Skip to main content

Genome Editing for the Improvement of Oilseed Crops

  • Chapter
  • First Online:

Abstract

Oilseed crops are an important source of dietary fats and proteins in humans and animals. They have significant economic importance being the major source of hydrocarbons for the manufacturing of biofuels and industrially relevant bioproducts. Conventional plant breeding methods along with molecular breeding and transgenic technologies has contributed significantly towards the development of high-yielding cultivars of crops, including oilseeds. However, while these methods are cumbersome and time consuming, the genetically modified (GM) crop cultivars are currently not widely accepted due to regulatory concerns. To satisfy the global demand of improved oilseed crops for the ever-growing population, it is essential that alternative approaches to crop improvement must be considered. Plant breeders are now increasingly inclined towards the recently available genome editing tools for the improvement of agriculturally important traits. Among the several gene-editing platforms, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system has emerged as a revolutionary genome editing tool for its simplicity and wide acceptability to achieve transgene-free gene modifications. In this review, we focus on understanding the historical development of genome editing tools and molecular mechanism of CRISPR-Cas genome editing system followed by its application for the improvement of various desirable traits in oilseed crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abass M, Rajashekar CB (1993) Abscisic acid accumulation in leaves and cultured cells during heat acclimation in grapes. Hort Sci 28:50–52

    CAS  Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1–13

    Article  CAS  Google Scholar 

  • Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS (2018) New breeding technique “genome editing” for crop improvement: applications, potentials and challenges. 3 Biotech 8:336

    Article  PubMed  PubMed Central  Google Scholar 

  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin DR, Miles RR, Arnold NL, Strange TL, Simpson MA (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin N, Ahmad N, Wu N, Pu X, Ma T, Du Y, Wang P (2019) CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max. L). BMC Biotechnol 19:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  • Askew MF (2001) Oilseed crops. In: Weiss EA. Blackwell Science Ltd, Oxford, pp 364. isbn:0-632-05259-7

    Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding–prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B, Legrand L (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152

    Article  CAS  PubMed  Google Scholar 

  • Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C (2019) CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol 19:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao A, Tran LSP, Cao D (2020) CRISPR/Cas9-based gene editing in soybean. In: Legume genomics. Humana Press, New York, pp 349–364

    Chapter  Google Scholar 

  • Bhardwaj S, Passi SJ, Misra A (2011) Overview of trans fatty acids: biochemistry and health effects. Diabetes Metab Syndr Clin Res Rev 5:161–164

    Article  Google Scholar 

  • Bhargava A, Srivastava S (2019) Toward participatory plant breeding. In: Participatory plant breeding: concept and applications. Springer, Singapore, pp 69–86

    Chapter  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budiani A, Putranto RA, Riyadi I, Minarsih H, Faizah R (2018) Transformation of oil palm calli using CRISPR/Cas9 system: toward genome editing of oil palm. IOP Conf Ser: Earth Environ Sci 183:012003

    Article  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One 10:e0136064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185

    Article  CAS  PubMed  Google Scholar 

  • Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci 5:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak T, Starker CG, Voytas DF (2015) Efficient design and assembly of custom TALENs using the Golden Gate platform. In: Chromosomal mutagenesis. Humana Press, New York, pp 133–159

    Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, MacKenzie AF, Fanous MA (1992) Soybean nodulation and grain yield as influenced by N-fertilizer rate, plant population density and cultivar in southern Quebec. Can J Plant Sci 72:1049–1056

    Article  Google Scholar 

  • Chen L, Zhang L, Li D, Wang F, Yu D (2013a) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 110:1963–1971

    Google Scholar 

  • Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G (2013b) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7:44304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  • Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708–719

    Article  CAS  PubMed  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SP, Leach JE (2019) Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    Article  CAS  PubMed  Google Scholar 

  • D’Haeze W, Glushka J, De Rycke R, Holsters M, Carlson RW (2004) Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol Microbiol 52:485–500

    Article  PubMed  CAS  Google Scholar 

  • Da Silva GJ, Costa de Oliveira A (2014) Genes acting on transcriptional control during abiotic stress responses. Adv Agr 2014:1–7. https://doi.org/10.1155/2014/587070

    Article  Google Scholar 

  • Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017) The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci 8:1789

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Sharma N, Prasad M (2019) CRISPR/Cas9: a novel weapon in the arsenal to combat plant diseases. Front Plant Sci 9:2008

    Article  PubMed  PubMed Central  Google Scholar 

  • De Toledo Thomazella DP, Brail Q, Dahlbeck D, Staskawicz B (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Preprint at http://biorxiv.org/content/early/2016/07/20/064824

  • De Vleesschauwer D, Xu J, Höfte M (2014) Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front Plant Sci 5:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci U S A 114:4881–4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Edmeades GO, McMaster GS, White JW, Campos H (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crops Res 90:5–18

    Article  Google Scholar 

  • Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439

    Article  PubMed  Google Scholar 

  • Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans N, Butterworth MH, Baierl A, Semenov MA, West JS, Barnes A, Moran D, Fitt BD (2010) The impact of climate change on disease constraints on production of oilseed rape. Food Security 2:143–156

    Article  Google Scholar 

  • Fan Y, Liu J, Lyu S, Wang Q, Yang S, Zhu H (2017) The soybean Rfg1 gene restricts nodulation by Sinorhizobium fredii USDA193. Front Plant Sci 8:1548

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Fu YB, Yang MH, Zeng F, Biligetu B (2017) Searching for an accurate marker-based prediction of an individual quantitative trait in molecular plant breeding. Front Plant Sci 8:1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chen J, Dai X, Zhang D, Zhao Y (2016) An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol 171:1794–1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:2579–2586

    Article  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez E, Salinas M, Manzano-Agugliaro F (2018) Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 10:391

    Article  Google Scholar 

  • Gull A, Lone AA, Wani NUI (2019) Biotic and abiotic stresses in plants. In: Abiotic and biotic stress in plants. IntechOpen. http://10.5772/intechopen.85832

  • Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124:4154–4161

    Article  PubMed  PubMed Central  Google Scholar 

  • Han YJ, Kim JI (2019) Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnol Rep 1–11

    Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Hemmati H, Gupta D, Basu C (2015) Molecular physiology of heat stress responses in plants. In: Pandey G (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, pp 109–142

    Chapter  Google Scholar 

  • Hernández ML, Mancha M, Martínez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Hilson P, Allemeersch J, Altmann T, Aubourg S, Avon A, Beynon J, Bhalerao RP, Bitton F, Caboche M, Cannoot B, Chardakov V (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res 14:2176–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Xuan H, Yang C, Guo N, Wang H, Zhao J, Xing H (2019) GmHsp90A2 is involved in soybean heat stress as a positive regulator. Plant Sci 285:26–33

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaradat AA (2016) Breeding oilseed crops for climate change. In: Gupta SK (ed) Breeding oilseed crops for sustainable production. Academic, London, pp 421–472

    Chapter  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin UH, Lee JW, Chung YS, Lee JH, Yi YB, Kim YK, Hyung NI, Pyee JH, Chung CH (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung C, Capistrano-Gossmann G, Braatz J, Sashidhar N, Melzer S (2018) Recent developments in genome editing and applications in plant breeding. Plant Breed 137:1–9

    Article  Google Scholar 

  • Kawakami EM, Oosterhuis DM, Snider JL, FitzSimons TR (2013) High temperature and the ethylene antagonist 1-methylcyclopropene alter ethylene evolution patterns, antioxidant responses, and boll growth in Gossypium hirsutum. Am J Plant Sci 4:1400–1408

    Article  CAS  Google Scholar 

  • Kawall K (2019) New possibilities on the horizon: genome editing makes the whole genome accessible for changes. Front Plant Sci 10:525

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kweon J, Kim JS (2013) TALENs and ZFNs are associated with different mutation signatures. Nat Methods 10:185

    Article  PubMed  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N (1999) Synthesis, optical properties, structures and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines and related compounds. J Porphyrins Phthalocyanines 3:453–467

    Article  CAS  Google Scholar 

  • Koenning SR, Wrather JA (2010) Suppression of soybean yield potential in the continental United States by plant diseases from 2006 to 2009. Plant Health Prog 11:5

    Article  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuluev BR, Gumerova GR, Mikhaylova EV, Gerashchenkov GA, Rozhnova NA, Vershinina ZR, Khyazev AV, Matniyazov RT, Baymiev AK, Baymiev AK, Chemeris AV (2019) Delivery of CRISPR/Cas components into higher plant cells for genome editing. Russ J Plant Physiol 66:694–706

    Article  CAS  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Hao M, Wang W, Wang H, Chen F, Chu W, Zhang B, Mei D, Cheng H, Hu Q (2018) An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Front Plant Sci 9:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C (2018) Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13:413–430

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Kanchiswamy CN (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61

    Article  CAS  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Fortún J, Phillips DW, Jones HD (2017) Potential impact of genome editing in world agriculture. Emerg Top Life Sci 1:117–133

    Article  PubMed  Google Scholar 

  • Megha S, Basu U, Kav NN (2018) Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ 41:1–15

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Hu X, Liu Q, Song X, Gao C, Li J, Wang K (2018) Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci China Life Sci 61:122–125

    Article  CAS  PubMed  Google Scholar 

  • Metje-Sprink J, Menz J, Modrzejewski D, Sprink T (2019) DNA-free genome editing: past, present and future. Front Plant Sci 9:1957

    Article  PubMed  PubMed Central  Google Scholar 

  • Miglani GS (2017) Genome editing in crop improvement: present scenario and future prospects. J Crop Improv 31:453–559

    Article  CAS  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2020) Base editing in crops: current advances, limitations and future implications. Plant Biotechnol J 18:20–31

    Article  PubMed  Google Scholar 

  • Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure JD (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujjassim NE, Mallik M, Rathod NKK, Nitesh SD (2019) Cisgenesis and intragenesis a new tool for conventional plant breeding: a review. J Pharmacogn Phytochem 8:2485–2489

    CAS  Google Scholar 

  • Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24:636–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38:433–449

    Article  CAS  PubMed  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equipment 32:261–285

    Article  CAS  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Araki T (2008) Long-distance, graft-transmissible action of Arabidopsis flowering locus T protein to promote flowering. Plant Cell Physiol 49:1645–1658

    Article  CAS  PubMed  Google Scholar 

  • Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem 131:63–69

    Article  CAS  PubMed  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to biotic stresses. In: Abdurakhmonov IY (ed) Plant genomics. InTech, Rijeka, pp 229–272

    Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca MJ, Diez JM, Prohens J, Picó B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochim Biophys Acta 1522:122–129

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram M, Singh RM, Agrawal RK (2014) Genetic analysis for terminal heat stress in bread wheat (Triticum aestivum L. em. Thell). Bioscan 9:771–776

    Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Müller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolletschek H, Borisjuk L, Sánchez-García A, Gotor C, Romero LC, Martínez-Rivas JM, Mancha M (2007) Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bot 58:3171–3181

    Article  CAS  PubMed  Google Scholar 

  • Salsman J, Dellaire G (2016) Precision genome editing in the CRISPR era. Biochem Cell Biol 95:187–201

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/C as system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schönbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W (2001) Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci U S A 98:1376–1380

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedeek KE, Mahas A, Mahfouz M (2019) Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Shew AM, Nalley LL, Snell HA, Nayga RM Jr, Dixon BL (2018) CRISPR versus GMOs: public acceptance and valuation. Global Food Secur 19:71–80

    Article  Google Scholar 

  • Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR, Weers BP (2015) Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol 169:266–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Strohkendl I, Saifuddin FA, Rybarski JR, Finkelstein IJ, Russell R (2018) Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol Cell 71:816–824.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Li N, Huang G, Xu J, Pan Y, Wang Z, Tang Q, Song M, Wang X (2013) Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea. J Integr Plant Biol 55:1092–1103

