Skip to main content

Fluid Management in Pediatric Neurosurgery

  • Chapter
  • First Online:
Transfusion Practice in Clinical Neurosciences
  • 659 Accesses

Abstract

Optimal fluid management is a cornerstone of pediatric neuroanesthesia. The primary aims of fluid therapy in pediatric neurosurgery are to maintain euvolemia and hemodynamic stability while avoiding dyselectrolytemia and imbalances in glucose and metabolic homeostasis. Hypervolemia, hypovolemia, dyselectrolytemia, and metabolic derangement can lead to significant morbidities in children. Fluid management requires careful consideration of the preoperative hydration and electrolyte status of the child, the nature of the surgery, potential for major blood loss, the need for osmotic diuretics, and the overall fluid balance. Isotonic crystalloids are the mainstay of fluid therapy in pediatric neurosurgical procedures. Intraoperative supplementation of dextrose-containing fluids is only required in some special circumstances. The volume and choice of osmotic fluids are guided by the specific needs of the surgery, institutional practice, and hemodynamic and biochemical parameters of the child.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murat I, Humblot A, Girault L, Piana F. Neonatal fluid management. Best Pract Res Clin Anaesthesiol. 2010;24:365–74.

    Article  PubMed  Google Scholar 

  2. Guignard JP. Renal function in the newborn infant. Pediatr Clin N Am. 1982;29:777–90.

    Article  CAS  Google Scholar 

  3. Leslie GI, Philips JB 3rd, Work J, Ram S, Cassady G. The effect of assisted ventilation on creatinine clearance and hormonal control of electrolyte balance in very low birth weight infants. Pediatr Res. 1986;20:447–52.

    Article  CAS  PubMed  Google Scholar 

  4. Shaddy RE, Tyndall MR, Teitel DF, Li C, Rudolph AM. Regulation of cardiac output with controlled heart rate in newborn lambs. Pediatr Res. 1988;24:577–82.

    Article  CAS  PubMed  Google Scholar 

  5. Dennhardt N, Beck C, Huber D, Nickel K, Sander B, Witt LH, et al. Impact of preoperative fasting times on blood glucose concentration, ketone bodies and acid-base balance in children younger than 36 months: A prospective observational study. Eur J Anaesthesiol. 2015;32:857–61.

    Article  CAS  PubMed  Google Scholar 

  6. Lambert E, Carey S. Practice guideline recommendations on perioperative fasting: a systematic review. JPEN J Parenter Enteral Nutr. 2016;40:1158–65.

    Article  PubMed  Google Scholar 

  7. Walker RW. Pulmonary aspiration in pediatric anesthetic practice in the UK: a prospective survey of specialist pediatric centers over a one-year period. Paediatr Anaesth. 2013;23:702–11.

    Article  PubMed  Google Scholar 

  8. Disma N, Thomas M, Afshari A, Veyckemans F, De Hert S. Clear fluids fasting for elective paediatric anaesthesia: The European Society of Anaesthesiology consensus statement. Eur J Anaesthesiol. 2019;36:173–4.

    Article  PubMed  Google Scholar 

  9. Thomas M, Morrison C, Newton R, Schindler E. Consensus statement on clear fluids fasting for elective pediatric general anesthesia. Paediatr Anaesth. 2018;28:411–4.

    Article  PubMed  Google Scholar 

  10. Modi N. Management of fluid balance in the very immature neonate. Arch Dis Child Fetal Neonatal Ed. 2004;89:F108–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19:823–32.

    Article  CAS  PubMed  Google Scholar 

  12. Orbegozo Cortés D, Gamarano Barros T, Njimi H, Vincent JL. Crystalloids versus colloids: exploring differences in fluid requirements by systematic review and meta-regression. Anesth Analg. 2015;120:389–402.

    Article  PubMed  CAS  Google Scholar 

  13. Moritz ML, Ayus C. Isotonic maintenance fluids do not produce hypernatraemia. Arch Dis Child. 2009;94:170.

    Article  CAS  PubMed  Google Scholar 

  14. Madden JR, Dobyns E, Handler M, Foreman NK. Experience with electrolyte levels after craniotomy for pediatric brain tumors. J Pediatr Oncol Nurs. 2010;27:21–3.

    Article  PubMed  Google Scholar 

  15. Friedman JN, Beck CE, DeGroot J, Geary DF, Sklansky DJ, Freedman SB. Comparison of isotonic and hypotonic intravenous maintenance fluids: a randomized clinical trial. JAMA Pediatr. 2015;169:445–51.

    Article  PubMed  Google Scholar 

  16. Choong K, Kho ME, Menon K, Bohn D. Hypotonic versus isotonic saline in hospitalised children: a systematic review. Arch Dis Child. 2006;91:828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McNab S, Duke T, South M, Babl FE, Lee KJ, Arnup SJ, et al. 140 mmol/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. Lancet. 2015;385:1190–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Xu E, Xiao Y. Isotonic versus hypotonic maintenance IV fluids in hospitalized children: a meta-analysis. Pediatrics. 2014;133:105–13.

