Skip to main content

White LED Communication

  • Chapter
  • First Online:
Optical Wireless Communication

Part of the book series: Optical Wireless Communication Theory and Technology ((OWCTAT))

  • 497 Accesses

Abstract

The white light-emitting diode (LED) has the advantages of low power consumption, long service life, small size, easiness of driving, and environmental protection. LEDs are regarded as the fourth generation of energy-saving and environmentally friendly illumination products [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura S (1997) Present performance of InGaN based blue/green/yellow LED. Proceedings of SPIE Conf on light emitting diodes: research, manufacturing, and applications 26–35

    Google Scholar 

  2. Liu J, Li P, Hao Y (2005) Research and development of high-brightness GaN-based blue and white LEDs. Chin J Quant Electron 22(5):673–679

    Google Scholar 

  3. European Commission. Phasing out incandescent bulbs in the EU[EB/OL]. http://ec.europa.eu

  4. Lee K, Park H (2011) Channel model and modulation schemes for visible light communications. IEEE 54th international midwest symposium on circuits and systems, pp. 1–4

    Google Scholar 

  5. Komine T, Haruyama S (2003) Nakagawa M. Bidirectional visible-light communication using corner cube modulator. Proceedings of wireless and optical communication

    Google Scholar 

  6. Hou J, O’Brien DC (2006) Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system. IEEE Trans Wirel Commun 5(1):176–185

    Article  Google Scholar 

  7. Lopez HF, Poves E, Perez JR et al (2006) Low cost diffuse wireless optical communication system based on white LED. Proceedings of 2006 IEEE tenth international symposium on consumer electronics St

    Google Scholar 

  8. Langer KD (2008) Optical wireless communications for broadband access in home area networks. Proceedings of the 10th anniversary international conference on transparent optical networks (ICTON), vol 4, pp 149–154

    Google Scholar 

  9. Kavehrad M (2007) Broadband and room service by light. Scient Amer, 82–87

    Google Scholar 

  10. Schubert EF, Kim JK, Hong L et al (2006) Solid-state lighting a benevolent technology. Rep Prog Phys 69:3069–3099

    Article  Google Scholar 

  11. Chu M, Wu Q, Wang J et al (2009) Calculation of white LED’s limit lumen efficiency. Chin J Luminescence 30(1):77–80

    Google Scholar 

  12. Wu H, Wang C, He S (2008) Study on the color rendering of white LED coated with red and green phosphors. Acta Optica Sinica 28(9):1777–1782

    Article  Google Scholar 

  13. Sun CC, Lee TX, Tsung X et al (2006) Precise optical modeling for LED lighting verified by cross correlation in the midfield region. Opt Lett 31(14):2193–2195

    Article  Google Scholar 

  14. Ke XZ, Wu JL, Yang SJ (2021) Research progress and prospect of atmospheric turbulence for wireless optical communication. Chin J Radio Sci 36(3):323–339

    Google Scholar 

  15. Zhai C (2021) Turbulence spectrum model and fiber-coupling efficiency in the anisotropic non-Kolmogorov satellite-to-ground downlink. Results Phys 29:104685

    Google Scholar 

  16. Ding DQ, Ke XZ (2006) Visible light communication and research on its key techniques. Semiconductor Optoelectron 27(02):114–117

    Google Scholar 

  17. Xu SW, Wu Y, Wang XF (2020) Visible light positioning algorithm based on sparsity adaptive and location fingerprinting. Acta Optica Sinica 40(18):1806003

    Article  Google Scholar 

  18. Zhao L, Peng K (2017) Optimization of light source layout in indoor visible light communication based on white light-emitting diode. Acta Optica Sinica 37(7):0706001

    Article  Google Scholar 

  19. Ding DQ, Ke XZ (2010) Research on generalized mathematic radiation model for White LED. Acta Optica Sinica 30(9):2536–2540

    Article  Google Scholar 

  20. Yin P, Xu XP, Jiang ZG et al (2018) Design and performance analysis of planar concentrators as optical antennas in visible light communication. Acta Optica Sinica 38(4):0406004

    Article  Google Scholar 

  21. Zhao JQ, Xu YF, Li JH et al (2016) Turbulence channel modeling of visible light communication under strong background noise and diversity receiving technologies. Acta Optica Sinica 36(3):0301001

    Article  Google Scholar 

  22. Vetelino FS, Young C, Andrews L et al (2007) Aperture averaging effects on the probability density of irradiance fluctuations in moderate to strong turbulence. Appl Opt 46(11):2099–2108

    Article  Google Scholar 

  23. Vetelino FS, Young C, Andrews L (2007) Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence. Appl Opt 46(18):3780–3789

