand S (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 109(51):20859–20864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XN, Pu HC, Liu F, Zhou Q, Cai J, Dai T, Cao W, Jiang D (2015) Winter wheat photosynthesis and grain yield responses to spring freeze. Agron J 107(3):1002–1010

    Article  Google Scholar 

  • Li Z, Zhang R, Zhang H (2018) Effects of plant growth regulators (DA-6 and 6-BA) and EDDS chelator on phytoextraction and detoxification of cadmium by Amaranthus hybridus Linn. Int J Phytoremediation 20(11):1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Lie TA (1971) Symbiotic nitrogen fixation under stress conditions. Plant Soil 35:117–127

    Article  Google Scholar 

  • Lindemann WC, Ham GE (1979) Soybean plant growth, nodulation, and nitrogen fixation as affected by root temperature. Soil Sci Soc Am J 43:1134–1137

    Article  CAS  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt-stress induced gene expression in a salt- hypersensitive mutant of Arabidopsis. Plant Physiol 114(2):591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2 with an EREBP /AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24(1):117–126

    Article  CAS  Google Scholar 

  • Liu XY, Li B, Yang JH, Sui N, Yang XM, Meng QW (2008) Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photo inhibition of photosystems 2 and 1 under chilling stress. Photosynthetica 46(2):185–192

    Article  CAS  Google Scholar 

  • Liu Y, Chakrabortee S, Li R, Zheng Y, Tunnacliffe A (2011) Both plant and animal LEA proteins acts as kinetic stabilizers of polyglutamine-dependent protein aggregation. FEBS Lett 585(4):630–634

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013a) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmaier A, Zhang F (2013b) Enhanced nitrogen deposition over China. Nature 494(7438):459–462

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    Article  PubMed  PubMed Central  Google Scholar 

  • Livingston DP, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol 116(1):403–408

    Article  CAS  PubMed Central  Google Scholar 

  • Llorente F, Oliveros JC, Martínez-Zapater JM, Salinas J (2000) A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211(5):648–655

    Article  CAS  PubMed  Google Scholar 

  • Loepfe C, Raimann E, Stephan R, Tasara T (2010) Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes. Foodborne Pathog Dis 7(7):775–783

    Article  CAS  PubMed  Google Scholar 

  • Londo JP, Kovaleski AP, Lillis JA (2018) Divergence in the transcriptional landscape between low temperature and freeze shock in cultivated grapevine (Vitis vinifera). Hortic Res 5(1):10–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longo V, Kamran RV, Michaletti A, Toorchi M, Zolla L, Rinalducci S (2017) Proteomic and physiological response of spring barley leaves to cold stress. Int J Plant Biol Res 5(1):1–10

    Google Scholar 

  • Luciñski R, Polcyn W, Ratajczak L (2002) Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium—legumes. Acta Biochim Polonica 49(2):537–546

    Article  Google Scholar 

  • Lukatkin AS, Brazaityte A, Bobinas C, Duchovskis P (2012) Chilling injury in chilling-sensitive plants: a review. Agriculture 99(2):111–124

    Google Scholar 

  • Luo J, Li H, Liu T, Polle A, Peng C, Luo Z (2013) Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J Exp Bot 64(14):4207–4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch DV, Thompson GA (1984) Microsomal phospholipid molecular species alterations during low temperature acclimation in Dunaliella. Plant Physiol 74(2):193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral nutrients. Curr Opin Plant Biol 12(3):250–258

    Article  CAS  PubMed  Google Scholar 

  • Macduff JH, Jarvis SC, Davidson IA (1996) Inhibition of N2 fixation by white clover (Trifolium repens L.) at low concentrations of NO3 in flowing solution culture. Plant Soil 180:287–295

    Article  CAS  Google Scholar 

  • MacGregor KB, Shelp BJ, Peiris S, Bown AW (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. J Chem Ecol 29(9):2177–2182

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahon JD (1977a) Respiration and the energy requirement for nitrogen fixation in nodulated pea roots. Plant Physiol 60:817–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon JD (1977b) Root and nodule respiration in relation to acetylene reduction in intact nodulated peas. Plant Physiol 60:812–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimiroli N, Terzi V, Odoardi Stanca M, Lorenzoni C (1986) Protein synthesis during cold shock in barley tissues: comparison of two genotypes with winter and spring growth habit. Theor Appl Genet 73(2):190–196

    Article  Google Scholar 

  • Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in chickpea (Cicer arietinum L.). Plant Breed 136(3):300–318

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier MH, Feraud M, Jouglet T, Sizuki A (2006) Glutamine-synthetase- glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink- source nitrogen cycle in tobacco. Plant Physiol 140(2):444–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorognat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Masterson CL, Murphy PM (1976) Application of the acetylene reduction technique to the study of nitrogen fixation by white clover in the field. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London, pp 299–316

    Google Scholar 

  • Mata CI, Hertog ML, Van Raemdonck G, Baggerman G, Tran D, Nicolai BM (2019) Omics analysis of the ethylene signal transduction in tomato as a function of storage temperature. Postharvest Biol Technol 155:1–10

    Article  CAS  Google Scholar 

  • Matějů V, Čižinská S, Krejčí J, Janoch T (1992) Biological water denitrification—a review. Enzyme Microb Technol 14(3):170–183

    Article  Google Scholar 

  • Matysiak K, Miziniak W, Kaczmarek S, Kierzek R (2018) Herbicides with natural and synthetic biostimulants in spring wheat. Cienc Rural 48(11):1–10

    Article  CAS  Google Scholar 

  • Matysiak K, Kierzek R, Siatkowski I, Kowalska J, Krawczyk R, Miniziak W (2020) Effect of exogenous application of amino acids l-arginine and glycine on maize under temperature stress. Agronomy 10(6):769

    Article  CAS  Google Scholar 

  • Maynard DN, Barker AV, Minotti PL, Peck NH (1976) Nitrate accumulation in vegetables. Adv Agron 28:71–118

    Article  CAS  Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Genet Physiol 47(2):347–369

    Article  CAS  Google Scholar 

  • Mazur P (1969) Freezing injury in plants. Annu Rev Plant Physiol 20:419–448

    Article  Google Scholar 

  • Mazzafera P, Gonçalves KV (1999) Nitrogen compounds in the xylem sap of coffee. Phytochemistry 50(3):383–386

    Article  CAS  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57(14):3755–3766

    Article  CAS  PubMed  Google Scholar 

  • McCown BH, McLeester RC, Beck GE, Hall TC (1969) Environment-induced changes in peroxidase zymograms in the stems of deciduous and evergreen plants. Cryobiology 5(6):410–412

    Article  CAS  PubMed  Google Scholar 

  • McKersie BD, Bowley SR (1997) Active oxygen and freezing tolerance in transgenic plants. Plant Cod Hardness 68:203–214

    Article  Google Scholar 

  • Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119(2):463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina J, Catalá R, Salinas J (2011) The CBFs: Three Arabidopsis transcription factors to cold acclimate. Plant Sci 180(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284(16):10714–10719

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer C, Stitt M (2001) Nitrate reductase and signalling. In: Lea PJ, Morot-Gaudry J-F (eds) Plant nitrogen. Springer, New York, pp 37–59

    Chapter  Google Scholar 

  • Meyer C, Lea US, Provan F, Kaiser WM, Lillo C (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth Res 83(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Meza-Basso L, Alberdi M, Raynal M, Ferrero-Cadinanos ML, Delseny M (1986) Changes in protein synthesis in rapeseed (Brassica napus) seedlings during a low temperature treatment. Plant Physiol 82(3):733–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaux C, Martini C, Shioya K, Ahmed Lecheheb S, Budin-Verneuil A, Cosette P, Sanguinetti M, Hartke A, Verneuil N, Christphe Giardb J (2012) CspR, a cold shock RNA-binding protein involved in the long-term survival and the virulence of Enterococcus faecalis. J Bacteriol 194(24):6900–6908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean-nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29(5–6):881–888

    Article  CAS  Google Scholar 

  • Minchin FR, Pate JS (1973) The carbon balance of a legume and the functional economy of its root nodules. J Exp Bot 24:259–271

    Article  CAS  Google Scholar 

  • Minchin FR, Summerfield RJ, Hadley P, Roberts EH, Rawsthorne S (1981) Carbon and nitrogen nutrition of nodulated roots of grain legumes. Plant Cell Environ 4:5–26

    Article  CAS  Google Scholar 

  • Minchin FR, Minquez MI, Sheehy JE, Witty JF, Skot L (1986a) Relationships between nitrate and oxygen supply in symbiotic nitrogen fixation by white clover. J Exp Bot 37(8):1103–1113

    Article  CAS  Google Scholar 

  • Minchin FR, Sheehy JE, Witty JF (1986b) Further errors in acetylene reduction assay: effects of plant disturbance. J Exp Bot 37(10):1581–1591

    Article  CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyashita Y, Good AG (2008) NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot 59(3):667–680

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra SS, Poole RJ, Dhindsa RS (1987a) Cold acclimation, freezing resistance and protein synthesis in alfalfa (Medicago sativa L. cv. Saranac). J Exp Bot 38(10):1697–1703

    Article  CAS  Google Scholar 

  • Mohapatra SS, Poole RJ, Dhindsa RS (1987b) Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant Physiol 84(4):1172–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapatra S, Wolfraim L, Poole RJ, Dhindsa RS (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol 89(1):375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Monforte A, Tanksley S (2000) Development of a set of nearly isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43(5):803–813

    Article  CAS  PubMed  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7(3):321–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moradtalab N, Weinmann M, Walker F, Höglinger B, Ludewig U, Neumann G (2018) Silicon improves chilling tolerance during early growth of maize by effects on micronutrient homeostasis and hormonal balances. Front Plant Sci 9:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci 7(12):869–874

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJN, Hebelstrup KM, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Kharal MA (2016) Role of phytohormones in stress tolerance of plants. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes. Springer International Publishing, Cham, pp 385–421

    Chapter  Google Scholar 

  • Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of the anderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67(7):702–709

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Tanaka R, Tanaka A (2007) The major route for chlorophyll synthesis includes [3,8- divinyl]-chlorophyllide a reduction in Arabidopsis thaliana. Plant Cell Physiol 48(12):1803–1808

    Article  CAS  PubMed  Google Scholar 

  • Nahed G, Abdel Aziz AA, Mazher M, Farahat MM (2010) Response of vegetative growth and chemical constituents of Thuja orientalis L. plant to foliar application of different amino acids at Nubaria. J Am Sci 6(3):295–301

    Google Scholar 

  • Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A 103(26):10122–10127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypo-osmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118(4):1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Tran LS, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Nandwal AS, Godara M, Sheokhand S, Kamboj DV, Kundu BS, Kushad MS, Kumar B, Sharma SK (2000) Salinity induced change in plant water status, nodule functioning and ionic distribution in phenotypically differing ecotype of Vigna radiata L. J Plant Physiol 156(3):350–359

    Article  CAS  Google Scholar 

  • Nasibi F, Heidari T, Asrar Z, Mansoori H (2013) Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in Hyoscyamus niger. J Soil Sci Plant Nutr 13(3):680–689

    Google Scholar 

  • Nayyar H (2003) Calcium as environmental sensor in plants. Curr Sci 84(7):893–902

    CAS  Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53(1):39–48

    Article  CAS  Google Scholar 

  • Nejad TS, Bakhshande A, Nasab SB, Payande K (2010) Effect of drought stress on corn root growth. Rep Opin 2(2):47–52

    Google Scholar 

  • Nejadalimoradi H, Nasibi F, Kalantari KM, Zanganeh R (2014) Effect of seed priming with L- arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. Agric Commun 2(1):23–30

    Google Scholar 

  • Nelson DR, Bellville RJ, Porter CA (1984) Role of nitrogen assimilation in seed development of soybean. Plant Physiol 74:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngwene B, Gabriel E, George E (2013) Influence of different mineral nitrogen sources (NO3– -N vs. NH4+ -N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices—cowpea symbiosis. Mycorrhiza 23:107–117

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3(6):973–996

    Article  CAS  PubMed  Google Scholar 

  • O’Hara GW, Daniel RM (1985) Rhizobial denitrification: a review. Soil Biol Biochem 17(1):1–9

    Article  Google Scholar 

  • Obata T, Matthes A, Koszior S, Lehmann M, Araújo WL, Bock R, Sweetlove LJ, Fernie AR (2011) Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry 72(10):1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Olien CR, Smith MN (1977) Ice adhesions in relation to freeze stress. Plant Physiol 60(4):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48(9):1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Ougham HJ (1987) Gene expression during leaf development in Lolium temulentum: patterns of protein synthesis in response to heat-shock and cold shock. Physiol Plant 70(3):479–484

    Article  CAS  Google Scholar 

  • Ougham HJ, Howarth CJ (1988) Temperature shock proteins in plants. In: Long SM, Woodward FI, editors. Plants and temperature, Sympo. Soc. Exp. Biol. Company of Biologists, Cambridge, pp 259–280

    Google Scholar 

  • Overland J, Francis JA, Hall R, Hanna E, Kim S-J, Vihma T (2015) The melting Arctic and midlatitude weather patterns: are they connected? J Climate 28(20):7917–7932

    Article  Google Scholar 

  • Pal R, Fatima Z, Hameed S (2014) Efflux pumps in drug resistance of Mycobacterium tuberculosis: a panoramic view. Int J Curr Microbiol Appl Sci 3(8):528–546

    CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Beds Z (1994) Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L.). Theor Appl Genet 89(7–8):900–910

    Article  CAS  PubMed  Google Scholar 

  • Panchali K (2011) Symbiotic nitrogen fixation and seed development of genetically modified soybean in relation to Bradyrhizobium inoculation and nitrogen use under acidic and saline dykeland and soil conditions. MSc thesis, Dalhousie University, Halifax

    Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Carrer M, Castagneri D, Petit G (2018) Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect Plant Ecol Evol Syst 33:34–41

    Article  Google Scholar 

  • Pardos M, Royo A, Gil L, Pardos JA (2003) Effect of nursery location and outplanting date on field performance of Pinus halepensis and Quercus ilex seedlings. Forestry 76(1):67–81

