Skip to main content

Genome Editing Toward Wheat Improvement

  • Chapter
  • First Online:
Genome Editing Technologies for Crop Improvement

Abstract

Wheat (Triticum aestivum) is one of the important field cereal crops, providing human and animal nutrition and maintaining food security globally. Thereby, it is essential to improve wheat for its economic traits by advanced biotechnologies. As a modern technology with great potential, genome editing has been gradually applied in wheat functional genomic study and breeding with the advancement of wheat genetic transformation system. Among the current genome editing technologies available, the most efficient one applied in wheat is CRISPR/Cas9, namely, cluster regularly interspaced short palindromic repeat (CRISPR)-associated endonucleases (Cas). By employing CRISPR/Cas9, many wheat characteristics such as powdery mildew resistance, grain size, seed storage proteins, pre-harvest sprouting, and growth development have been genetically modified. This chapter summarized the application and improvement progress of genome editing tools in wheat based on genetic transformation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, Mikami M, Kawaura K, Endo M, Onishi K, Hayashi T, Sato K (2019) Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep 28:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, She MY, Wang K, Ye XG (2020) Cloning and molecular characterization of Triticum aestivum ornithine aminotransferase (TaOAT) encoding genes. BMC Plant Biol 20:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar A, Wang K, Wang J, Shi L, Du LP, Ye XG (2021) Expression of Arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Rep 40:1155–1170

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410

    Article  Google Scholar 

  • Barro F, Iehisa JC, Gimenez MJ, Garcia-Molina MD, Ozuna CV, Comino I, Sousa C, Gil-Humanes J (2016) Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol J 14:986–996

    Article  CAS  PubMed  Google Scholar 

  • Bhalla PL (2006) Genetic engineering of wheat—current challenges and opportunities. Trends Biotechnol 24:305–311

    Article  CAS  PubMed  Google Scholar 

  • Bilichak A, Sastry-Dent L, Sriram S, Simpson M, Samuel P, Webb S, Jiang F, Eudes F (2020) Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes. Plant Biotechnol J 18:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Budhagatapalli N, Halbach T, Hiekel S, B€uchner H, M€uller AE, Kumlehn J (2020) Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol J 18:2376–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M (2020) Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J 18:2370–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai YP, Wang LW, Chen L, Wu TT, Liu LP, Sun S, Wu CX, Yao WW, Jiang BJ, Shan Y, Han TF, Hou WS (2020) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J 18:298–309

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Sun L, Wu H, Chen J, Ma Y, Zhang X, Du L, Cheng S, Zhang B, Ye X, Pang J, Zhang X, Li L, Andika IB, Chen J, Xu H (2014) Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnol J 12:447–456

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising HB, Kumlehn J, Schweizer P (2016) Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot 67:4979–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HQ, Liu HY, Wang K, Zhang SX, Ye XG (2020) Development and innovation of haploid induction technologies in plants. Hereditas (Beijing) 42(5):466–482

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng M, Hu TC, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Develop Biol 39:595–604

    Article  CAS  Google Scholar 

  • Cheng W, Song XS, Li HP, Cao LH, Sun K, Qiu XL, Xu YB, Yang P, Huang T, Zhang JB, Qu B, Liao YC (2015a) Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol J 13:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Li HP, Zhang JB, Du HJ, Wei QY, Huang T, Yang P, Kong XW, Liao YC (2015b) Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins. Plant Biotechnol J 13:664–674

    Article  CAS  PubMed  Google Scholar 

  • Clemente T, Mitra A (2005) Genetic engineering of wheat: protocols and use to enhance stress tolerance. In: Liang GH, Skinner DZ (eds) Genetically modified crops: their development, uses, and risks. Haworth Press, New York, pp 131–163

    Google Scholar 

  • Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, Palatnik J, Dubcovsky J (2020) A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38:1274–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFrancesco L (2011) Move over ZFNs: a new technology for genome editing may put the zinc finger nuclease franchise out of business, some believe. Not so fast, say the finger people. Nat Biotechnol 29:681–684

    Article  CAS  Google Scholar 

  • Dong H, Yan S, Liu J, Liu P, Sun J (2019) TaCOLD1 defines a new regulator of plant height in bread wheat. Plant Biotechnol J 17:687–699

    Article  CAS  PubMed  Google Scholar 

  • Feng ZY, Mao YF, Xu NF, Zhang BT, Wei PL, Yang DL, Wang Z, Zhang ZJ, Zheng R, Yang L, Zeng L, Liu XD, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Su HD, Bai H, Wang R, Liu YL, Guo XR, Liu C, Zhang J, Yuan J, Birchler JA, Han FP (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Wang S, Li XY, Wei XJ, Zhang YJ, Wang HY, Liu DQ (2015) Expression and functional analysis of a pathogenesis-related protein 1 gene, TcLr19PR1, involved in wheat resistance against leaf rust fungus. Plant Mol Biol Rep 33:797–805

    Article  CAS  Google Scholar 

  • Gao HM, Wang YF, Xu P, Zhang ZB (2018) Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci 9:997

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Xin M, Huang K, Xu Y, Liu Z, Hu Z, Yao Y, Peng H, Ni Z, Sun Q (2016) Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. New Phytol 209:721–732

    Article  CAS  PubMed  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, Atkinson N, Harwood WA (2019) An efficient and reproducible Agrobacterium mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169:1991–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Dressler K, Nimnrichter R (1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat. Plant Sci 72:233–244

    Article  CAS  Google Scholar 

  • Hong YT, Chen LF, Du LP, Su ZQ, Wang JF, Ye XG, Qi L, Zhang ZY (2014) Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genomics 14:341–349

    Article  CAS  PubMed  Google Scholar 

  • Howells RM, Craze M, Bowden S, Wallington EJ (2018) Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biol 18:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZR, Wang R, Zheng M, Liu XB, Meng F, Wu HL, Yao YY, Xin MM, Peng HR, Ni ZF, Sun QX (2018a) TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.). Plant J 96:372–388

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018b) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JX, Mei Y, Chang YN, Tang HL, Wang WX, Du LP, Wang K, Yan YM, Ye XG (2022) Functional analysis of TaPDI genes on storage protein accumulation by CRISPR/Cas9 edited wheat mutants. Int J Biological Macromol 196:131–143

    Article  CAS  Google Scholar 

  • Hua K, Tao XP, Yuan FT, Wang D, Zhu JK (2018) Precise A.T to G.C base editing in the rice genome. Mol Plant 11:627–630

    Article  CAS  PubMed  Google Scholar 

  • Hua K, Tao XP, Han PJ, Wang R, Zhu JK (2019) Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol Plant 12:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Hua K, Jiang Y, Tao X, Zhu JK (2020) Precision genome engineering in rice using prime editing system. Plant Biotechnol J 18:2167–2169

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Tsunashima M, Hiei Y, Komari T (2014) Wheat (Triticum aestivum L.). In: Wang K (ed) Methods in molecular biology, Agrobacterium protocols, 3rd edn. Springer, New Yok, pp 189–198

    Google Scholar 

  • Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Ann Rev Plant Biol 67:421–438

    Article  CAS  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    Article  CAS  PubMed  Google Scholar 

  • Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate NJ, Que Q (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292

    Article  CAS  PubMed  Google Scholar 

  • Koller T, Brunner S, Herren G, Sanchez-Martin J, Hurni S, Keller B (2019) Field grown transgenic Pm3e wheat lines show powdery mildew resistance and no fitness costs associated with high transgene expression. Transgenic Res 28:9–20

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397

    Article  CAS  PubMed  Google Scholar 

  • Li JR, Ye XG, An BY, Du LP, Xu HJ (2012) Genetic transformation of wheat: current status and future prospects. Plant Biotechnol Rep 6:183–193

    Article  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zong Y, Wang YP, Jin S, Zhang DB, Song QN, Zhang R, Gao CX (2018) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li HJ, Zhou Y, Xin WL, Wei YQ, Zhang JL, Guo LL (2019a) Wheat breeding in northern China: achievements and technical advances. Crop J 7:718–729

    Article  CAS  Google Scholar 

  • Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, Liu Y, Kong Q, Zheng S, Wang Y, Qin B, Cao S, Ding Y, Shi J, Yan H, Wang X, Ran C, Ma Z (2019b) Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li J, Chen J, Yan L, Xia L (2020) Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol Plant 13:671–674

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang QJ, Wang K, Liu XL, Bisma R, Jiang L, Wan X, Ye XG, Zhang CY (2019) Improved folate accumulation in genetically modified maize and wheat. J Exp Bot 70:1539–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, Liu DR, Gao C (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zheng MY, Polle EA, Konzak CF (2002) Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Google Scholar 

  • Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang Z, Laroche A (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cheng X, Liu P, Sun J (2017a) miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol 174:1931–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017b) A 4-bp Insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant 10:520–522

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Liu J, Dong H, Sun J (2018) Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density. Plant Biotechnol J 16:495–506

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li HF, Hao CY, Wang K, Wang YM, Qin L, An DG, Li T, Zhang XY (2020a) TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J 18:1330–1342

    Article  CAS  PubMed  Google Scholar 

  • Liu HY, Wang K, Jia ZM, Gong Q, Lin ZS, Du LP, Pei XW, Ye XG (2020b) Editing TaMTL gene induces haploid plants efficiently by optimized Agrobacterium-mediated CRISPR system in wheat. J Exp Bot 71:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Liu CX, Zhong Y, Qi XL, Chen M, Liu ZK, Chen C, Xiaolong T, Li JL, Jiao YY, Wang D, Wang YW, Li MR, Xin MM, Liu WX, Jin WW, Chen SJ (2020c) Extension of the in vivo haploid induction system from maize to wheat. Plant Biotechnol J 18:316–318

    Article  PubMed  Google Scholar 

  • Liu HY, Wang K, Tang HL, Gong Q, Du LP, Pei XW, Ye XG (2020d) CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J Genet Genomics 47:563–575

    Article  PubMed  Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Li H, Chakraborty S, Morbitzer R, Rinaldo A, Upadhyaya N, Bhatt D, Louis S, Richardson T, Lahaye T, Ayliffe M (2019) Efficient TALEN-mediated gene editing in wheat. Plant Biotechnol J 17:2026–2028

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv J, Yu K, Wei J, Gui HP, Liu CX, Liang DW, Wang YL, Zhou HJ, Carlin R, Rich R, Lu TC, Que QD, Wang WC, Zhang XP, Kelliher T (2020) Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Wang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T (1998) Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tiss Org 53:67–74

    Article  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Simkova H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Dolezel J, Berges H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1:15186

    Article  CAS  PubMed  Google Scholar 

  • Moghaieb RE, Sharaf AN, Soliman MH, El-Arabi NI, Momtaz OA (2014) An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene. GM Crops Food 5:132–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS, Tucker EJ, Baumann U, Langridge P, Whitfor R (2019) CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol J 17:1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozuna CV, Iehisa JC, Giménez MJ, Alvarez JB, Sousa C, Barro F (2015) Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization. Plant J 82:794–805

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45(2):421–430

    Article  CAS  PubMed  Google Scholar 

  • Pena PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente TE (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang XJ, Huang L, Deal K, Luo MC, Kong XY, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Qin N, Xu WG, Hu L, Li Y, Wang HW, Qi XL, Fang YH, Hua X (2016) Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene. Protoplasma 253:1513–1513

    Article  PubMed  Google Scholar 

  • Qu BY, He X, Wang J, Zhao YY, Teng W, Shao A, Zhao XQ, Ma WY, Wang JY, Li B, Li ZS, Tong YP (2015) A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol 167:411–423

    Article  CAS  PubMed  Google Scholar 

  • Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao YY, Sawbridge T, Davies JP, Mason J, Webb SR, Spangenberg G, Ainley WM, Walsh TA, Hayden MJ (2018) Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol J 16:2088–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz B, Chen HQ, Wang J, Du LP, Wang K, Ye XG (2019) Overexpression of maize ZmC1 and ZmR transcription factors in wheat regulates anthocyanin biosynthesis in a tissue-specific manner. Inter J Mol Sci 20:5806

    Article  CAS  Google Scholar 

  • Richardson T, Thistleton J, Higgins TJ, Howitt C, Ayliffe M (2014) Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell Tiss Org 119:647–659

    Article  CAS  Google Scholar 

  • Rong W, Qi L, Wang AY, Ye XG, Du LP, Liang HX, Xin ZY, Zhang ZY (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Zhang WJ, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T (2019) Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci U S A 116:5182–5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Leon S, Gil-Humanes J, Ozuna CV, Gimenez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG, Fincher GB, Matsumoto T, Takeda K, Komatsuda T (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Baho M, Lopato S, Langridge P (2016) The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnol J 14:313–322

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar M, Albertsen MC, Young JK, Cigan AM (2018) Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol Biol 97:371–383

    Article  CAS  PubMed  Google Scholar 

  • Song GY, Sun GL, Kong XC, Jia ML, Wang K, Ye XG, Zhou Y, Geng SF, Mao L, Al L (2019) The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q. Crop J 7:113–117

    Article  Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, St Amand P, Yu J, Zhang Z, Bai G (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Sretenovic S, Ren Q, Jia X, Li M, Fan T, Yin D, Xiang S, Guo Y, Liu L, Zheng X, Qi Y, Zhang Y (2020) Plant prime editors enable precise gene editing in rice cells. Mol Plant 13:667–670

    Article  CAS  PubMed  Google Scholar 

  • Tang HL, Liu HY, Zhou Y, Liu HW, Du LP, Wang K, Ye XG (2021) Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnol J 19:224–226

    Article  CAS  PubMed  Google Scholar 

  • Tao LL, Yin GX, Du LP, Shi ZY, She MY, Xu HJ, Ye XG (2011) Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agric Sci China 10(3):317–326

    Article  CAS  Google Scholar 

  • Tucker EJ, Baumann U, Kouidri A, Suchecki R, Baes M, Garcia M, Okada T, Dong C, Wu Y, Sandhu A, Singh M, Langridge P, Wolters P, Albertsen MC, Cigan AM, Whitford R (2017) Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat Commun 8:869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vasil V, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10:667–674

    Article  CAS  Google Scholar 

  • Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y, Deng P, Yuan C, Ma C, Chen X, Zang M, Wang Q, Li K, Chang J, Wang Y, Yang G, He G (2014a) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65:2545–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XM, Wang K, Du LP, Li JR, Xu HJ, Ye XG (2014b) Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat (Triticum aestivum L.). J Integr Agric 13(4):722–732

    Article  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014c) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, Zhao X, Xiao Z, Yin XH, Xing T, Xia GM (2016) A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Mol Biol 91:115–130

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Liu HY, Du LP, Ye XG (2017a) Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J 15:614–623

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zong Y, Gao C (2017b) Targeted mutagenesis in hexaploid bread wheat using the TALEN and CRISPR/Cas systems. Methods Mol Biol 1679:169–185

    Article  CAS  PubMed  Google Scholar 

  • Wang MG, Mao YF, Lu YM, Tao XP, Zhu JK (2017c) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Riaz B, Ye XG (2018a) Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J 6:22–31

    Article  CAS  Google Scholar 

  • Wang W, Simmonds J, Pan Q, Davidson D, He F, Battal A, Akhunova A, Trick HN, Uauy C, Akhunov E (2018b) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131:2463–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YM, Hou J, Liu H, Li T, Wang K, Hao CY, Liu HX, Zhang XY (2019a) TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J Exp Bot 70:1497–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Meng X, Hu X, Sun T, Li J, Wang K, Yu H (2019b) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17:709–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan Q, Tian B, He F, Chen YY, Bai GH, Akhunova A, Trick HN, Akhunov E (2019c) Gene editing of the wheat homologs of TONNEAU1–recruiting motif encoding gene affects grain shape and weight in wheat. Plant J 100:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Gong Q, Ye XG (2020) Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theor Appl Genet 133:1603–1622

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Shi L, Liang XN, Zhao P, Wang WX, Liu JX, Chang YN, Hiei Y, Yanagihara C, Du LP, Ishida Y, Ye XG (2022) The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plant 8:110–117

    Google Scholar 

  • Wei X, Xu HJ, Rong W, Ye XG, Zhang ZY (2019) Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell Environ 42:1471–1485

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Yu M, Xu J, Du J, Ji F, Dong F, Li X, Shi J (2014) Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil. PLoS One 9:e98394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xia C, Zhang L, Zou C, Gu Y, Duan J, Zhao G, Wu J, Liu Y, Fang X, Gao L, Jiao Y, Sun J, Pan Y, Liu X, Jia J, Kong X (2017) A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun 8:15407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Zhang Y, Wang K, Luo XM, Xu DA, Tian XL, Li LL, Ye XG, Xia XC, Li WX, Yan LL, Cao SH (2021) TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytol 231:834–848

    Article  CAS  PubMed  Google Scholar 

  • Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiatova M, Vrana J, Bartos J, Dolezel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Li J, Liu X, Shan T, Qin R, Wei P (2020a) Development of plant prime-editing systems for precise genome editing. Plant Commun 1:100043

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhang C, Yang Y, Zhao S, Kang G, He X, Song J, Yang J (2020b) Versatile nucleotides substitution in plant using an improved prime editing system. Mol Plant 13:675–678

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Shavrukov Y, Bazanova N, Chirkova L, Borisjuk N, Kovalchuk N, Ismagul A, Parent B, Langridge P, Hrmova M, Lopato S (2015) Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. J Exp Bot 66:6635–6650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, Yang B, Zhou X, Zhou H (2018) Highly efficient A.T to G.C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11:631–634

    Article  CAS  PubMed  Google Scholar 

  • Yang JJ, Zhang GQ, An J, Li QX, Chen YH, Zhao XY, Wu JJ, Wang Y, Hao QQ, Wang WQ, Wang W (2020) Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Sci 298:110596

    Article  CAS  PubMed  Google Scholar 

  • Ye XG, Shirley S, Xu HJ, Du LP, Clement T (2002) Regular production of transgenic wheat mediated by Agrobacterium tumefaciens. Agric Sci China 1:239–244

    Google Scholar 

  • Yu TF, Xu ZS, Guo JK, Wang YX, Abernathy B, Fu JD, Chen X, Zhou YB, Chen M, Ye XG, Ma YZ (2017) Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Sci Rep 7:44050

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Wang X, Miao Y, Wang C, Zang M, Chen X, Li M, Li X, Wang Q, Li K, Chang J, Wang Y, Yang G, He G (2015) Metabolic engineering of wheat provitamin A by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHYD). J Agric Food Chem 63:9083–9092

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HF, Xu WG, Wang HW, Hu L, Li Y, Qi XL, Zhang L, Li CX, Hua X (2014a) Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma 251:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK (2014b) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang K, Lin ZS, Du LP, Ma HL, Xiao LL, Ye XG (2014c) Production and identification of haploid dwarf male sterile wheat plants induced by corn inducer. Bot Stud 55:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang YP, Liu JX, Chen KL, Qiu JL, Gao CX (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Yin YJ, Liu XY, Tong SM, Xing JW, Zhang Y, Pudake RN, Izquierdo EM, Peng HR, Xin MM, Hu ZR, Ni ZF, Sun QX, Yao YY (2017a) The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins. Plant Physiol 175:1878–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017b) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang SJ, Zhang RZ, Song GQ, Gao J, Li W, Han XD, Chen ML, Li YL, Li GY (2018a) Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol 18:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D (2018b) Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J 94:857–866

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Liu JX, Chai ZZ, Chen S, Bai Y, Zong Y, Chen KL, Li JY, Jiang LJ, Gao CX (2019a) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plant 5:480–485

    Article  CAS  Google Scholar 

  • Zhang SJ, Zhang RZ, Gao J, Gu TT, Song GQ, Li W, Li DD, Li YL, Li GY (2019b) Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int J Mol Sci 20:4257

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019c) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SJ, Zhang RZ, Gao J, Song GQ, Li JH, Li W, Qi YP, Li YL, Li GY (2021) CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol J 19:1684–1686

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Derkx AP, Liu DC, Buchner P, Hawkesford MJ (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol 17:904–913

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Hong P, Wu JY, Bin Chen X, Ye XG, Pan YY, Wang J, Zhang XS (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170:1578–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM, Sui N, Zhang XS, Wang F (2020) TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol J 18:513–525

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X, Wang J, Huang L, Wang Y, Baby D, Wang D, Zhang T, Qi Y, Zhang Y (2019) Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol Plant 12:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ye, X., Wang, K., Liu, H., Tang, H., Qiu, Y., Gong, Q. (2022). Genome Editing Toward Wheat Improvement. In: Zhao, K., Mishra, R., Joshi, R.K. (eds) Genome Editing Technologies for Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-19-0600-8_12

Download citation

Publish with us

Policies and ethics