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y (2018) CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci 19:2716

    Article  PubMed Central  CAS  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Yang S, Liu J, Zhu H (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Yu X, Yang H, Gao Q, Ji H, Wang Y, Yan G, Peng Y, Luo H, Liu K, Li X (2018) Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Front Plant Sci 9:1533

    Article  PubMed  PubMed Central  Google Scholar 

  • The United Nations Global Issues. https://www.un.org/en/globalissues/population. Accessed on 13 March 2022

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Valton J, Daboussi F, Leduc S, Molina R, Redondo P, Macmaster R, Montoya G, Duchateau P (2012) 5′-cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. J Biol Chem 287:30139–30150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Roorkiwal M, Sorrells ME (eds) (2017) Genomic selection for crop improvement: new molecular breeding strategies for crop improvement. Springer, Switzerland

    Google Scholar 

  • Villanueva-Mejia D, Alvarez JC (2017) Genetic improvement of oilseed crops using modern biotechnology. In: Advances in seed biology, pp 295–317. http://10.5772/intechopen.70743

  • Wagner N, Mroczka A, Roberts PD, Schreckengost W, Voelker T (2011) RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes. Plant Biotechnol J 9:723–728

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014a) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X (2014b) Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol 15:677–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrather A, Shannon G, Balardin R, Carregal L, Escobar R, Gupta GK, Ma Z, Morel W, Ploper D, Tenuta A (2010) Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Prog 11:29

    Article  Google Scholar 

  • Wrighton KH (2018) Genetic engineering: expanding the reach of Cas9. Nat Rev Genet 19:250–251

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G, Zhang C, Fan C, Wang Y, Zhou Y (2016) Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Front Plant Sci 7:1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P (2010) miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Xue C, Xue D, Zhao J, Gai J, Guo N, Xing H (2013) Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PLoS One 8:e69810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci U S A 107:18735–18740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wu JJ, Tang T, Liu KD, Dai C (2017) CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Sci Rep 7:7489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Zhu K, Li H, Han S, Meng Q, Khan SU, Fan C, Xie K, Zhou Y (2018) Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J 16:1322–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol 19:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaman QU, Li C, Cheng H, Hu Q (2019) Genome editing opens a new era of genetic improvement in polyploid crops. Crop J 7:141–150

    Article  Google Scholar 

  • Zargar SM, Gupta N, Nazir M, Mir RA, Gupta SK, Agrawal GK, Rakwal R (2016) Omics—a new approach to sustainable production. In Breeding oilseed crops for sustainable production. Academic, pp 317–344

    Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50:488–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wang F, Li S, Wang Y, Bai Y, Xu X (2014) TALE: a tale of genome editing. Prog Biophys Mol Biol 114:25–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Li XL, Neises A, Chen W, Hu LP, Ji GZ, Yu JY, Xu J, Yuan WP, Cheng T, Zhang XB (2016a) Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci Rep 6:28566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016b) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018a) Applications and potential of genome editing in crop improvement. Genome Biol 19:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huang S, Wang X, Liu J, Guo X, Mu J, Tian J, Wang X (2018b) Defective APETALA2 genes lead to sepal modification in Brassica crops. Front Plant Sci 9:367

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang X, Lin Z, Wang J, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Lai J, Li X (2020) A large transposon insertion in the stiff1 promoter increases stalk strength in maize. Plant Cell 32:152–165

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Liu W, Zhang Y, Liu KK (2007) Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic Biochem Physiol 89:89–96

    Article  CAS  Google Scholar 

  • Zimdahl RL (2018) Fundamentals of weed science. Academic

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nat N. V. Kav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, A., Joshi, R.K., Basu, U., Rahman, H., Kav, N.N.V. (2022). Genome Editing for the Improvement of Oilseed Crops. In: Zhao, K., Mishra, R., Joshi, R.K. (eds) Genome Editing Technologies for Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-19-0600-8_17

Download citation

Publish with us

Policies and ethics