    Article  Google Scholar 

  24. Ansari IS, Yilmaz F, Alouini MS (2015) Performance analysis of free-space optical links over Malaga (M) turbulence channels with pointing errors. IEEE Trans Wirel Commun 15(1):91–102

    Article  Google Scholar 

  25. Wu ML, Ma FK, Liu WK (2020) Noise suppression method in medium and long distance outdoor visible light communication. Laser Optoelectron Progress 57(13):130601

    Google Scholar 

  26. Ding D, Ke X (2007) Design and simulation of light source layout of VLC system. Opto-Electron Eng 34(1):131–134

    Google Scholar 

  27. Iniguez RR, Idrus SM, Sun Z (2008) Optical wireless communications IR for wireless connectivity. Auerbach Publications, BocaRaton

    Book  Google Scholar 

  28. O’Brien DC, Leminh H (2008) Home access networks using optical wireless transmission. Proceedings of IEEE PIMRC, pp 1–5

    Google Scholar 

  29. Jungnickel V, Pohl V, Nönnig S et al (2002) A physical model of the wireless infrared communication channel. IEEE J Sel Areas Commun 20:631–640

    Article  Google Scholar 

  30. Rodríguez S, Pérez-Jiménez R, López-Hernández FJ et al (2002) Reflection model for calculation of the impulse responseon IR-wireless indoor channels using ray-tracing algorithm. Microw Opt Technol Lett 32:296–300

    Article  Google Scholar 

  31. Rodríguez S, Pérez-Jiménez R, González O et al (2003) Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm. Microw Opt Technol Lett 36:262–267

    Article  Google Scholar 

  32. Gagliardi RM, Karp S (1995) Optical communications. John Wiley & Sons, New York

    Google Scholar 

  33. Moreira AJC, Valadas RT, Oliveira-Duarte AM (1997) Optical interference produced by artificial light. Wireless Netw 3:131–140

    Article  Google Scholar 

  34. Rahaim MB, Vegni AM, Little TDC (2011) A hybrid radio frequency and broadcast visible light communication system. Proceedings of the GLOBECOM workshops, pp 792–796

    Google Scholar 

  35. Cossu G, Corsini R, Khalid A M et al (2014) Bi-directional 400 Mbit/s LED-based optical wireless communication for non-directed line of sight transmission. Proceedings of the optical fiber communication conference

    Google Scholar 

  36. Zheng Z, Liu L, Hu WW et al (2014) Analysis of uplink schemes for visible-light communication. ZTE Technol J 6:8–11

    Google Scholar 

  37. Liu YF, Yeh CH, Chow CW et al (2012) Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference. Opt Express 20(21):23019–23024

    Article  Google Scholar 

  38. Chi N, Wang YQ, Wang YG et al (2014) Ultrahigh-speed single red-green-blue light emitting diode-based visible light communication system utilizing advanced modulation formats. Chinese Opt Lett 12(1):10605

    Article  Google Scholar 

  39. Komine T, Nakagawa M (2004) Fundamental analysis for visible light communication system using LED lights. Cons Electron IEEE Trans 50(1):100–107

    Article  Google Scholar 

  40. Zhang W, Kavehrad M (2012) Comparison of VLC-based indoor positioning techniques. Opt Express 20(21):23019–23024

    Article  Google Scholar 

  41. Xu Y, Huang X, Li R et al (2014) Research on indoor positioning technology based on LED visible light communication. China Light Lighting 4:11–15

    Google Scholar 

  42. Yang A, Wu Y, Wang Y et al (2014) An indoor positioning method based on visible light tags: China, CN103823204A[P]

    Google Scholar 

  43. Dambul KD, O'brien D, Faulkner G (2011) Indoor optical wireless MIMO system with an imaging receiver. IEEE Photon Technol Lett 23(2):97–99

    Google Scholar 

  44. Ding Y, Xu N, Tu X et al (2014) Experimental research on optical power distribution of indoor visible light communication. Chin J Quant Electron 3:379–384

    Google Scholar 

  45. Fang R, Xu B (2014) Research on adaptive equalization technology of indoor visible light communication system. Data Commun 2(34–36):39

    Google Scholar 

  46. Wen X, Wang J, Xu Z et al (2013) Analysis and simulation of indoor visible light power distribution. J Military Commun Technol 1:73–76

    Google Scholar 

  47. Huang L, Feng G, Li H et al (2014) Research on channel estimation of indoor visible light communication. Optoelectron Technol 34(4):255–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ke, X., Dong, K. (2022). White LED Communication. In: Optical Wireless Communication. Optical Wireless Communication Theory and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0382-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0382-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0381-6

  • Online ISBN: 978-981-19-0382-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics