Skip to main content

Communities of Microbial Enzymes and Biodegradation of Persistent Environmental Pollutants

  • Chapter
  • First Online:
Ecological Interplays in Microbial Enzymology

Abstract

Enzymes are biocatalysts that potentiate the rate of substrate conversion into products. They are composed of amino acids with one or more polypeptide moieties. Microbial enzymes are the various enzymes of microorganisms’ source, which have wide scope of applications in medicine and industries, including the degradation of persistent environmental wastes. Persistent environmental pollutants have become a global environmental and health concern. Owing to the rapid technological advancement and development in industries, large quantities of persistent environmental pollutants are being let out into the ecosystem posing serious threats to living organisms, thereby deteriorating the environment. Several microbial enzymes are widely used in the decomposition of recalcitrant organic and inorganic wastes. Oxidoreductases and hydrolases constitute the major class of microbial enzymes utilized in biodegradation of environmental pollutants; oxygenases, laccases, and peroxidases are the superfamilies of the oxidoreductase class, whereas lipases, cellulases, and proteases constitute the superfamilies of hydrolytic enzymes widely employed for bioremediation. Bioremediation involves the use of enzymes of microbial origin or the whole cell in the breakdown or transformation of environmental pollutants into less toxic or nontoxic products. Polymeric compounds such as polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC), polyurethane (PUR), and polyethylene terephthalate (PET) have been degraded using microbial enzymes. The biodegradation process is, however, often impeded due to the incapability of microbial enzymes to hydrolyze the functional groups present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano-Anaya, M., Salvador-Figueroa, M., Ocampo, J. A., & GarcĂ­a-Romera, I. (2005). Plant cell-wall degrading hydrolytic enzymes of Gluconacetobacter diazotrophicus. Symbiosis, 40(3), 151–156.

    CAS  Google Scholar 

  • Aislabie, J., Bej, A. K., Ryburn, J., Lloyd, N., & Wilkins, A. (2005). Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiology Ecology, 52(2), 279–286.

    Article  CAS  PubMed  Google Scholar 

  • Arias, M. E., Arenas, M., RodrĂ­guez, J., Soliveri, J., Ball, A. S., & Hernandez, M. (2003). Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Applied and Environmental Microbiology, 69(4), 1953–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora, P. K., Kumar, M., Chauhan, A., Raghava, G. P., & Jain, R. K. (2009). OxDBase: A database of oxygenases involved in biodegradation. BMC Research Notes, 2, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora, P. K., Srivastava, A., & Singh, V. P. (2010). Application of Monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. Journal of Bioremediation & Biodegradation, 1, 1–8.

    Article  Google Scholar 

  • Beena, A. K., & Geevarghese, P. I. (2010). A solvent tolerant thermostable protease from a psychrotrophic isolate obtained from pasteurized milk. Developmental Microbiology and Molecular Biology, 1, 113–119.

    Google Scholar 

  • Bending, G. D., Friloux, M., & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212(1), 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Bennet, J. W., Wunch, K. G., & Faison, B. D. (2002). Use of fungi biodegradation. ASM Press.

    Google Scholar 

  • Bezalel, L., Hadar, Y., & Cerniglia, C. E. (1996). Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62, 292–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourbonnais, R., Paice, M. G., Reid, I. D., Lanthier, P., & Yaguchi, M. (1995). Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,22-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Applied and Environmental Microbiology, 61(5), 1876–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, J., & Das, S. (2016). Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environmental Science and Pollution Research, 23, 16883–16903. https://doi.org/10.1007/s11356-016-6887-7

    Article  CAS  PubMed  Google Scholar 

  • Christenson, E. M., Patel, S., Anderson, J. M., & Hiltner, A. (2006). Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials, 27, 3920–3926.

    Article  CAS  PubMed  Google Scholar 

  • Ciafardini, G., Zullo, B. A., & Iride, A. (2006). Lipase production by yeasts from extra virgin olive oil. Food Microbiology, 23, 60–67. https://doi.org/10.1016/j.fm.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  • Cihangir, N., & Sarikaya, E. (2004). Investigation of lipase production by a new isolated of Aspergillus sp. World Journal of Microbiology and Biotechnology, 20, 193–197. https://doi.org/10.1023/B:WIBI.0000021781.61031.3a

    Article  CAS  Google Scholar 

  • Couto, S. R., & Toca Herrera, J. L. (2006). Industrial and biotechnological applications of laccases: A review. Biotechnology Advances, 24(5), 500–513.