    Article  PubMed  Google Scholar 

  19. Choong K, Arora S, Cheng J, Farrokhyar F, Reddy D, Thabane L, et al. Hypotonic versus isotonic maintenance fluids after surgery for children: a randomized controlled trial. Pediatrics. 2011;128:857–66.

    Article  PubMed  Google Scholar 

  20. Foster BA, Tom D, Hill V. Hypotonic versus isotonic fluids in hospitalized children: a systematic review and meta-analysis. J Pediatr. 2014;165:163–9.e2.

    Article  PubMed  Google Scholar 

  21. McNab S, Ware RS, Neville KA, Choong K, Coulthard MG, Duke T, et al. Isotonic versus hypotonic solutions for maintenance intravenous fluid administration in children. Cochrane Database Syst Rev. 2014:CD009457.

    Google Scholar 

  22. Tasker RC. Perioperative intravenous fluid in children undergoing brain tumor resection: balancing the threats to homeostasis. J Neurosurg Anesthesiol. 2019;31:2–3.

    Article  PubMed  Google Scholar 

  23. Chromek M, Jungner Å, Rudolfson N, Ley D, Bockenhauer D, Hagander L. Hyponatraemia despite isotonic maintenance fluid therapy: a time series intervention study. Arch Dis Child. 2020;106:491–5.

    Article  Google Scholar 

  24. Tuzun F, Akcura Y, Duman N, Ozkan H. Comparison of isotonic and hypotonic intravenous fluids in term newborns: is it time to quit hypotonic fluids. J Matern Fetal Neonatal Med. 2020;35:1–6.

    Google Scholar 

  25. Dathan K, Sundaram M. Comparison of isotonic versus hypotonic intravenous fluid for maintenance fluid therapy in neonates more than or equal to 34 weeks of gestational age - a randomized clinical trial. J Matern Fetal Neonatal Med. 2021:1–8. online, ahead of print.

    Google Scholar 

  26. Prough DS, Bidani A. Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology. 1999;90:1247–9.

    Article  CAS  PubMed  Google Scholar 

  27. Neville KA, Verge CF, O'Meara MW, Walker JL. High antidiuretic hormone levels and hyponatremia in children with gastroenteritis. Pediatrics. 2005;116:1401–7.

    Article  PubMed  Google Scholar 

  28. Bhagat H, Singhal V, Dash HH, Mahajan S, Mishra N, Pandia MP. Comparative evaluation of intraoperative use of normal saline, Ringer's lactate, and combination of normal saline and Ringer’s lactate in neurosurgical patients - a preliminary randomized clinical trial. Neurol India. 2019;67:452–8.

    Article  PubMed  Google Scholar 

  29. Lima MF, Neville IS, Cavalheiro S, Bourguignon DC, Pelosi P, Malbouisson LMS. Balanced crystalloids versus saline for perioperative intravenous fluid administration in children undergoing neurosurgery: a randomized clinical trial. J Neurosurg Anesthesiol. 2019;31:30–5.

    Article  PubMed  Google Scholar 

  30. Hafizah M, Liu CY, Ooi JS. Normal saline versus balanced-salt solution as intravenous fluid therapy during neurosurgery: effects on acid-base balance and electrolytes. J Neurosurg Sci. 2017;61:263–70.

    Article  PubMed  Google Scholar 

  31. Dey A, Adinarayanan S, Bidkar PU, Bangera RK, Balasubramaniyan V. Comparison of normal saline and balanced crystalloid (plasmalyte) in patients undergoing elective craniotomy for supratentorial brain tumors: a randomized controlled trial. Neurol India. 2018;66:1338–44.

    Article  PubMed  Google Scholar 

  32. Lehtiranta S, Honkila M, Kallio M, Paalanne N, Peltoniemi O, Pokka T, et al. Risk of electrolyte disorders in acutely ill children receiving commercially available plasmalike isotonic fluids: a randomized clinical trial. JAMA Pediatr. 2021;175:28–35.

    Article  PubMed  Google Scholar 

  33. Bagshaw SM, Chawla LS. Hydroxyethyl starch for fluid resuscitation in critically ill patients. Can J Anaesth. 2013;60:709–13.

    Article  PubMed  Google Scholar 

  34. Phillips DP, Kaynar AM, Kellum JA, Gomez H. Crystalloids vs. colloids: KO at the twelfth round? Crit Care. 2013;17:319.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Yu Y, Jia J, Yu W, Xu R, Geng L, et al. Administration of HES in elderly patients undergoing hip arthroplasty under spinal anesthesia is not associated with an increase in renal injury. BMC Anesthesiol. 2017;17:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kabon B, Sessler DI, Kurz A. Effect of intraoperative goal-directed balanced crystalloid versus colloid administration on major postoperative morbidity: a randomized trial. Anesthesiology. 2019;130:728–44.