    Article  Google Scholar 

  • Park EJ, Jeknic Z, Chem THH (2006) Exogenous application of glycine betaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47(6):706–714

    Article  PubMed  CAS  Google Scholar 

  • Parsons R, Day DA (1990) Mechanisms of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ 13(6):501–512

    Article  Google Scholar 

  • Pate JS (1961) Temperature characteristics of bacterial variation in legume symbiosis. Nature 192:637–639

    Article  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic, San Diego, p 275

    Google Scholar 

  • Paulissen MPCP, van der Ven PJM, Dees AJ, Bobbink R (2004) Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytol 164(3):451–458

    Article  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trend Plant Sci 14(2):87–91

    Article  CAS  Google Scholar 

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76

    Article  CAS  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87(4):417–424

    Article  CAS  Google Scholar 

  • Pearce RS, Ashworth EN (1992) Cell shape and localization of ice in leaves or overwintering wheat during frost stress in the field. Planta 188(3):324–331

    Article  CAS  PubMed  Google Scholar 

  • Pearce ISK, van der Wal R (2002) Effect of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath. Biol Conserv 104(1):83–89

    Article  Google Scholar 

  • Pearce ISK, Woodin SJ, van der Wal R (2003) Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition. New Phytol 160(1):145–155

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguch-Shinozaki K, Hoisington D (2004) Stress induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47(3):493–500

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Tienda J, Valderas A, Camañes G, García-Agustín P, Ferrol N (2012) Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 22(6):485–491

    Article  PubMed  CAS  Google Scholar 

  • Perras M, Sarhan F (1989) Synthesis of freezing tolerance proteins in leaves, crown, and roots during cold acclimation of wheat. Plant Physiol 89(2):577–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136

    CAS  PubMed  Google Scholar 

  • Phillips AD (1980) Efficiency of symbiotic nitrogen fixation in legumes. Annu Rev Plant Biol 31:29–49

    Article  CAS  Google Scholar 

  • Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9):e24657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietilainen P, Poikolainen J, Lahdesmaki P (1991) Long-term monitoring of nitrate reductase- activity in the needles of Pinus sylvestris in the context of environmental-temperature and ground frost as an indicator of nitrogen-balance in N Finland. Anna Bot Fennici 28(2):131–134

    CAS  Google Scholar 

  • Piha MI, Munns DN (1987) Sensitivity of the common bean (Phaseolus vulgaris) symbiosis to high soil temperature. Plant Soil 98:183–194

    Article  Google Scholar 

  • Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Patanothai A, Holbrook CC (2008) Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance. J Agron Crop Sci 194:15–25

    Article  Google Scholar 

  • Pinedo ML, Hernandez GF, Conde RD, Tognetti JA (2000) Effect of low temperature on the protein metabolism of wheat leaves. Biol Plant 43(3):363–367

    Article  CAS  Google Scholar 

  • Planchet E, Rannou O, Ricoult C, Boutet-Mercey S, Maia-Grondard A, Limami AM (2011) Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)- dependent and independent pathways in Medicago truncatula during post germination. J Exp Bot 62(2):605–615

    Article  CAS  PubMed  Google Scholar 

  • Polcyn W, Luciñski R (2001) Functional similarities of nitrate reductase from yellow lupine bacteroids to bacterial denitrification system. J Plant Physiol 158(7):829–834

    Article  CAS  Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111(4):1271–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomeroy MK, Siminovitch D, Wrightman F (1970) Seasonal biochemical changes in the living bark and needles of red pine (Pinus resinosa) in relation to adaptation to freezing. Can J Bot 48(5):953–967

    Article  CAS  Google Scholar 

  • Porcel R, Bustamante A, Ros R, Serrano R, Mulet JM (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 41(12):1–14

    Article  CAS  Google Scholar 

  • Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Price JL, Gourlie BB, Lin Y, Huang RCC (1986) Induction of winter flounder anti freeze protein messenger RNA at 4°C in vivo and in vitro. Physiol Zool 59(6):679–695

    Article  CAS  Google Scholar 

  • Puértolas J, Gil L, Pardos JA (2005) Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78(5):501–511

    Article  Google Scholar 

  • Puhakainen T (2004) Short-day potentiation of low temperature-induced gene expression of a c- repeat-binding factor-controlled gene during cold acclimation in Silver Birch. Plant Physiol 136(4):4299–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell LC, Sinclair TR (1990) Nitrogenase activity and nodule gas permeability response to rhizospheric NH3 in soybean. Plant Physiol 92:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purnell M, Botella J (2007) Tobacco isozyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo. Plant Physiol 143:530–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puyaubert J, Baudouin E (2014) New clues for a cold case: nitric oxide response to low temperature. Plant Cell Environ 37(12):2623–2630

    Article  CAS  PubMed  Google Scholar 

  • Qados AMSA (2010) Effect of arginine on growth, nutrient composition, yield and nutritional value of mung bean plants grown under salinity stress. Nat Sci 8(7):30–42

    Google Scholar 

  • Qi F, Li J, Duan L, Li Z (2005) Inductions of coronatine and MeJA to low-temperature resistance of wheat seedlings. Acta Bot Boreal Occident Sin 26(9):1776–1780

    Google Scholar 

  • Qi R, Gu W, Zhang J, Hao L, Zhang M, Duan L, Li Z (2013) Exogenous diethyl aminoethyl hexanoate enhanced growth of corn and soybean seedlings through altered photosynthesis and phytohormone. Aust J Crop Sci 7(13):2021–2028

    Google Scholar 

  • Queiroz CGS, Alves JD, Rena AB, Cordeiro AT (1991) Efeito do cloranfenicol, propanol, pH e temperatura sobre a atividade da redutase do nitrato em cafeeiros jovens. Rev Bras Bot 14(1):73–77

    Google Scholar 

  • Queiroz CGS, Rena AB, Cordeiro AT, Alves JD (1993) Distribuição da atividade da redutase do nitrato no cafeeiro: a importância da raiz. Rev Bras Bot 16(1):31–35

    CAS  Google Scholar 

  • Rafiee H, Mehrafarin A, Qaderi A, Kalate JS, Naghdi BH (2013) Phytochemical, agrochemical and morphological responses of pot marigold (Calendula officinalis L.) to foliar application of bio-stimulators (bioactive amino acid compounds). J Med Plants 12(47):48–61

    CAS  Google Scholar 

  • Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45(4):481–487

    Article  CAS  Google Scholar 

  • Rai VK, Sharma UD (1989) Modulation of osmotic closure of stomata, stomatal resistance and K+ fluxes by exogenous amino acids in Vicia faba leaves. Biochem Physiol Pllanzen 185(5–6):369–376

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22(1):GB1003

    Article  CAS  Google Scholar 

  • Rao VR (1977) Effect of root temperature on the infection processes and nodulation in Lotus and Stylosanthes. J Exp Bot 28:241–259

    Article  Google Scholar 

  • Rapacz M, Markowski A (1999) Winter hardiness, frost resistance and vernalization requirement of European winter oilseed rape (Brassica napus var. oleifera) cultivars within the last 20 years. J Agron Crop Sci 183(4):243–253

    Article  Google Scholar 

  • Raven J (1980) Nutrient transport in microalgae. Adv Microb Physiol 21:47–226

    Article  CAS  PubMed  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Reins B, Heldt W (1992) Decrease of nitrate reductase activity in spinach leaves during a light- dark transition. Plant Physiol 98(2):573–577

    Article  Google Scholar 

  • Rekarte-Cowie I, Ebshish OS, Mohamed KS, Pearce RS (2008) Sucrose helps regulate cold acclimation of Arabidopsis thaliana. J Exp Bot 59(15):4205–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richner W, Soldati A, Stamp P (1996) Shoot-to-root relations in field grown maize seelings. Agron J 88(1):56–61

    Article  Google Scholar 

  • Rigano VD, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29(7):1400–1409

    Article  PubMed  CAS  Google Scholar 

  • Riov J, Brown GN (1976) Comparative studies of activity and properties of ferredoxin-NADP+ reductase during cold hardening of wheat. Can J Bot 54(16):1896–1902

    Article  CAS  Google Scholar 

  • Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9(5):560

    Article  CAS  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res Int 23(18):17859–17879

    Article  CAS  PubMed  Google Scholar 

  • Rizza F, Crosatti C, Stanca AM, Cattivelli L (1994) Studies for assessing the influence of hardening on cold tolerance of barley genotypes. Euphytica 75(1):131–138

    Article  Google Scholar 

  • Roberts DWA (1974) The invertase complement of cold-hardy and cold sensitive wheat leaves. Can J Bot 53(13):1333–1337

    Article  Google Scholar 

  • Roberts DWA (1990) Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 33:247–259

    Article  Google Scholar 

  • Robertson AJ, Gusta LV, Reaney MJT, Ishikawa M (1987) Protein synthesis in bromegrass (Bromus inermis Leyss) cultured cells during the induction of frost tolerance by abscisic acid or low temperature. Plant Physiol 84(4):1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochat C, Boutin J-P (1991) Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants (Pisum sativum L.). J Exp Bot 42(23):207–214

    Article  CAS  Google Scholar 

  • Rochat E, Therrien HP (1975) Etude des protéines des blés résistant, Kharkov, et sensible, Selkirk, au cours de l’endurcissement au froid. 1. Protéines solubles. Can J Bot 53:2411–2416

    Article  CAS  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53(366):103–110

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez VM, Malvar RA, Butron A, Ordas A, Revilla P (2007) Maize populations as sources of favorable alleles to improve cold-tolerant hybrids. Crop Sci 47(5):1779–1786

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  CAS  PubMed  Google Scholar 

  • Roughley RJ, Dart PJ (1969) Reduction of acetylene by nodules of Trifolium subterraneum as affected by root temperature, Rhizobium strain and host cultivar. Arch Microbiol 69:171–179

    CAS  Google Scholar 

  • Rubio S, Pérez FJ (2019) ABA and its signaling pathway are involved in the cold acclimation and deacclimation of grapevine buds. Sci Hortic 256:108565

    Article  CAS  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Ryle GJA, Powell CE, Gordon AJ (1979) The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover I. Nitrogen fixation and the respiration of the nodulated root. J Exp Bot 30:135–144

    Article  CAS  Google Scholar 

  • Sadak MS, Abdelhamid MT (2015) Influence of amino acids mixture application on some biochemical aspects, antioxidant enzymes and endogenous polyamines of Vicia faba plant grown under seawater salinity stress. Gesunde Pflanze 67:119–129

    Article  CAS  Google Scholar 

  • Sadak MSH, Abdelhamid MT, Schmidhalter U (2015) Effect of foliar application of amino acids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biol Colomb 20(1):141–152

    Google Scholar 

  • Saha B, Saha S, Das A, Bhattacharyya PK, Basak N, Sinha AK, Poddar P (2017) Biological nitrogen fixation for sustainable agriculture. In: Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 81–128

    Chapter  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium- permeable channels in the plasma membrane. Plant Cell 21(9):2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92(3):317–322

    CAS  Google Scholar 

  • Saikia SP, Srivastava GC, Jain V (2004) Nodule-like structures induced on the roots of maize seedlings by the addition of synthetic auxin 2,4-D and its effects on growth and yield. Cereal Res Commun 32(1):83–89

    Article  CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Springer, Berlin, p 321

    Book  Google Scholar 

  • Sakai A, Sugawara Y (1973) Survival of popular callus at super-low temperatures after cold acclimation. Plant Cell Physiol 14:1201–1204

    Google Scholar 

  • Sakai A, Yoshida S (1968) The role of sugar and related compounds in variations of freezing resistance. Cryobiology 5:160–174

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: currents status and implication for enhancement of stress tolerance. J Exp Bot 51(342):81–88

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycine betaine synthesizing enzyme to create stress resistant transgenic plants. Plant Physiol 125(1):180–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genom 12(1):30–43

    Article  CAS  Google Scholar 

  • Santamaria P, Elia A, Serio F, Todaro E (1999) A survey of nitrate and oxalate content in retail fresh vegetables. J Sci Food Agric 79(13):1882–1888

    Article  CAS  Google Scholar 

  • Santamaria P, Elia A, Gonnella M, Parente A, Serio F (2001) Ways of reducing rocket salad nitrate content. Acta Hortic 548:529–537

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarhan F, Chevrier N (1985) Regulation of RNA synthesis by DNA-dependent RNA polymerases and RNases during cold acclimation in winter and spring wheat. Plant Physiol 78(2):250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarhan F, D’Aoust MJ (1975) RNA synthesis in spring and winter wheat during cold acclimation. Physiol Plant 35(1):62–65

    Article  CAS  Google Scholar 

  • Sarhan F, Danyluk J (1998) Engineering cold-tolerant crops-throwing the master switch. Trends Plant Sci 3(8):289–290

    Article  Google Scholar 

  • Sarhan F, Perras M (1987) Accumulation of a high molecular weight protein during cold hardening of wheat (Triticure aestivum L.). Plant Cell Physiol 28:1173–1179

    CAS  Google Scholar 

  • Satoh R, Nakashima K, Seki M, Shinozaki K, Shinozaki KY (2002) ACTCAT, a novel cis- acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol 130(2):709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NPA, Simmonds J (2011) Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Plant Cell Physiol 52(6):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Savouré A, Hua XJ, Bertauche N, van Montagu M, Verbruggen N (1997) Abscisic acid- independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254(1):104–109

    Article  PubMed  Google Scholar 

  • Schaffer MA, Fischer RL (1988) Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol 87(2):431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schärer K, Stephan R, Tasara T (2013) Cold shock proteins contribute to the regulation of listeriolysin O production in Listeria monocytogenes. Foodborne Pathog Dis 10:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Scheurwater I, Koren M, Lambers H, Atkin OK (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J Exp Bot 53(374):1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Schjoerring JK, Husted S, Mäck G, Mattsson M (2002) The regulation of ammonium translocation in plants. J Exp Bot 53(370):883–890

    Article  CAS  PubMed  Google Scholar 

  • Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T (2009) Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 75(6):1621–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schomberg HH, Weaver RW (1992) Nodulation, nitrogen fixation, and early growth of arrow leaf clover in response to root temperature and starter nitrogen. Agron J 84:1046–1050

    Article  CAS  Google Scholar 

  • Schröder W, Pesch R, Schönrock S, Harmens H, Mills G, Fagerli H (2014) Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecol Indic 36:563–571

    Article  CAS  Google Scholar 

  • Schulze J, Adgo E, Merbach W (1999) Carbon costs associated with N2 fixation in Vicia faba L. and Pisum sativum 1. over a 14-day period. Plant Biol 1:625–631

    Article  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim LK, Choi YD (2011) OsbHLH148 a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65(6):907–921

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (1998) N2 fixation response to drought in common bean (Phaseolus vulgaris L.). Ann Bot 82:229–234

    Article  Google Scholar 

  • Serrano A, Chamber M (1990) Nitrate reduction in Bradyrhizobium sp (Lupinus) strains and its effects on their symbiosis with Lupinus luteus. J Plant Physiol 136(2):240–246

    Article  CAS  Google Scholar 

  • Sevilla M, Kennedy C (2000) Colonization of rice and other cereals by Acetobacter diazotrophicus, an endophyte of sugarcane. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Manila, pp 151–165

    Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activity of antioxidant enzyme in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Sharpley AN, Williams JR (1990) EPIC-erosion/productivity impact calculator 1. Model documentation. USDA Tech. Bull. No. 1768, pp 1–235

    Google Scholar 

  • Sheehy JE (1987) Photosynthesis and nitrogen fixation in legume plants. Crit Rev Plant Sci 5:121–159

    Article  CAS  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and function of gamma-aminobutyric acid. Trends Plant Sci 4(11):446–452

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Jenesen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115(2):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR (1995) Plant storage proteins. Biol Rev 70(3):375–426

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24(6):2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ye T, Zhong B, Liu X, Chan Z (2014) Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium. J Integr Plant Biol 56(11):1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Oh S, Arora R, Kim D (2016) Proline accumulation in response to high temperature in winter-acclimated shoots of Prunus persica: a response associated with growth resumption or heat stress? Can J Plant Sci 96(4):630–638

    Article  CAS  Google Scholar 

  • Shin H, Oh S, Kim D, Hong JK, Yun JG, Lee SW, Son KH (2018) Induced freezing tolerance and free amino acids perturbation of spinach by exogenous proline. J Plant Biotechnol 45(4):357–363

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7(2):161–167

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  PubMed  Google Scholar 

  • Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112(3):351–359

    Article  CAS  PubMed  Google Scholar 

  • Shu S, Tang Y, Yuan Y, Sun J, Zhong M, Guo S (2016) The role of 24- epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Biochem 107:344–353

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248(3):447–455

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gómez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41(6):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Siminovitch D, Briggs DR (1949) The chemistry of the living bark of the black locust tree in relation to frost hardiness. I. Seasonal variations in protein content. Arch Biochem 23(1):8–17

    CAS  PubMed  Google Scholar 

  • Siminovitch D, Briggs DR (1953) Studies on the chemistry of the living bark of the black locust tree in relation to frost hardiness. IV. Effects of ringing on translocation, protein synthesis, and the development of hardiness. Plant Physiol 28(2):177–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siminovitch D, Cloutier Y (1982) Twenty-four-hour induction of freezing and drought tolerance in plumules of winter rye seedlings by desiccation stress at room temperature in the dark. Plant Physiol 69:250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siminovitch D, Rheaume B, Pomeroy K, Lepage M (1968) Phospholipid, protein, and nucleic acid increases in protoplasm and membrane structures associated with development of extreme freezing resistance in black locust tree cells. Cryobiology 5(3):202–225

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Muchow RC, Ludlow MM, Leach GJ, Lawn RJ, Foale MA (1987) Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram. Field Crops Res 17:121–140

    Article  Google Scholar 

  • Singh BK (1998) In: Plant amino acid synthesis. Biochemistry and Biotechnology, Marcell and Dekker (Books in Soil, Plant and Environment), New York

    Google Scholar 

  • Singh TN, Aspinall D, Paleg LG (1972) Proline accumulation and varietal adaptability to drought in barley; a potential metabolic measure of drought resistance. Nature 286(67):188–190

    Google Scholar 

  • Sirtautas R, Samuoliene G, Brazaityte A, Duchovskis P (2011) Temperature and photoperiod effects on photosynthetics indices of radish (Raphanus sativa L.). Zemdirbyste 98(1):57–62

    Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Anfelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18(10):2767–2781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small JGC, Joffe A (1968) Physiological studies on the genus Trifolium with special reference to the South African species. II. Influence of root temperature on growth, nodulation and symbiotic nitrogen fixation. S Afr J Agric Sci 11:41–56

    Google Scholar 

  • Smil V (2000) In: Cycles of life. Scientific American Library, USA.

    Google Scholar 

  • Smith BN, Jones AR, Hanson LD, Criddle RS (1999) Growth, respiration rate, and efficiency response to temperature. In: Handbook of plant and crop stress, 2nd edn. Marcel Dekker, New York, pp 417–440

    Google Scholar 

  • Snedden WA, Koutsia N, Baum G, Fromm H (1996) Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J Biol Chem 271(8):4148–4153

    Article  CAS  PubMed  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41:225–253

    Article  CAS  Google Scholar 

  • Somersalo S, Kyei-Boahen S, Pehu E (1996) Exogenous glycine betaine application as a possibility to increase low temperature tolerance of crop plants. Nordisk Jordbruksforsk 78:10

    Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1990) Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J Exp Bot 41(224):289–294

    Article  CAS  Google Scholar 

  • Sonoike K (1998) Various aspects of inhibition of photosynthesis under light/chilling stress. Photoinhibition at chilling temperatures versus chilling damage in the light. J Plant Res 111(1101):121–129

    Article  Google Scholar 

  • Sorgona A, Lupini A, Mercati F, Di Dio L, Sunseri F, Abenavoli MR (2011) Nitrate uptake along the maize primary root: an integrated physiological and molecular approach. Plant Cell Environ 34(7):1127–1140

    Article  CAS  PubMed  Google Scholar 

  • Sotiropoulos TE, Dimassi KN, Therios IN (2005) Effects of L-arginine and L-cysteine on growth, and chlorophyll and mineral contents of shoots of the apple rootstock EM 26 cultured in vitro. Biol Plant 49(3):443–445

    Article  CAS  Google Scholar 

  • Sprent JL (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  CAS  PubMed  Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61(5):1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Starck Z, Niemyska B, Bogdan J, Tawalbeh RNA (2000) Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation. Plant Soil 226:99–106

    Article  CAS  Google Scholar 

  • Steffen KL, Arora R, Palta JP (1989) Relative sensitivity of photosynthesis and respiration to freeze-thaw stress in herbaceous species. Plant Physiol 89(4):1372–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Dowgert MF, Evans RY, Gordon-Kamm W (1982) Cryobiology of isolated protoplasts. Academic, New York, pp 459–474

    Google Scholar 

  • Steponkus PL, Dowgert MF, Gordon-Kamm WJ (1983) Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 20(4):448–465

    Article  CAS  PubMed  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press Ltd, London, pp 211–312

    Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303(5665):1876–1879

    Article  CAS  PubMed  Google Scholar 

  • Stewart GR, Popp M, Holzapfel I, Stewart JA, Dickie-Eskew ANN (1986) Localization of nitrate reduction in ferns and its relationship to environment and physiological characteristics. New Phytol 104(3):373–384

    Article  CAS  Google Scholar 

  • Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Carbon and nitrogen relationships and signaling: steps towards an integrated view of nitrogen metabolism. J Exp Bot 53(370):959–970

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat /DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94(3):1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoddart JL, Thomas H, Lloyd EJ, Pollock CJ (1986) The use of temperature-profiled transducer for the study of low-temperature growth in Gramineae. Planta 167(3):359–363

    Article  CAS  PubMed  Google Scholar 

  • Strauss G, Hauser H (1986) Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci U S A 83(8):2422–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streeter J, Wong PP (1988) Inhibition of legume nodul formation and N2 fixation by nitrate. Plant Sci 7(1):1–23

    CAS  Google Scholar 

  • Suh JP, Jeung JU, Lee JI, Choi YH, Yea JD, Virk PS, Mackill DJ, Jena KK (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor Appl Genet 120(5):985–995

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhu Z, Zhang L, Fang L, Zhang J, Wang Q, Li S, Liang Z, Xin H (2019) Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis. Sci Hortic 243:320–326

    Article  CAS  Google Scholar 

  • Susan A, Raven JA (1987) Intercellular pH regulation in Ricinus communis grown with ammonia or nitrate as N source: the role of long distance transport. J Exp Bot 38(4):580–596

    Article  Google Scholar 

  • Sutka J, Snape JW (1989) Location of a gene for frost resistance on chromosome 5A of wheat. Euphvtica 42:41–44

    Article  Google Scholar 

  • Suzuki A, Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth Res 83(2):191–217

    Article  CAS  PubMed  Google Scholar 

  • Svenning MM, Junttila O, Macduff JH (1996) Differential rates of inhibition of N2 fixation by sustained low concentrations of NH+4 and NO−3 in northern ecotypes of white clover (Trifolium repens L.). J Exp Bot 47:729–738

    Article  CAS  Google Scholar 

  • Svensson J, Ismail A, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JB (eds) Cell and molecular responses to stress. Elsevier, Amsterdam, pp 155–171

    Google Scholar 

  • Swindell WR, Huebner M, Weber AP (2007) Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sylvie FM, Murchie E, Hirel B, Galteir N, Quick WP, Fayer CH (1997) Manipulation of pathways of sucrose biosynthesis and nitrogen assimilation in transformed plants to improve photosynthesis and productivity. In: A molecular approach to primary metabolism in higher plants. Taylar and Francis Ltd., Abingdon, pp 125–153

    Google Scholar 

  • Taibi K, Del Campo AD, Vilagrosa A, Bellés JM, López-Gresa MP, López-Nicolás JM, Mulet JM (2018) Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biol 18:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Yasuda S (1970) Genetics of earliness and growth habit in barley. In: Milan RA, editor. Barley genetics, vol. II, Proc. 2nd Intl. Barley Genet. Sympo., Washington State University Press, pp 388–408

    Google Scholar 

  • Takahashi D, Kawamura Y, Uemura M (2016) Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. J Exp Bot 67(17):5203–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan W, Meng QW, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168(17):2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Yang Q, Shang H, Sun T (2010) Removal of nitrate by autosulfurotrophic denitrifying bacteria: optimization, kinetics and thermodynamics study. Fresenius Environ Bull 19(12 B):3193–3198

    CAS  Google Scholar 

  • Tasgin E, Atici O, Nalbantoglu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41(3):231–236

    Article  CAS  Google Scholar 

  • Taşgın E, Atici O, Nalbantoğlu B, Popova LP (2006) Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry 67(7):710–715

    Article  PubMed  CAS  Google Scholar 

  • Tcherkez G, Hodges M (2007) How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves. J Exp Bot 59(7):1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Teana L, Brandi A, Falconi M, Spurio R, Pon CL, Gualerzi CO (1991) Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H- NS. Proc Natl Acad Sci U S A 88(23):10907–10911

    Article  PubMed  PubMed Central  Google Scholar 

  • Teijo MH, Griffith M (1999) Snow-mold induced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiol 121(2):665–674

    Article  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) An overview: cold stress effects on reproductive development in grain crops. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Theocharis A, Clement C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235(6):1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Thomas DD (2015) Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol 5:225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas FM, Hilker C (2000) Nitrate reduction in leaves and roots of young pedunculate oaks (Quercus robur) growing on different nitrate concentrations. Environ Exp Bot 43(1):19–32

    Article  CAS  Google Scholar 

  • Thomas H, Stoddart JL (1984) Kinetics of leaf growth in Lolium temulentum at optimal and chilling temperatures. Ann Bot 53(3):341–347

    Article  Google Scholar 

  • Thomashow MF (1990) Molecular genetics of cold acclimation in higher plants. Adv Genet 28:99–131

    Article  CAS  Google Scholar 

  • Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, New York, pp 807–834

    Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanism. Annu Rev Plant Physiol Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23(10):1005–1024

    Article  CAS  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomalty HE, Walker VK (2014) Perturbation of bacterial ice nucleation activity by a grass antifreeze protein. Biochem Biophys Res Commun 452(3):636–641

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of Barley (Hordeum vulgare L.). Funct Integr Genomics 8(4):387–405

    Article  CAS  PubMed  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50(4):251–260

    Article  CAS  PubMed  Google Scholar 

  • Travis RL, Key JL (1971) Correlation between polyribosome level and the ability to induce nitrate reductase in dark grown corn seedlings. Plant Physiol 48(5):617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trolldenier G (1982) Effect of soil temperature on nitrogen fixation on roots of rice and reed. Plant Soil 68(2):217–222

    Article  CAS  Google Scholar 

  • Tsan MF, Gao B (2004) Heat shock protein and innate immunity. Cell Mol Immunol 1(4):274–279

    CAS  PubMed  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581(12):2290–2300

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Li PH (1987) Changes in nucleic acid and protein synthesis during induction of cold hardiness. In: Li PH, Sakai A (eds) Plant cold hardiness. Liss, New York, pp 1–27

    Google Scholar 

  • Tuberosa R, Frascaroli E, Salvi S, Sanguineti MC, Conti S, Landi P (2008) QTLS for tolerance to abiotic stresses in maize: present status and prospects. Maydica 50(3):559–569

    Google Scholar 

  • Tucker DE, Ort DR (2002) Low temperature induces expression of nitrate reductase in tomato that temporarily overrides circadian regulation of activity. Photosynth Res 72(3):285–293

    Article  CAS  PubMed  Google Scholar 

  • Twary SN, Heichel GH (1991) Carbon costs of dinitrogen fixation associated with dry matter accumulation in alfalfa. Crop Sci 31(4):985–992

    Article  CAS  Google Scholar 

  • Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M (2006) Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. J Biol Chem 281(39):29287–29296

    Article  CAS  PubMed  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30(6):967–977

    Article  CAS  PubMed  Google Scholar 

  • van Buer J, Cvetkovic J, Baier M (2016) Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol 16(1):163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  CAS  Google Scholar 

  • Van der Boon J, Steenhuizen J, Steingrover EG (1990) Growth and nitrate concentration of lettuce as affected by total nitrogen and chloride concentration, NH4/NO3 ratio and temperature of the recirculating nutrient solution. J Hortic Sci 65(3):309–321

    Article  Google Scholar 

  • Van Huystee RB, Weiser CJ, Li PH (1967) Cold acclimation in Cronus stolonifera under natural and controlled photoperiod and temperature. Int J Plant Sci 128(3/4):200–205

    Google Scholar 

  • Vance CP (1990) Symbiotic nitrogen fixation: recent genetic advances. In: Miflin BJ, Lea PJ (eds) The biochemistry of plants: intermediary nitrogen metabolism, vol 16. Academic, San Diego, pp 48–88

    Google Scholar 

  • Van-Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4:111–116

    Article  CAS  PubMed  Google Scholar 

  • Vanoni M, Dossena L, van den Heuvel R, Curti B (2005) Structure–function studies on the complex iron-sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. Photosynth Res 83(2):219–238

    Article  CAS  PubMed  Google Scholar 

  • Vasilieva GG, Mironova NV, Glyanko AK (2001) The low above-zero temperature effect in the zone of roots on nitrate reductase activity in pea organs in the process of vegetating. Turk J Bot 25:255–260

    Google Scholar 

  • Venema J, Villerius L, Van Hasselt P (2000) Effect of acclimation to suboptimal temperature on chilling induced photodamage: comparison between a domestic and a high altitude wild Lycopersicon species. Plant Sci 152(2):153–163

    Article  CAS  Google Scholar 

  • Venkatesh J, Park SW (2014) Role of L-ascorbate in alleviating abiotic stresses in crop plants. Bot Stud 55(1):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venketesh S, Dayananda C (2008) Properties, potentials and prospects of antifreeze proteins. Crit Rev Biotechnol 28(1):57–82

    Article  CAS  PubMed  Google Scholar 

  • Vieira IS, Vasconselos EP, Monteiro AA (1998) Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilisation. Nutr Cycl Agroecosys 51(3):249–258

    Article  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42(1):579–620

    Article  CAS  Google Scholar 

  • Vogel CS, Dawson JO (1991) Nitrate reductase activity, nitrogenase activity and photosynthesis of black alder exposed to chilling temperatures. Physiol Plant 82(4):551–558

    Article  CAS  Google Scholar 

  • Voisin A-S, Salon C, Jeudy C, Warembourg FR (2003) Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology. J Exp Bot 54:2733–2744

    Article  CAS  PubMed  Google Scholar 

  • Voisin A-S, Bourion V, Duc G, Salon C (2007) Using an ecophysiological analysis to dissect genetic variability and to propose an ideotype for nitrogen nutrition in pea. Ann Bot 100:1525–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vona V, Rigano VDM, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Know 3(10):15

    Google Scholar 

  • Walsh KB, McCully ME, Canny MJ (1989) Vascular transport and soybean nodule function: nodule xylem is a blind alley, not a throughway. Plant Cell Environ 12(4):395–405

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004a) Role of plant heat shock proteins and molecular chaperons in the abiotic stress response. Trend Plant Sci 9(5):1360–1385

    Article  CAS  Google Scholar 

  • Wang B, Vinocur O, Altman AS (2004b) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trend Plant Sci 9(5):244–252

    Article  CAS  Google Scholar 

  • Wang H, Huang J, Liang X, Bi Y (2012a) Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus. Planta 235(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hu J, Qin G, Cui H, Wang Q (2012b) Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany 90(9):845–855

    Article  CAS  Google Scholar 

  • Wang X, Zhao Q, Ma C, Zhang Z, Cao H, Kong Y, Yue C, Hao X, Chen L, Ma J, Jin J, Li X, Yang Y (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Wang S, Wu Q (2014) Cold shock protein A plays an important role in the stress adaptation and virulence of Brucella melitensis. FEMS Microbiol Lett 354(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S, Huang J, Cui K, Nie L (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Ma R, Yin Y, Jiao Z (2018) Role of carbon ion beams irradiation in mitigating cold stress in Arabidopsis thaliana. Ecotoxicol Environ Saf 162:341–347

    Article  CAS  PubMed  Google Scholar 

  • Waqas MA, Khan I, Akhter MJ, Noor MA, Ashraf U (2017) Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res 24(12):11459–11471

    Article  CAS  Google Scholar 

  • Ward M, Grimes H, Huffaker R (1989) Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta 177(4):470–475

    Article  CAS  PubMed  Google Scholar 

  • Warembourg FR, Roumet C (1989) Why and how to estimate the cost of symbiotic N2 fixation? A progressive approach based on the use of 14C and 15N isotopes. Plant Soil 115:167–177

    Article  Google Scholar 

  • Waterer JG, Vessey JK (1993a) Effect of low static nitrate concentrations on mineral nitrogen uptake, nodulation, and nitrogen fixation in field pea. J Plant Nutr 16:1775–1789

    Article  CAS  Google Scholar 

  • Waterer JG, Vessey JK (1993b) Nodulation response of auto regulated or NH+4 –inhibited pea (Pisum sativum) after transfer to stimulatory (low) concentrations of NH+4. Physiol Plant 88:460–466

    Article  CAS  Google Scholar 

  • Waughman GJ (1977) The effect of temperature on nitrogenase activity. J Exp Bot 28:949–960

    Article  CAS  Google Scholar 

  • Webster DE, Ebdon JS (2005) Effects of nitrogen and potassium fertilization on perennial ryegrass cold tolerance during deacclimation in late winter and early spring. HortSci 40(3):842–849

    Article  Google Scholar 

  • Weiser CJ (1970) Cold resistance and injury in woody plants. Science 169(3952):1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129(4):1633–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen D, Li Y, He L, Zhang C (2019) Transcriptome analysis reveals the mechanism by which spraying diethyl aminoethyl hexanoate after anthesis regulates wheat grain filling. BMC Plant Biol 19(1):327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7(4):449–455

    Article  CAS  PubMed  Google Scholar 

  • Wenkert W (1980) Measurement of tissue osmotic pressure. Plant Physiol 65(4):614–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerheide SD, Anckar J, Stevens SM, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whaley JM, Kirby EJM, Spink JH, Foulkes MJ, Sparkes DL (2004) Frost damage to winter wheat in the UK: the effect of plant population density. Eur J Agron 21(1):105–115

    Article  Google Scholar 

  • Whelan EDP (1991) Differential response to chilling injury of the group 6 chromosomes of cv. Chinese Spring wheat. Genome 34(1):144–150

    Article  Google Scholar 

  • Whitehead DC (1995) Legumes: biological nitrogen fixation and interaction with grasses. In: Whitehead DC (ed) Grassland nitrogen. CAB International, Wallingford, pp 36–57

    Chapter  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287(1/2):3–14

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5(3):218–223

    Article  CAS  PubMed  Google Scholar 

  • Winter G, Todd CD, Trovato M, Forlani G, Funck D (2015) Physiological implications of arginine metabolism in plants. Front Plant Sci 6:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisniewski M, Lindow SE, Ashworth EN (1997) Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 113:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witty JF, Minchin FR, Skot L, Sheehy JE (1986) Nitrogen fixation and oxygen in legume root nodules. Oxfort Surveys Plant Mol Cell Biol 3:275–314

    CAS  Google Scholar 

  • Wood M (1996) Nitrogen fixation: how much and at what cost? In: Younie D, editor. Legumes in sustainable farming systems. Occasional Symposium No. 30, British Grassland Society, Reading, pp 26–35

    Google Scholar 

  • Woodward FI, Williams BG (1987) Climate and plant distribution at global and local scales. Vegetation 69(1/3):189–197

    Article  Google Scholar 

  • Xiaochuang C, Chu Z, Lianfeng Z, Junhua Z, Hussain S, Lianghuan W, Qianyu J (2017) Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis. Plant Physiol Biochem 112:251–260

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Kato H, Sasaki K, Imai R (2009) A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett 583(17):2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Xie TL, Gu WR, Li CF, Li J, Wei S (2019) Exogenous DCPTA increases the tolerance of maize seedlings to PEG-simulated drought by regulating nitrogen metabolism-related enzymes. Agronomy 9(11):676

    Article  CAS  Google Scholar 

  • Xin Z, Li PH (1992) Abscisic acid-induced chilling tolerance in maize suspension-cultured cells. Plant Physiol 99(2):707–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress is Arabidopsis thaliana. Environ Exp Bot 46(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Xing W, Li D, Li J, Hu Q, Deng S (2016) Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification. Bioresour Technol 211:240–247

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  PubMed  Google Scholar 

  • Yacoob RK, Filion WG (1986a) The effects of cold-temperature stress on gene expression in maize. Biochem Cell Biol 65:112–119

    Article  Google Scholar 

  • Yacoob RK, Filion WG (1986b) Temperature-stress response in maize: a comparison of several cultivars. Can J Genet Cytol 28:1125–1135

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56(417):1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2):251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27(2):247–255

    Article  CAS  PubMed  Google Scholar 

  • Yaneva I, Mack G, Vunkova-Radeva R, Tischner R (1996) Changes in nitrate reductase activity and the protective effect of molybdenum during cold stress in winter wheat grown on acid soil. J Plant Physiol 149(1–2):211–216

    Article  CAS  Google Scholar 

  • Yaneva IA, Hoffmann GW, Tischner R (2002) Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol Plant 114(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Yang CW, Lin CC, Kao CH (2000) Proline, ornithine, arginine and glutamic acid contents in detached rice leaves. Biol Plant 43(2):305–307

    Article  CAS  Google Scholar 

  • Yang X, Cui X, Zhao L, Guo D, Feng L, Wei S, Zhao C, Huang D (2017) Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.). Front Plant Sci 8:2098

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye C, Fukai S, Godwin I, Reinke RB, Snell PB, Schiller J, Basnayake J (2009) Cold tolerance in rice varieties at different growth stages. Crop Past Sci 60(4):328–338

    Article  Google Scholar 

  • Yildiz D, Nzokou P, Deligoz A, Koc I, Genc M (2014) Chemical and physiological responses of four Turkish red pine (Pinus brutia Ten.) provenances to cold temperature treatments. Eur J Forest Res 133(5):809

    Article  CAS  Google Scholar 

  • Yin BF, Zhang YM (2016) Physiological regulation of Syntrichia caninervis Mitt in different microhabitats during periods of snow in the Gurbantünggüt desert, northwestern China. J Plant Physiol 194:13–22

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Yang R, Han Y, Gu Z (2015) Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. J Proteomics 113:110–126

    Article  CAS  PubMed  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+ /H+ antiporters in the salt stress response. Plant J 30(5):529–539

    Article  CAS  PubMed  Google Scholar 

  • Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88(2):291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51(Pt 1):89–103

    Article  CAS  PubMed  Google Scholar 

  • Yu E, Owttrim GW (2000) Characterization of the cold stress-induced cyanobacterial DEAD-box protein CrhC as an RNA helicase. Nucleic Acids Res 28(20):3926–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126(3):1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/ LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73(3):241–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold and drought tolerance in crops. Plant Physiol 135(2):615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ervin EH, LaBranche AJ (2006) Metabolic defense responses of seeded Bermuda grass during acclimation to freezing stress. Crop Sci 46(6):2598–2605

    Article  CAS  Google Scholar 

  • Zhang F, Jiang Y, Bai L-P, Zhang L, Chen L-J, Li HG, Yin Y, Yan W-W, Yi Y, Guo Z-F (2011) The ICE-CBF-COR pathway in cold acclimation and AFPs in plants. Middle East J Sci Res 8(2):493–498

    Google Scholar 

  • Zhang C, He P, Li Y, Li Y, Yao H, Duan J, Hu S, Zhou H, Li S (2016) Exogenous diethyl aminoethyl hexanoate, a plant growth regulator, highly improved the salinity tolerance of important medicinal plant Cassia obtusifolia L. J Plant Growth Regul 35:330–344

    Article  CAS  Google Scholar 

  • Zhang X, Da Silva JAT, Niu M, Li M, He C, Zhao J, Zeng S, Duan J, Ma G (2017) Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci Rep 7:42165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li S, Cai Q, Wang Z, Cao J, Yu T, Xie T (2020) Exogenous diethyl aminoethyl hexanoate ameliorates low temperature stress by improving nitrogen metabolism in maize seedlings. PLoS One 15(4):e0232294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151(2):755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N (2011) Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J Hazard Mater 192(3):1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li S, Jiang T, Liu Z, Zhang W (2012) Chilling stress- the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS One 7(4):e36126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Liu W, Xia X, Wang T, Zhang WH (2014) Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Physiol Plant 152(1):115–129

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Lang Z, Zhu JK (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20(8):466–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Han Q, Ding C, Huangm Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S, Yuan M (2020) Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int J Mol Sci 21(4):1390

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou Z-Y, Wang M-J, Wang J-S (2000) Nitrate and nitrite contamination in vegetables in China. Food Rev Int 16(1):61–76

    Article  CAS  Google Scholar 

  • Zhou W, Chen F, Zhao S, Yang C, Meng Y, Shuai H, Luo X, Dai Y, Yin H, Du J, Liu J, Fan G, Liu W, yang, W. and Shu, K. (2018) DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J Exp Bot 70(1):101–114

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010a) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010b) Influence of arbuscular mycorrhizae on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ, Li YR, Liao JX (2013) Involvement of anthocyanins in the resistance to chilling- induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiol Biochem 73:427–443

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu FL, Liu SQ, Tian CJ (2015) Carbon and nitrogen metabolism in Arbuscular mycorrhizal maize plants under low-temperature stress. Crop Pasture Sci 66:62–70

    Article  CAS  Google Scholar 

  • Ziegler P (1998) Environmental stress and stress responses plants. In: The co-action between living system and the planet. University of Genava, Switzerland, pp 67–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, A. (2022). Low-Temperature Stress and Nitrogen Metabolism in Plants: A Review. In: Physiological Processes in Plants Under Low Temperature Stress. Springer, Singapore. https://doi.org/10.1007/978-981-16-9037-2_4

Download citation

Publish with us

Policies and ethics