    Article  Google Scholar 

  • Cregut, M., Bedas, M., Durand, M. J., & Thouand, G. (2013). New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnological Advancement, 31, 1634–1647.

    Article  CAS  Google Scholar 

  • Dana, L. D., & Bauder, J. W. (2011). A general essay on bioremediation of contaminated soil. Montana State University.

    Google Scholar 

  • Dawkar, V. V., Jadhav, U. U., Jadhav, S. U., & Govindwar, S. P. (2008). Biodegradation of disperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. Journal of Applied Microbiology, 105(1), 14–24.

    Article  CAS  PubMed  Google Scholar 

  • Dedeyan, B., Klonowska, A., & Tagger, S. (2000). Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Applied and Environmental Microbiology, 66(3), 925–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua, M., Singh, A., Sethunathan, N., & Johri, A. (2002). Biotechnology and bioremediation: Successes and limitations. Applied Microbiology and Biotechnology, 59(2–3), 143–152.

    CAS  PubMed  Google Scholar 

  • Eggert, C., Temp, U., & Eriksson, K. E. L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ertugrul, S., Donmez, G., & Takaç, S. (2007). Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials, 149, 720–724. https://doi.org/10.1016/j.jhazmat.2007.04.034

    Article  CAS  PubMed  Google Scholar 

  • Eubeler, J. P., Bernhard, M., & Knepper, T. P. (2010). Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends in Analytical Chemistry, 29, 84–100.

    Article  CAS  Google Scholar 

  • Faccelo, J., & Cruz, O. (2008). Banana skin: A novel material for a low-cost production of laccase. M.S. Thesis, Universitat RoviraI Virgili.

    Google Scholar 

  • Fetzner, S., & Lingens, F. (1994). Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications. Microbiological Reviews, 58(4), 641–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field, J. A., de Jong, E., Costa, G. F., & de Bont, J. A. M. (1993). Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends in Biotechnology, 11, 44–49.

    Article  CAS  Google Scholar 

  • Fontanella, S., Bonhomme, S., Koutny, M., Husarova, L., Brusson, J. M., & Courdavault, J. P. (2010). Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polymer Degradation and Stability, 95, 1011–1021.

    Article  CAS  Google Scholar 

  • Fox, B. G., Borneman, J. G., Wackett, L. P., & Lipscomb, J. D. (1990). Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implications. Biochemistry, 29(27), 6419–6427.

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa, M., Hirai, H., & Nishida, T. (2001). Degradation of polyethylene and nylon-66 by the laccase-mediator system. Journal of Polymer and the Environment, 9, 103–108.

    Article  CAS  Google Scholar 

  • Gayazov, R., & Rodakiewicz-Nowak, J. (1996). Semi-continuous production of laccase by Phlebia radiata in different culture media. Folia Microbiologica, 41(6), 480–484.

    Article  CAS  Google Scholar 

  • Ghasemi, F., Tabandeh, F., Bambai, B., & Sambasiva Rao, K. R. S. (2010). Decolorization of different azo dyes by Phanerochaete chrysosporium RP78 under optimal condition. International journal of Environmental Science and Technology, 7(3), 457–464.

    Article  CAS  Google Scholar 

  • Gianfreda, L., Xu, F., & Bollag, J. M. (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediation Journal, 3(1), 1–25.

    Article  CAS  Google Scholar 

  • Gochev, V. K., & Krastanov, A. I. (2007). Fungal laccases. Bulgarian Journal of Agricultural Science, 13, 75–83.

    Google Scholar 

  • Grosse, S., Laramee, L., Wendlandt, K. D., McDonald, I. R., Miguez, C. B., & Kleber, H. P. (1999). Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Applied and Environmental Microbiology, 65(9), 3929–3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, X., Xie, C., Wang, L., Li, Q., & Wang, Y. (2019). Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environmental Science and Pollution Research, 26, 8429–8443. https://doi.org/10.1007/s11356-019-04358-0

    Article  CAS  PubMed  Google Scholar 

  • Hamid, H., & Rehman, K. U. (2009). Potential applications of peroxidases. Food Chemistry, 115(4), 1177–1186.

    Article  CAS  Google Scholar 

  • Harford-Cross, C. F., Carmichael, A. B., Allan, F. K., England, P. A., Rouch, D. A., & Wong, L. (2000). Protein engineering of cytochrome P458(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Engineering, 13(2), 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Hatakka, A. (2001). Biodegradation of lignin. In M. Hofrichter & A. Steinbuchel (Eds.), Lignin, humic substances and coal (pp. 129–179). Wiley-VCH.

    Google Scholar 

  • Hiner, A. N. P., Ruiz, J. H., & Rodri, J. N. (2002). Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide: Catalase-like activity, compound III formation, and enzyme inactivation. The Journal of Biological Chemistry, 277(30), 26879–26885.

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter, M., Ullrich, R., Pecyna, M. J., Liers, C., & Lundell, T. (2010). New and classic families of secreted fungal heme peroxidases. Applied Microbiology and Biotechnology, 87(3), 871–897.

    Article  CAS  PubMed  Google Scholar 

  • Holker, U., Dohse, J., & Hofer, M. (2002). Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiologica, 47(4), 423–427.

    Article  CAS  PubMed  Google Scholar 

  • Howard, G. T. (2002). Biodegradation of polyurethane: A review. International Journal of Biodeterioration and Biodegradation, 49, 245–252.

    Article  CAS  Google Scholar 

  • Howard, G. T., Norton, W. N., & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation, 23, 561–573.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Pan, J., Liang, B., Sun, J., Zhao, Y., & Li, S. (2009). Isolation, characterization of a strain capable of degrading imazethapyr and its use in degradation of the herbicide in soil. Current Microbiology, 59(4), 363–367.

    Article  CAS  PubMed  Google Scholar 

  • Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Critical Reviews in Biotechnology, 26(4), 201–221.

    Article  CAS  PubMed  Google Scholar 

  • Iyer, G., & Chattoo, B. B. (2003). Purification and characterization of laccase from the rice blast fungus, Magnaporthe grisea. FEMS Microbiology Letters, 227(1), 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Jauregui, J., Valderrama, B., Albores, A., & Vazquez-Duhalt, R. (2003). Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation, 14(6), 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Juarez, N., Roman-Miranda, R., Baeza, A., Sanchez-Amat, A., Vazquez-Duhalt, R., & Valderrama, B. (2005). Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. Journal of Biotechnology, 117(1), 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, B., Ramteke, P. W., & Kumar, P. A. (2006). Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. Journal of General and Applied Microbiology, 52(6), 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Junghanns, C., Moeder, M., Krauss, G., Martin, C., & Schlosser, D. (2005). Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology, 151(1), 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Kasai, N., Ikushiro, S., & Shinkyo, R. (2010). Metabolism of mono and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Applied Microbiology and Biotechnology, 86(2), 773–780.

    Article  CAS  PubMed  Google Scholar 

  • Kaušpediene, D., Kazlauskiene, E., Gefeniene, A., & Binkiene, R. (2010). Comparison of the efficiency of activated carbon and neutral polymeric adsorbent in removal of chromium complex dye from aqueous solutions. Journal of Hazardous Materials, 179(1–3), 933–939.

    Article  PubMed  Google Scholar 

  • Kiiskinen, L. L., Ratto, M., & Kruus, K. (2004a). Screening for novel laccase-producing microbes. Journal of Applied Microbiology, 97(3), 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Kiiskinen, L. L., Kruus, K., Bailey, M., Ylosmaki, E., Siika-aho, M., & Saloheimo, M. (2004b). Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology, 150(9), 3065–3074.

    Article  CAS  PubMed  Google Scholar 

  • Koua, D., Cerutti, L., & Falquet, L. (2009). PeroxiBase: A database with new tools for peroxidase family classification. Nucleic Acids Research, 37(Suppl 1), D261–D266.

    Article  CAS  PubMed  Google Scholar 

  • Koutny, M., Sancelme, M., Dabin, C., Pichon, N., Delort, A. M., & Lemaire, J. (2006a). Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polymers Degradation and Stabilization, 91, 1495–1503.

    Article  CAS  Google Scholar 

  • Koutny, M., Lemaire, J., & Delort, A. M. (2006b). Biodegradation of polyethylene films with prooxidant additives. Chemosphere, 64, 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  • Krueger, M. C., Harms, H., & Schlosser, D. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 99, 8857–8874.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, C. G., & Takagi, H. (1999). Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 17, 561–594. https://doi.org/10.1016/S0734-9750(99)00027-0

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. H., Wi, S. G., Singh, A. P., & Kim, Y. S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. Journal of Wood Science, 50(3), 281–284.

    Article  Google Scholar 

  • Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2004). Lehninger’s principles of biochemistry (4th ed.). W. H. Freeman.

    Google Scholar 

  • Leung, M. (2004). Bioremediation: Techniques for cleaning up a mess. Journal of Biotechnology, 2, 18–22.

    Google Scholar 

  • Loredo-Trevino, A., Gutierrez-Sanchez, G., Rodruguez-Herrera, R., & Aguilar, C. N. (2012). Microbial enzymes involved in polyurethane biodegradation: A review. Journal of Polymers and the Environment, 20, 258–265.

    Article  CAS  Google Scholar 

  • Lundell, T. K., Makela, M. R., & Hilden, K. (2010). Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. Journal of Basic Microbiology, 50(1), 5–20.

    Article  CAS  PubMed  Google Scholar 

  • Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorious, I. S. (2002). Microbial cellulase utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons, J. I., Newell, S. Y., Buchan, A., & Moran, M. A. (2003). Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microbial Ecology, 45(3), 270–281.

    Article  CAS  PubMed  Google Scholar 

  • Mai, C., Schormann, W., Milstein, O., & Huttermann, A. (2000). Enhanced stability of laccase in the presence of phenolic compounds. Applied Microbiology and Biotechnology, 54(4), 510–514.

    Article  CAS  PubMed  Google Scholar 

  • Marco-Urrea, C., & Reddy, C. A. (2012). Degradation of chloroorganic pollutants by white rot fungi microbial degradation of xenobiotics. Environmental Science and Engineering, 2, 31–66.

    Article  Google Scholar 

  • Marco-Urrea, E., Aranda, E., Caminal, G., & Guillen, F. (2009). Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Bioresource Technology, 100(23), 5757–5762.

    Article  CAS  PubMed  Google Scholar 

  • Marten, E., Muller, R. J., & Deckwer, W. D. (2003). Studies on the enzymatic hydrolysis of polyesters i. Low molecular mass model esters and aliphatic polyesters. Polymer Degradation and Stability, 80, 485–501.

    Article  CAS  Google Scholar 

  • Marten, E., Muller, R. J., & Deckwer, W. D. (2005). Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters. Polymer Degradation and Stability, 88, 371–381.

    Article  CAS  Google Scholar 

  • Matsumiya, Y., Murata, N., Tanabe, E., Kubota, K., & Kubo, M. (2010). Isolation and characterization of an ether-type polyurethane-degrading micro-organism and analysis of degradation mechanism by Alternaria sp. Journal of Applied Microbiology, 108, 1946–1953.

    CAS  PubMed  Google Scholar 

  • McCauley, L. A., Anger, W. K., Keifer, M., Langley, R., Robson, M. G., & Rohlman, D. (2006). Studying health outcomes in farmworker populations exposed to pesticides. Environmental Health Perspectives, 114(6), 953–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environment International, 37(8), 1362–1375.

    Article  CAS  PubMed  Google Scholar 

  • Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). Blue laccases. Biochemistry (Moscow), 72(10), 1136–1150.

    Article  CAS  Google Scholar 

  • Mossallam, K. F., Sultanova, F. M., & Salemova, N. A. (2009). Peroxidase catalysed the removal of phenol from synthetic waste water. In Proceedings of the 13th International Water Technology Conference (IWTC 13), Hurghada, Egypt (pp. 1009–1020).

    Google Scholar 

  • Mui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010). Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. Journal of Colloid and Interface Science, 347(2), 290–300.

    Article  CAS  PubMed  Google Scholar 

  • Ng, T. W., Cai, Q., Wong, C., Chow, A. T., & Wong, P. (2010). Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: Azo dye as electron donor for chromate reduction. Journal of Hazardous Materials, 182(1–3), 792–800.

    Article  CAS  PubMed  Google Scholar 

  • Niku-Paavola, M. L., Karhunen, E., Salola, P., & Raunio, V. (1998). Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochemical Journal, 254(3), 877–884.

    Article  Google Scholar 

  • Ong, S. T., Keng, P. S., Lee, W. N., Ha, S. T., & Hung, W. T. (2011). Dye waste treatment. Water, 3(1), 157–176.

    Article  CAS  Google Scholar 

  • Palmieri, G., Giardina, P., Bianco, C., Fontallella, B., & Sannina, G. (2000). Copper induction of laccase isoenzyme in the lignolytic fungus Pleurotus ostreatus. Applied Microbiology and Biotechnology, 66, 920–924.

    CAS  Google Scholar 

  • Palonen, H., Saloheimo, M., Viikari, L., & Kruus, K. (2003). Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp. Enzyme and Microbial Technology, 33(6), 854–862.

    Article  CAS  Google Scholar 

  • Park, J. W., Park, B. K., & Kim, J. E. (2006). Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd’s purse roots. Archives of Environmental Contamination and Toxicology, 50(2), 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Piontek, K., Smith, A. T., & Blodig, W. (2001). Lignin peroxidase structure and function. Biochemical Society Transactions, 29(2), 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Pointing, S. B., & Vrijmoed, L. L. P. (2000). Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World Journal of Microbiology and Biotechnology, 16(3), 317–318.

    Article  CAS  Google Scholar 

  • Que, L., & Ho, R. Y. N. (1996). Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chemical Reviews, 96(7), 2607–2624.

    Article  CAS  PubMed  Google Scholar 

  • Quintero, J. C., Moreira, M. T., Feijoo, G., & Lema, J. M. (2008). Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Ciencia e Investigacion Agraria, 35(2), 123–132.

    Google Scholar 

  • Research and Markets. (2015). Global polyethylene terephthalate Market (PET resin) - By end-Use industries, products, and regions - Market size, demand forecasts, industry trends and updates (2014-2020). Retrieved from http://www.researchandmarkets.com/reports/3505772/global-polyethylene-terephtalate-market-pet

  • Restrepo-Florez, J. M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene – A review. International Biodeterioration and Biodegradation, 88, 83–90.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Levi-Minzi, R., Cardelli, R., Palumbo, S., & Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170(1–4), 3–15.

    Article  CAS  Google Scholar 

  • Roohi Kulsoom, B., Mohammed, K., Mohd, R. Z., Qamar, Z., Mohd, F. K., Ghulam, M. A., Anamika, G., & Gjumrakch, A. (2017). Microbial enzymatic degradation of biodegradable plastics. Current Pharmaceutical Biotechnology, 18(5), 429. https://doi.org/10.2174/1389201018666170523165742

    Article  CAS  Google Scholar 

  • Rubilar, O., Diez, M. C., & Gianfreda, L. (2008). Transformation of chlorinated phenolic compounds by white rot fungi. Critical Reviews in Environmental Science and Technology, 38(4), 227–268.

    Article  CAS  Google Scholar 

  • Ruiz-Duenas, F. J., Morales, M., & Perez-Boada, M. (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: A site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry, 46(1), 66–77.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Duenas, F. J., Morales, M., GarcĂ­a, E., Miki, Y., MartĂ­nez, M. J., & MartĂ­nez, A. T. (2009). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of Experimental Botany, 60(2), 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Russell, J. R., Huang, J., Anand, P., Kucera, K., Sandoval, A. G., & Dantzler, K. W. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Applied and Environmental Microbiology, 77, 6076–6084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan, J. R., Loehr, R. C., & Rucker, E. (1991). Bioremediation of organic contaminated soils. Journal of Hazardous Materials, 28, 159–169.

    Article  CAS  Google Scholar 

  • Sanchez-Porro, C., Martın, S., Mellado, E., & Ventosa, A. (2003). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology, 94(2), 295–300.

    Article  CAS  PubMed  Google Scholar 

  • Santo, M., Weitsman, R., & Sivan, A. (2013). The role of the copper-binding enzyme - Laccase - In the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Journal of Biodeterioration and Biodegradation, 84, 204–210.

    Article  CAS  Google Scholar 

  • Saranraj, P., Stella, D., & Reetha, D. (2012). Microbial cellulases and its applications: A review. International Journal of Biochemistry & Biotech Science, 1, 1–12.

    Google Scholar 

  • Schlosser, D., & Hofer, C. (2002). Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Applied and Environmental Microbiology, 68(7), 3514–3521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, O. (2006). Wood and tree fungi. Springer.

    Google Scholar 

  • Sen, S. K., & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3, 462–473.

    Article  Google Scholar 

  • Seymour, R. B., & Kauffman, G. B. (1992). Polyurethanes: A class of modern versatile materials. Journal of Chemistry Education, 69, 909.

    Article  CAS  Google Scholar 

  • Sharma, D., Sharma, B., & Shukla, A. K. (2011). Biotechnological approach of microbial lipase: A review. Biotechnology, 10(1), 23–40.

    Article  CAS  Google Scholar 

  • Singh, C. J. (2003). Optimization of an extracellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia, 156(3), 151–156.

    Article  CAS  Google Scholar 

  • Stoj, C., & Kosman, D. J. (2003). Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: Implication for function. FEBS Letters, 554(3), 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Suhas, Carrott, P. J. M., & Ribeiro Carrott, M. M. L. (2007). Lignin – From natural adsorbent to activated carbon: A review. Bioresource Technology, 98, 2301–2312.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Ten Have, R., & Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101(11), 3397–3413.

    Article  PubMed  Google Scholar 

  • Thakker, G. D., Evans, C. S., & Koteswara Rao, K. (1992). Purification and characterization of laccase from Monocillium indicum Saxena. Applied Microbiology and Biotechnology, 37(3), 321–323.

    Article  CAS  Google Scholar 

  • Tsukihara, T., Honda, Y., Sakai, R., Watanabe, T., & Watanabe, T. (2006). Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. Journal of Biotechnology, 126(4), 431–439.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, M. A., Bedford, C. T., & Evans, C. S. (2000). Reactions of pentachlorophenol with laccase from Coriolus versicolor. Applied Microbiology and Biotechnology, 53(2), 230–234.

    Article  CAS  PubMed  Google Scholar 

  • Urgun-Demirtas, M., Singh, D., & Pagilla, K. (2007). Laboratory investigation of biodegradability of a polyurethane foam under anaerobic conditions. Polymer Degradation and Stability, 92, 1599–1610.

    Article  CAS  Google Scholar 

  • Vakhlu, J., & Kour, A. (2006). Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9, 1–17. https://doi.org/10.2225/vol9-issue1-fulltext-4

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova, E., & Galabova, D. (2003). Hydrolytic enzymes and surfactants of bacterial isolates from lubricant-contaminated wastewater. Zeitschrift fĂĽr Naturforschung, 58(1–2), 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Velazquez-CedĂ©no, M. A., Farnet, A. M., Ferre, E., & Savoie, J. M. (2004). Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia, 96(4), 712–719.

    Article  PubMed  Google Scholar 

  • Veloorvalappil, N. J., Robinson, B. S., Selvanesan, P., Sasidharan, S., Kizhakkepawothail, N. U., Sreedharan, S., Prakasan, P., & Moolakkariyil, S. J. (2013). Versatility of microbial proteases. Advances in Enzyme Research, 1(3), 39–51. https://doi.org/10.4236/aer.2013.13005

    Article  CAS  Google Scholar 

  • Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    Article  CAS  Google Scholar 

  • Viswanath, B., Subhosh Chandra, M., Pallavi, H., & Rajasekhar Reddy, B. (2008). Screening and assessment of laccase producing fungi isolated from different environmental samples. African Journal of Biotechnology, 7(8), 1129–1133.

    CAS  Google Scholar 

  • Wang, L., Chi, Z. M., Wang, X. H., Liu, Z. Q., & Li, J. (2007). Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Annals of Microbiology, 4, 2–7.

    Google Scholar 

  • Webb, H., Arnott, J., Crawford, R., & Ivanova, E. (2013). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5, 1.

    Article  Google Scholar 

  • Wong, D. W. S. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157(2), 174–209.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F. (1996). Catalysis of novel enzymatic iodide oxidation by fungal laccase. Applied Biochemistry and Biotechnology, 59(3), 221–230.

    Article  CAS  Google Scholar 

  • Yadav, J. S., Bethea, C., & Reddy, C. A. (2000). Mineralization of trichloroethylene (TCE) by the white rot fungus Phanerochaete chrysosporium. Bulletin of Environmental Contamination and Toxicology, 65(1), 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Yaver, D. S., Berka, R. M., Brown, S. H., & Xu, F. (2001). The Presymposium on recent advances in lignin biodegradation and biosynthesis (Vol. 3–4). Vikki Biocentre, University of Helsinki.

    Google Scholar 

  • Yoshida, S. (1998). Reaction of manganese peroxidase of Bjerkandera adusta with synthetic lignin in acetone solution. Journal of Wood Science, 44(6), 486–490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwafemi Adebayo Oyewole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oyewole, O.A., Saidu, M.M., Idris, A.D., Yakubu, J.G., Bello, A.B. (2022). Communities of Microbial Enzymes and Biodegradation of Persistent Environmental Pollutants. In: Maddela, N.R., Abiodun, A.S., Prasad, R. (eds) Ecological Interplays in Microbial Enzymology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0155-3_12

Download citation

Publish with us

Policies and ethics