    Article  PubMed  Google Scholar 

  38. Joosten A, Delaporte A, Ickx B, Touihri K, Stany I, Barvais L, et al. Crystalloid versus colloid for intraoperative goal-directed fluid therapy using a closed-loop system: a randomized, double-blinded, controlled trial in major abdominal surgery. Anesthesiology. 2018;128:55–66.

    Article  CAS  PubMed  Google Scholar 

  39. Xu Y, Wang S, He L, Yu H, Yu H. Hydroxyethyl starch 130/0.4 for volume replacement therapy in surgical patients: a systematic review and meta-analysis of randomized controlled trials. Perioper Med (Lond). 2021;10:16.

    Article  Google Scholar 

  40. Martin GS, Bassett P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: a systematic review and meta-analysis. J Crit Care. 2019;50:144–54.

    Article  CAS  PubMed  Google Scholar 

  41. Feldheiser A, Pavlova V, Bonomo T, Jones A, Fotopoulou C, Sehouli J, et al. Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm. Br J Anaesth. 2013;110:231–40.

    Article  CAS  PubMed  Google Scholar 

  42. Lindroos AC, Niiya T, Silvasti-Lundell M, Randell T, Hernesniemi J, Niemi TT. Stroke volume-directed administration of hydroxyethyl starch or Ringer’s acetate in sitting position during craniotomy. Acta Anaesthesiol Scand. 2013;57:729–36.

    Article  CAS  PubMed  Google Scholar 

  43. Xia J, He Z, Cao X, Che X, Chen L, Zhang J, et al. The brain relaxation and cerebral metabolism in stroke volume variation-directed fluid therapy during supratentorial tumors resection: crystalloid solution versus colloid solution. J Neurosurg Anesthesiol. 2014;26:320–7.

    Article  PubMed  Google Scholar 

  44. Filho NO, Alves RL, Fernandes AT, Castro FS, Melo JR, Módolo NS. Association of increased morbidity with the occurrence of hyperglycemia in the immediate postoperative period after elective pediatric neurosurgery. J Neurosurg Pediatr. 2016;17:625–9.

    Article  PubMed  Google Scholar 

  45. Pietrini D, Di Rocco C, Di Bartolomeo R, Conti G, Ranelletti FO, De Luca D, et al. No-glucose strategy influences posterior cranial fossa tumors’ postoperative course: introducing the Glycemic Stress Index. J Neuro-Oncol. 2009;93:361–8.

    Article  Google Scholar 

  46. De Angelis LC, Brigati G, Polleri G, Malova M, Parodi A, Minghetti D, et al. Neonatal hypoglycemia and brain vulnerability. Front Endocrinol (Lausanne). 2021;12:634305.

    Article  Google Scholar 

  47. Burns CM, Rutherford MA, Boardman JP, Cowan FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics. 2008;122:65–74.

    Article  PubMed  Google Scholar 

  48. McKinlay CJ, Alsweiler JM, Ansell JM, Anstice NS, Chase JG, Gamble GD, et al. Neonatal glycemia and neurodevelopmental outcomes at 2 years. N Engl J Med. 2015;373:1507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feld LG, Neuspiel DR, Foster BA, Leu MG, Garber MD, Austin K, et al. Clinical practice guideline: maintenance intravenous fluids in children. Pediatrics. 2018;142:e20183083.

    Article  PubMed  Google Scholar 

  50. Duggan EW, Carlson K, Umpierrez GE. Perioperative hyperglycemia management: an update. Anesthesiology. 2017;126:547–60.

    Article  PubMed  Google Scholar 

  51. Duncan AE. Hyperglycemia and perioperative glucose management. Curr Pharm Des. 2012;18:6195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sümpelmann R, Becke K, Brenner S, Breschan C, Eich C, Höhne C, et al. Perioperative intravenous fluid therapy in children: guidelines from the Association of the Scientific Medical Societies in Germany. Paediatr Anaesth. 2017;27:10–8.

    Article  PubMed  Google Scholar 

  53. Sümpelmann R, Mader T, Dennhardt N, Witt L, Eich C, Osthaus WA. A novel isotonic balanced electrolyte solution with 1% glucose for intraoperative fluid therapy in neonates: results of a prospective multicentre observational postauthorisation safety study (PASS). Paediatr Anaesth. 2011;21:1114–8.

    Article  PubMed  Google Scholar 

  54. Afroze F, Sarmin M, Kawser CA, Nuzhat S, Shahrin L, Saha H, et al. Effect of hypertonic saline in the management of elevated intracranial pressure in children with cerebral edema: A systematic review and meta-analysis. SAGE Open Med. 2021;9:20503121211004825.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fenn NE 3rd, Sierra CM. Hyperosmolar therapy for severe traumatic brain injury in pediatrics: a review of the literature. J Pediatr Pharmacol Ther. 2019;24:465–72.

    PubMed  PubMed Central  Google Scholar 

  56. Wellard J, Kuwabara M, Adelson PD, Appavu B. Physiologic characteristics of hyperosmolar therapy after pediatric traumatic brain injury. Front Neurol. 2021;12:662089.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rameshkumar R, Bansal A, Singhi S, Singhi P, Jayashree M. Randomized clinical trial of 20% mannitol versus 3% hypertonic saline in children with raised intracranial pressure due to acute CNS infections. Pediatr Crit Care Med. 2020;21:1071–80.

    Article  PubMed  Google Scholar 

  58. Shi J, Tan L, Ye J, Hu L. Hypertonic saline and mannitol in patients with traumatic brain injury: a systematic and meta-analysis. Medicine (Baltimore). 2020;99:e21655.

    Article  Google Scholar 

  59. Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines. Executive Summary Pediatr Crit Care Med. 2019;20:280–9.

    Article  PubMed  Google Scholar 

  60. Roumeliotis N, Dong C, Pettersen G, Crevier L, Emeriaud G. Hyperosmolar therapy in pediatric traumatic brain injury: a retrospective study. Childs Nerv Syst. 2016;32:2363–8.

    Article  PubMed  Google Scholar 

  61. Kumar SA, Devi BI, Reddy M, Shukla D. Comparison of equiosmolar dose of hyperosmolar agents in reducing intracranial pressure-a randomized control study in pediatric traumatic brain injury. Childs Nerv Syst. 2019;35:999–1005.

    Article  PubMed  Google Scholar 

  62. Edate S, Albanese A. Management of electrolyte and fluid disorders after brain surgery for pituitary/suprasellar tumours. Horm Res Paediatr. 2015;83:293–301.

    Article  CAS  PubMed  Google Scholar 

  63. Baylis PH. The syndrome of inappropriate antidiuretic hormone secretion. Int J Biochem Cell Biol. 2003;35:1495–9.

    Article  CAS  PubMed  Google Scholar 

  64. Hardesty DA, Kilbaugh TJ, Storm PB. Cerebral salt wasting syndrome in post-operative pediatric brain tumor patients. Neurocrit Care. 2012;17:382–7.

    Article  PubMed  Google Scholar 

  65. Moritz ML. Syndrome of inappropriate antidiuresis. Pediatr Clin N Am. 2019;66:209–26.

    Article  Google Scholar 

  66. Momi J, Tang CM, Abcar AC, Kujubu DA, Sim JJ. Hyponatremia-what is cerebral salt wasting? Perm J. 2010;14:62–5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Segura Matute S, Balaguer Gargallo M, Cambra Lasaosa FJ, Zambudio Sert S, Martín Rodrigo JM, Palomeque RA. Fluid and electrolyte disorders following surgery for brain tumors. An Pediatr (Barc). 2007;67:225–30.

    Article  CAS  Google Scholar 

  68. Oh JY, Shin JI. Syndrome of inappropriate antidiuretic hormone secretion and cerebral/renal salt wasting syndrome: similarities and differences. Front Pediatr. 2014;2:146.

    PubMed  Google Scholar 

  69. Matarazzo P, Genitori L, Lala R, Andreo M, Grossetti R, de Sanctis C. Endocrine function and water metabolism in children and adolescents with surgically treated intra/parasellar tumors. J Pediatr Endocrinol Metab. 2004;17:1487–95.

    Article  CAS  PubMed  Google Scholar 

  70. Cohen M, Guger S, Hamilton J. Long term sequelae of pediatric craniopharyngioma - literature review and 20 years of experience. Front Endocrinol (Lausanne). 2011;2:81.

    Article  Google Scholar 

  71. Refardt J. Diagnosis and differential diagnosis of diabetes insipidus: update. Best Pract Res Clin Endocrinol Metab. 2020;34:101398.

    Article  CAS  PubMed  Google Scholar 

  72. Di Iorgi N, Napoli F, Allegri AE, Olivieri I, Bertelli E, Gallizia A, et al. Diabetes insipidus–diagnosis and management. Horm Res Paediatr. 2012;77:69–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Lamsal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamsal, R., Bista, N.R. (2022). Fluid Management in Pediatric Neurosurgery. In: Prabhakar, H., S Tandon, M., Kapoor, I., Mahajan, C. (eds) Transfusion Practice in Clinical Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-19-0954-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0954-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0953-5

  • Online ISBN: 978-981-19-0954-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics