Skip to main content

Terahertz Spectrum in Biomedical Engineering

  • Chapter
  • First Online:
Sub-Terahertz Sensing Technology for Biomedical Applications

Abstract

In recent years, terahertz radiation (THz = 1012 Hz) has attracted much attention due to its exceptional non-invasive and non-ionizing sensing capabilities. The sub-THz band (0.1–0.3 THz) and the THz band (0.3–10 THz) lie between millimeter waves (mm-waves) and light waves with the ability to harness their advantages. The capacity for these sub-THz and THz waves to penetrate deeply into dielectric materials combined with their high spatial resolution makes them well suited for biomedical applications, including in-vivo and ex-vivo experiments. The purpose of this chapter is to discuss how the sensors based on these frequency spectra can be used in various biomedical applications, classified into three major domains, i.e., diagnostics, imaging, and treatment, where they provide many advantages over the existing devices. Next, we will discuss the appropriateness of using photonics and electronics THz instruments in THz applications and the suitability of using electronics in the sub-THz regime. Finally, we'll look at artificial intelligence's function in enhancing the technology's versatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nie Y, Du L, Mou Y, Xu Z, Weng L, Du Y, Zhu Y, Hou Y, Wang T (2013) Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation. BMC Cancer 13:582

    Article  Google Scholar 

  2. Costa FP, de ORM A (2011) Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br J Cancer 105:640–648

    Google Scholar 

  3. Gualdi G, Costantini E, Reale M, Amerio P (2021) Wound repair and extremely low frequency-electromagnetic field: insight from in vitro study and potential clinical application. Int J Mol Sci 22(9):5037

    Google Scholar 

  4. Wald LL, McDaniel PC, Witzel T, Stockmann JP, Cooley CZ (2020) Low-cost and portable MRI. J Magn Reson Imaging 52:686–696

    Article  Google Scholar 

  5. Wang L (2018) Microwave sensors for breast cancer detection. Sensors 18:655

    Article  Google Scholar 

  6. El-Shenawee M, Vohra N, Bowman T, Bailey K (2019) Cancer detection in excised breast tumors using terahertz imaging and spectroscopy. Biomed Spectrosc Imaging 8:1–9

    Article  Google Scholar 

  7. Pilling M, Gardner P (2016) Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem Soc Rev 45:1935–1957

    Article  Google Scholar 

  8. Singh B, Kaur P, Kumar V, Maroules M (2021) COVID-19 vaccine induced Axillary and Pectoral Lymphadenopathy on PET scan. Radiol Case Rep 16:1819–1821

    Article  Google Scholar 

  9. Roriz P, Silva S, Frazão O, Novais S (2020) Optical fiber temperature sensors and their biomedical applications. Sensors (Switzerland) 20(7):2113

    Article  Google Scholar 

  10. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543–2555

    Article  Google Scholar 

  11. Vardasca R, Magalhaes C, Mendes J (2019) Biomedical applications of infrared thermal imaging: current state of machine learning classification. In: Proceedings, vol 27(1), pp 46

    Google Scholar 

  12. Amanatiadis SA, Apostolidis GK, Bekiari CS, Kantartzis NV (2020) Transcranial ultrasonic propagation and enhanced brain imaging exploiting the focusing effect of the skull. COMPEL Int J Comput Math Electr Electron Eng 39:671–682

    Article  Google Scholar 

  13. Rawson SD, Maksimcuka J, Withers PJ, Cartmell SH (2020) X-ray computed tomography in life sciences. BMC Biol 181(18):1–15

    Google Scholar 

  14. Waynant RW, Ilev IK (2000) Toward practical coherent X-ray sources: potential medical applications. IEEE J Sel Top Quantum Electron 6:1465–1469

    Article  Google Scholar 

  15. Su H-A, Hsiao S-W, Hsu Y-C, Wang L-Y, Yen H-H (2020) Superiority of NBI endoscopy to PET/CT scan in detecting esophageal cancer among head and neck cancer patients: a retrospective cohort analysis. BMC Cancer 201(20):1–9

    Google Scholar 

  16. Gartshore A, Kidd M, Joshi LT (2021) Applications of microwave energy in medicine. Biosensors (Basel) 11:96

    Article  Google Scholar 

  17. Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL (2021) Magnetic nanoparticles in biology and medicine: past, present, and future trends. Pharmaceutics 13:943

    Article  Google Scholar 

  18. Tang L, Chang SJ, Chen C-J, Liu J-T (2020) Non-invasive blood glucose monitoring technology: a review. Sensors (Basel) 20:1–32

    Google Scholar 

  19. Haage V, Ferreira de Oliveira-Filho E, Moreira-Soto A, Kühne A, Fischer C, Sacks JA, Corman VM, Müller MA, Drosten C, Drexler JF (2021) Impaired performance of SARS-CoV-2 antigen-detecting rapid diagnostic tests at elevated and low temperatures. J Clin Virol 138:104796

    Article  Google Scholar 

  20. Zhang R, Liu S, Jin H, Luo Y, Zheng Z, Gao F, Zheng Y (2019) Non-invasive electromagneticwave sensing of glucose. Sensors (Switzerland) 19(5):1151

    Article  Google Scholar 

  21. Vigneswaran N, Padmapriya P, Noorasafrin A, Pooja B, Hema K, Al’aina Yuhainis Firus K, Nithyakalyani K, Fahmi S (2018) Skin cancer detection using non-invasive techniques. RSC Adv 8:28095–28130

    Article  Google Scholar 

  22. Arezoo M, Sally G, Asal R, Kamran K (2017) Review of breast screening: toward clinical realization of microwave imaging. Med Phys 44:446–458

    Article  Google Scholar 

  23. Summers PE, Vingiani A, Di Pietro S, Martellosio A, Espin-Lopez PF, Di Meo S, Pasian M, Ghitti M, Mangiacotti M, Sacchi R, Veronesi P, Bozzi M, Mazzanti A, Perregrini L, Svelto F, Preda L, Bellomi M, Renne G (2019) Towards mm-wave spectroscopy for dielectric characterization of breast surgical margins. Breast 44:64–69

    Article  Google Scholar 

  24. Park GS, Kim YH, Han H, Han JK, Ahn J, Son JH, Park WY, Jeong YU (2012) Convergence of terahertz sciences in biomedical systems. Springer

    Book  Google Scholar 

  25. Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y (2016) Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol 34:810–824

    Article  Google Scholar 

  26. Wei L, Yu L, Jiaoqi H, Guorong H, Yang Z, Weiling F (2018) Application of terahertz spectroscopy in biomolecule detection. Front Lab Med 2:127–133

    Article  Google Scholar 

  27. Zhou J, Wang X, Wang Y, Huang G, Yang X, Zhang Y, Xiong Y, Liu L, Zhao X, Fu W (2021) A novel THz molecule-selective sensing strategy in aqueous environments: THz-ATR spectroscopy integrated with a smart hydrogel. Talanta 228:122213

    Article  Google Scholar 

  28. Brown ER, Mendoza EA, Kuznetsova Y, Neumann A, Brueck SRJ (2013) THz signatures of DNA in nanochannels under electrophoretic control. In: Proceedings of IEEE Sensors, pp 1–3

    Google Scholar 

  29. Zhang W, Brown ER, Rahman M, Norton ML (2013) Observation of terahertz absorption signatures in microliter DNA solutions. Appl Phys Lett 102:023701

    Article  Google Scholar 

  30. Son J-H, Oh SJ, Cheon H (2019) Potential clinical applications of terahertz radiation. J Appl Phys 125:190901

    Article  Google Scholar 

  31. Wang W, Li H, Zhang Y, Zhang C Correlations between terahertz spectra and molecular structures of 20 standard α-amino acids. 25(10):2074–2079

    Google Scholar 

  32. Yi W, Yu J, Xu Y, Wang F, Yu Q, Sun H, Xu L, Liu Y, Jiang L (2017) Broadband terahertz spectroscopy of amino acids. Instrum Sci Technol 45:423–439

    Article  Google Scholar 

  33. Smith AE, Hawkins BG, Kirby BJ, Rana F, George PA, Hui W (2008) Microfluidic devices for terahertz spectroscopy of biomolecules. Opt Exp 16(3):1577–1582

    Article  Google Scholar 

  34. Lee D-K, Kang J-H, Lee J-S, Kim H-S, Kim C, Hun Kim J, Lee T, Son J-H, Park Q-H, Seo M (2015) Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci Rep 51(5):1–7

    Google Scholar 

  35. Kaurav P, Koul SK, Basu A (2021) Non-invasive glucose measurement using sub-terahertz sensor, time domain processing and neural network. IEEE Sens J 21(18):20002–20009

    Article  Google Scholar 

  36. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th ed. Garland Science, New York

    Google Scholar 

  37. Otani C, Kawase K, Oikawa M, Hayashi S, Ogawa Y (2008) Interference terahertz label-free imaging for protein detection on a membrane. Opt Exp 16(26):22083–22089

    Article  Google Scholar 

  38. Ahmed K, Ahmed F, Roy S, Paul BK, Aktar MN, Vigneswaran D, Islam MS (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19:3368–3375

    Article  Google Scholar 

  39. Emaminejad H, Mir A, Farmani A (2021) Design and simulation of a novel tunable terahertz biosensor based on metamaterials for simultaneous monitoring of blood and urine components. Plasmon 1:1–12

    Google Scholar 

  40. Wang M, Li T, Chen X, Hou X, Li Y, Tian Z (2021) Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection. Opt Mater Exp 11(7):2268–2277

    Article  Google Scholar 

  41. Konnikova M, Cherkasova O, Nazarov M, Vrazhnov D, Kistenev Y, Shkurinov A (2020) Terahertz spectroscopy of blood plasma as a promising method for diagnosing of thyroid cancer. In: International conference on infrared, millimeter, and terahertz waves (IRMMW-THz), pp 846–847

    Google Scholar 

  42. Pickett HM, Poynter RL, Cohen EA, Delitsky ML, Pearson JC, Müller HSP (1998) Submillimeter, millimeter, and microwave spectral line catalog. J Quant Spectrosc Radiat Transf 60:883–890

    Article  Google Scholar 

  43. Rothbart N, Holz O, Koczulla R, Schmalz K, Hübers H-W (2019) Analysis of human breath by millimeter-wave/terahertz spectroscopy. Sensors (Basel) 19(12):2719

    Article  Google Scholar 

  44. Schmalz K, Rothbart N, Neumaier PFX, Borngraber J, Hubers HW, Di K (2017) Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits. IEEE Trans Microw Theor Tech 65:1807–1818

    Article  Google Scholar 

  45. Wang C, Perkins B, Wang Z, Han R (2018) Molecular detection for unconcentrated gas with ppm sensitivity using 220-to-320-GHz dual-frequency-comb spectrometer in CMOS. IEEE Trans Biomed Circuits Syst 12:709–721

    Google Scholar 

  46. Fosnight AM, Moran BL, Medvedev IR (2013) Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Appl Phys Lett 103:133703

    Article  Google Scholar 

  47. Hindle F, Bray C, Hickson K, Fontanari D, Mouelhi M, Cuisset A, Mouret G, Bocquet R (2017) Chirped pulse spectrometer operating at 200 GHz. J Infrared Millimeter Terahertz Waves 391(39):105–119

    Google Scholar 

  48. Bigourd D, Cuisset A, Hindle F, Matton S, Bocquet R, Mouret G, Cazier F, Dewaele D, Nouali H (2006) Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods. Appl Phys B 864(86):579–586

    Google Scholar 

  49. Hu BB, Nuss MC (1995) Imaging with terahertz waves. Opt Lett 20(16):1716–1718

    Article  Google Scholar 

  50. Young AT (1981) Rayleigh scattering. Appl Opt 20(4):533–535

    Article  Google Scholar 

  51. Feynman RP, Leighton RB, Sands M (1964) The Feynman lectures on physics, vol I; Chapter 46. Addison–Wesley

    Google Scholar 

  52. van den Bos A, den Dekker AJ (1997) Resolution: a survey. JOSA A 14(3):547–557

    Article  Google Scholar 

  53. Peng Y, Shi C, Wu X, Zhu Y, Zhuang S (2020) Terahertz imaging and spectroscopy in cancer diagnostics: a technical review. BME Front 1–11

    Google Scholar 

  54. Park DW, Yang J, Suh J-S, Son J-H, Jeong K, Noh SK, Kim S-H, Kang S-G, Oh SJ, Park Y, Huh Y-M, Bin JY (2014) Study of freshly excised brain tissues using terahertz imaging. Biomed Opt Exp 5(8):2837–2842

    Article  Google Scholar 

  55. Fitzgerald AJ (2012) Classification of terahertz-pulsed imaging data from excised breast tissue. J Biomed Opt 17(1):016005

    Article  Google Scholar 

  56. Bowman TC, El-Shenawee M, Campbell LK (2015) Terahertz imaging of excised breast tumor tissue on paraffin sections. IEEE Trans Antennas Propag 63:2088–2097

    Article  MathSciNet  MATH  Google Scholar 

  57. Purushotham AD, Provenzano E, Pickwell-MacPherson E, Pepper M, Ashworth PC, Pinder SE, Wallace VP (2009) Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Exp 17(15):12444–12454

    Article  Google Scholar 

  58. Reid CB, Fitzgerald A, Reese G, Goldin R, Tekkis P, O’Kelly PS, Pickwell-MacPherson E, Gibson AP, Wallace VP (2011) Terahertz pulsed imaging of freshly excised human colonic tissues. Phys Med Biol 56:4333

    Article  Google Scholar 

  59. Kong K, Rowlands CJ, Varma S, Perkins W, Leach IH, Koloydenko AA, Williams HC, Notingher I (2013) Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. Proc Natl Acad Sci U S A 110:15189

    Article  Google Scholar 

  60. Portieri A, Grootendorst M, Fitzgerald T (2016) Intra-operative terahertz probe for detection of breast cancer. In: 2015 8th UK, Europe, China millimeter waves and THz technology workshop (UCMMT), pp 1–2

    Google Scholar 

  61. Hassan LAM, Hufnagle DC, El-Shenawee M, Pacey GE (2012) Terahertz imaging for margin assessment of breast cancer tumors. In: IEEE/MTT-S international microwave symposium digest, pp 1–3

    Google Scholar 

  62. Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD (2004) Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br J Dermatol 151:424–432

    Article  Google Scholar 

  63. Pickwell E, Cole BE, Fitzgerald AJ, Pepper M, Wallace VP (2004) In vivo study of human skin using pulsed terahertz radiation. Phys Med Biol 49:1595

    Article  Google Scholar 

  64. Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002) Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 47:3853–3863

    Article  Google Scholar 

  65. Zaytsev KI, Chernomyrdin NV, Kudrin KG, Gavdush AA, Nosov PA, Yurchenko SO, Reshetov IV (2016) In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi. J Phys Conf 735:012076

    Article  Google Scholar 

  66. Lindley-Hatcher H, Stantchev RI, Chen X, Hernandez-Serrano AI, Hardwicke J, Pickwell-MacPherson E (2021) Real time THz imaging—opportunities and challenges for skin cancer detection. Appl Phys Lett 118:230501

    Article  Google Scholar 

  67. Kamburoğlu K, Yetimoĝlu NÖ, Altan H (2014) Characterization of primary and permanent teeth using terahertz spectroscopy. Dentomaxillofacial Radiol 43(6):20130404

    Article  Google Scholar 

  68. Park C, Park JY, Son J-H, Ahn K-M, Sim YC (2013) Terahertz imaging of excised oral cancer at frozen temperature. Biomed Opt Exp 4(8):1413–1421

    Article  Google Scholar 

  69. Yadav NP, Hu G, Yao Z, Kumar A (2021) Diagnosis of dental problem by using terahertz technology. J Electron Sci Technol 100082

    Google Scholar 

  70. Doradla P, Alavi K, Joseph CS, Giles RH (2016) Development of terahertz endoscopic system for cancer detection. In: Terahertz, RF, millimeter, and submillimeter-wave technology and applications IX, vol 9747, p 97470F

    Google Scholar 

  71. Lee ES, Son J-H, Kim S-H, Jeon T-I, Bin JY (2009) A miniaturized fiber-coupled terahertz endoscope system. Opt Exp 17(19):17082–17087

    Article  Google Scholar 

  72. Das PM, Singal R (2016) DNA methylation and cancer. J Clin Oncol 22(22):4632–4642

    Article  Google Scholar 

  73. Cheon H, Yang H, Lee S-H, Kim YA, Son J-H (2016) Terahertz molecular resonance of cancer DNA. Sci Rep 61(6):1–10

    Google Scholar 

  74. Cheon H, Paik JH, Choi M, Yang H-J, Son J-H (2019) Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci Rep 91(9):1–10

    Google Scholar 

  75. Son J-H, Cheon H (2020) Toward cancer treatment using terahertz radiation: demethylation of cancer cells. 11390:1139002

    Google Scholar 

  76. Yang H-J, Cheon H, Son J-H, Choi M (2019) Effective demethylation of melanoma cells using terahertz radiation. Biomed Opt Exp 10(10):4931–4941

    Article  Google Scholar 

  77. Hill HM (2021) A portable laser system fills the terahertz gap. Phys Today 74:12–15

    Article  Google Scholar 

  78. Gulevich DR, Koshelets VP, Kusmartsev FV (2019) Bridging the terahertz gap for chaotic sources with superconducting junctions. Phys Rev B 99:060501

    Article  Google Scholar 

  79. Han R, Hu Z, Wang C, Holloway J, Yi X, Kim M, Mawdsley J (2019) Filling the gap: silicon terahertz integrated circuits offer our best bet. IEEE Microw Mag 20:80–93

    Article  Google Scholar 

  80. Wogan T (2019) Filling the terahertz gap. Phys World 32:6

    Article  Google Scholar 

  81. Sirtori C (2002) Applied physics: bridge for the terahertz gap. Nature 417:132–133

    Article  Google Scholar 

  82. Why have terahertz frequencies been difficult to produce and detect? Notedev. https://sites.google.com/a/ferroix.net/notedevitn/the-terahertz-gap/why-have-terahertz-frequencies-been-difficult-to-produce-and-detect

  83. Chattopadhyay G (2011) Technology, capabilities, and performance of low power terahertz sources. IEEE Trans Terahertz Sci Technol 1:33–53

    Article  Google Scholar 

  84. Welp U, Kadowaki K, Kleiner R (2013) Superconducting emitters of THz radiation. Nat Photonics 79(7):702–710

    Article  Google Scholar 

  85. Xie J, Ye W, Zhou L, Guo X, Zang X, Chen L, Zhu Y (2021) A review on terahertz technologies accelerated by silicon photonics. Nanomater 11:1646

    Article  Google Scholar 

  86. Shumyatsky P, Alfano RR (2011) Terahertz sources. J Biomed Opt 16:033001

    Article  Google Scholar 

  87. Lee YS (2009) Principles of terahertz science and technology, pp 1–340

    Google Scholar 

  88. Nagai M, Tanaka K, Ohtake H, Bessho T, Sugiura T, Hirosumi T, Yoshida M (2004) Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses. Appl Phys Lett 85:3974

    Google Scholar 

  89. Schneider A, Ruiz B, Stillhart M, Neis M, Günter P, Khan RUA (2006) Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment. JOSA B 23(9):1822–1835

    Article  Google Scholar 

  90. Erschens DN, Turchinovich D, Jepsen PU (2011) Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulses. J Infrared Millimeter Terahertz Waves 3212(32):1371–1381

    Article  Google Scholar 

  91. Zhang C, Chosrowjan H, Murakami H, Kawayama I, Tonouchi M, Fujita M, Somekawa T, Avestisyan Y (2012) Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask. Opt Exp 20(23):25752–25757

    Article  Google Scholar 

  92. Coutaz J-L, Frederic Garet VPW (2018) Principle of terahertz TDS. In: Principles of terahertz time-domain spectroscopy. Jenny Stanford Publishing

    Google Scholar 

  93. Rafailov EU, Gric T, Gorodetsky A, Bazieva N (2019) Compact and tunable room temperature THz source from quantum dot based ultrafast photoconductive antennae. In: 21st International conference on transparent optical networks (ICTON), pp 1–1

    Google Scholar 

  94. Burford NM, El-Shenawee MO (2017) Review of terahertz photoconductive antenna technology. Opt Eng 56:010901

    Article  Google Scholar 

  95. Rana G, Bhattacharya A, Gupta A, Ghindani D, Jain R, Duttagupta SP, Prabhu SS (2019) A polarization-resolved study of nanopatterned photoconductive antenna for enhanced terahertz emission. IEEE Trans Terahertz Sci Technol 9:193–199

    Article  Google Scholar 

  96. Lepeshov S, Gorodetsky A, Krasnok A, Rafailov E, Belov P (2017) Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev 11(1):1600199

    Article  Google Scholar 

  97. Gregory IS, Baker C, Tribe WR, Bradley IV, Evans MJ, Linfield EH, Davies AG, Missous M (2005) Optimization of photomixers and antennas for continuous-wave terahertz emission. IEEE J Quantum Electron 44(5):717–728

    Article  Google Scholar 

  98. Ryu H-C, Kim N, Park J-W, Han S-P, Ko H, Moon K, Jeon MY, Park KH (2013) A tunable continuous-wave terahertz generator based on 1.3 μm dual-mode laser diode and travelling-wave photodiode. In: Terahertz, RF, millimeter, and submillimeter-wave technology and applications VI, vol 19(16), pp 15397–15403

    Google Scholar 

  99. Doria A, Gallerano GP, Giovenale E (2019) Novel schemes for compact FELs in the THz region. Condens Matter 4(4):90

    Article  Google Scholar 

  100. Li M, Yang XF, Xu Z, Shu XJ, Lu XY, Huang WH, Bin WH, Dou YH, Shen XM, Shan LJ, Deng DR, Xu Y, Bai W, Feng DC, Wu D, Xiao DX, Wang JX, Luo X, Zhou K, Lao CL, Yan LG, Lin SF, Zhang P, Zhang H, He TH, Pan Q, Li XK, Li P, Liu Y, De YL, Liu J, Zhang DM, Li K, Chen YN (2018) Experimental study on the stimulated saturation of terahertz free electron laser. Acta Phys Sin 67(8):084102

    Article  Google Scholar 

  101. Li Q, Da LY, Ding SH, Wang Q (2012) Terahertz computed tomography using a continuous-wave gas laser. J Infrared Millimeter Terahertz Waves 33(5):548–558

    Article  Google Scholar 

  102. Wang X, Shen C, Jiang T, Zhan Z, Deng Q, Li W, Wu W, Yang N, Chu W, Duan S (2016) High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode. AIP Adv 6(7):075210

    Google Scholar 

  103. Li LH, Garrasi K, Kundu I, Han YJ, Salih M, Vitiello MS, Davies AG, Linfield EH (2018) Broadband heterogeneous terahertz frequency quantum cascade laser. Electron Lett 54(21):1229–1231

    Article  Google Scholar 

  104. Fujita K, Jung S, Jiang Y, Kim JH, Nakanishi A, Ito A, Hitaka M, Edamura T, Belkin MA (2018) Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics 7(11):1795–1817

    Article  Google Scholar 

  105. Chang TY (1974) Optically pumped submillimeter-wave sources. IEEE Trans Microw Theor Tech 22:983–988

    Article  Google Scholar 

  106. Png GM, Falconer RJ, Fischer BM, Zakaria HA, Mickan SP, Middelberg APJ, Abbott D (2009) Terahertz spectroscopic differentiation of microstructures in protein gels. Opt Exp 17:13102

    Article  Google Scholar 

  107. Sun Q, Stantchev RI, Wang J, Parrott EPJ, Cottenden A, Chiu T-W, Ahuja AT, Pickwell-MacPherson E (2019) In vivo estimation of water diffusivity in occluded human skin using terahertz reflection spectroscopy. J Biophotonics 12:201800145

    Article  Google Scholar 

  108. Sengupta K, Nagatsuma T, Mittleman DM (2018) Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron 112(1):622–635

    Article  Google Scholar 

  109. Lin YJ, Jarrahi M (2020) Heterodyne terahertz detection through electronic and optoelectronic mixers. Rep Prog Phys 83(6):066101

    Article  Google Scholar 

  110. Maestrini A, Ward J, Chattopadhyay G, Schlecht E, Mehdi I (2008) Terahertz sources based on frequency multiplication and their applications. Frequenz 62(5–6):118–122

    Article  Google Scholar 

  111. Zhang Y, Chen Y, Li Y, Qu K, Ren T (2020) Modelling technology of InP heterojunction bipolar transistor for THz integrated circuit. (Invited). Int J Numer Model Electron Netw Dev Fields 33(3):2579

    Google Scholar 

  112. Grzyb J, Heinemann B, Pfeiffer UR (2017) Solid-state terahertz superresolution imaging device in 130 nm SiGe BiCMOS technology. IEEE Trans Microw Theor Tech, 65(110):4357–4372

    Google Scholar 

  113. Sun Y, Tao C, Sun J, Qin H, Ban J, Luo H (2018) Filter-enhanced high-sensitivity HEMT terahertz detector at room temperature. Acta Opt Sin 38(3):0304001

    Article  Google Scholar 

  114. Lü JQ, Shur MS (2001) Terahertz detection by high-electron-mobility transistor: enhancement by drain bias. Appl Phys Lett 78(17):2587–2588

    Article  Google Scholar 

  115. Khalid A, Pilgrim NJ, Dunn GM, Holland MC, Stanley CR, Thayne IG, Cumming DRS (2007) A planar Gunn diode operating above 100 GHz. IEEE Electron Dev Lett 28(10):849–851

    Article  Google Scholar 

  116. Tian Y, He Y, Huang K, Jiang J, Miao L (2019) High power 110 GHz balanced Schottky diode frequency doubler. Laser Eng 48(9):919002–0919002

    Article  Google Scholar 

  117. Aghasi H, Naghavi SMH, Taba MT, Aseeri MA, Cathelin A, Afshari E (2020) Terahertz electronics: application of wave propagation and nonlinear processes. Appl Phys Rev 7:021302

    Article  Google Scholar 

  118. Lewis RA (2019) A review of terahertz detectors. J Phys D Appl Phys 52:433001

    Article  Google Scholar 

  119. Lee I, Jeon S (2020) WR-1.5 high-power frequency doubler in 130 nm InP HBT technology. IEEE Microw Wirel Compon Lett 30(5):504–507

    Google Scholar 

  120. Hillger P, Grzyb J, Jain R, Pfeiffer UR (2019) Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans Terahertz Sci Technol 9(1):1–19

    Article  Google Scholar 

  121. Chen Y, Zhang Y, Sun Y, Li O, Lu H, Cheng W, Xu R (2019) A 220 GHz InP DHBT power amplifier with integrated planar spatial power combiner. IEEE Microw Wirel Compon Lett 29(3):225–227

    Article  Google Scholar 

  122. Ajayan J, Nirmal D, Mathew R, Kurian D, Mohankumar P, Arivazhagan L, Ajitha D (2021) A critical review of design and fabrication challenges in InP HEMTs for future terahertz frequency applications. Mater Sci Semicond Process 128:105753

    Article  Google Scholar 

  123. Kenneth KO (2020) CMOS platform for terahertz. In: IEEE international symposium on radio-frequency integration technology (RFIT), pp 106–108

    Google Scholar 

  124. Chattopadhyay G, Schlecht E, Ward JS, Gill JJ, Javadi HHS, Maiwald F, Mehdi I (2004) An all-solid-state broad-band frequency multiplier chain at 1500 GHz. IEEE Trans Microw Theor Tech 52:1538–1547

    Article  Google Scholar 

  125. Shijia Z, Zhiming R, Wenjiang T, Enshuai Z (2020) A cascaded difference frequency generation method combined with cavity phase matching and quasi phase matching for high-efficiency terahertz generation. Laser Phys 30(11):115401

    Article  Google Scholar 

  126. Nikodem M, Krzempek K, Karwat R, Dudzik G, Abramski K, Wysocki G (2014) Chirped laser dispersion spectroscopy with differential frequency generation source. Opt Lett 39(15):4420–4423

    Article  Google Scholar 

  127. Ishibashi T, Shimizu N, Kodama S, Ito H, Nagatsuma T, Furuta T (1997) Uni-traveling-carrier photodiodes Ultrafast Electronics and Optoelectronics, p UC3

    Google Scholar 

  128. Peytavit E, Ducournau G, Lampin J-F (2021) THz photomixers. In: Fundamentals of terahertz devices and applications, pp 137–186

    Google Scholar 

  129. Daghestani N, Parow-Souchon K, Pardo D, Liu H, Brewster N, Frogley M, Cinque G, Alderman B, Huggard PG (2019) Room temperature ultrafast InGaAs Schottky diode based detectors for terahertz spectroscopy. Infrared Phys Technol 99:240–247

    Article  Google Scholar 

  130. Griffith Z, Urteaga M, Rowell P, Pierson R (2014) A 23.2 dBm at 210 GHz to 21.0 dBm at 235 GHz 16-way PA-cell combined InP HBT SSPA MMIC. In: Technical digest—IEEE compound semiconductor integrated circuit symposium, pp 1–4

    Google Scholar 

  131. John L, Tessmann A, Leuther A, Neininger P, Merkle T, Zwick T (2020) Broadband 300 GHz power amplifier MMICs in InGaAs mHEMT technology. IEEE Trans Terahertz Sci Technol 10:309–320

    Article  Google Scholar 

  132. Richards PL (1998) Bolometers for infrared and millimeter waves. J Appl Phys 76:1

    Article  Google Scholar 

  133. Kaya S, Karabiyik M, Pala N (2016) THz detectors. In: Photodetectors: materials, devices and applications, pp 373–414

    Google Scholar 

  134. Zhang P, Cao Q, Dong H, Zhao X, Sun J, Wu B, Liu H (2020) Large area terahertz pyroelectric detector. Infrared Laser Eng 49(5):20190338–20190338

    Article  Google Scholar 

  135. Simoens F (2014) THz bolometer detectors. In: Physics and applications of terahertz radiation. Springer, Dordrecht, pp 35–75

    Google Scholar 

  136. Qin H, Li X, Sun J, Zhang Z, Sun Y, Yu Y, Li X, Luo M (2017) Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors. Appl Phys Lett 110(17):171109

    Article  Google Scholar 

  137. Brajesh Kaimal H, Devi N, Rajagopal P, Balasubramaniam K, Pesala B (2019) Rapid terahertz imaging for non-destructive evaluation applications using Schottky receivers and spatial adaptive sampling. In: Terahertz, RF, millimeter, and submillimeter-wave technology and applications XII, vol 10917, pp 154–160

    Google Scholar 

  138. Yahyapour M, Vieweg N, Roggenbuck A, Rettich F, Cojocari O, Deninger A (2016) A flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging. IEEE Trans Terahertz Sci Technol 6(5):670–673

    Article  Google Scholar 

  139. Fang T, Liu ZY, Liu LY, Li YY, Liu JQ, Liu J, Wu NJ (2017) Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process. In: 2017 IEEE Asian solid-state circuits conference, pp 189–192

    Google Scholar 

  140. Hillger P, Jain R, Grzyb J, Mavarani L, Heinemann B, Grogan G Mac, Mounaix P, Zimmer T, Pfeiffer U (2018) A 128-pixel 0.56 THz sensing array for real-time near-field imaging in 0.13 μm SiGe BiCMOS. In: Digest of technical papers—IEEE international solid-state circuits conference, vol 61, pp 418–420

    Google Scholar 

  141. Liu Z, Liang Z, Zheng X, Jiang Y (2019) High performance terahertz absorption of nanostructured NiCr film for a pyroelectric detector. In: International conference on infrared, millimeter and terahertz waves (IRMMW-THz), pp 1–2

    Google Scholar 

  142. Niu Y, Wang Y, Wu W, Wen J, Cheng Y, Chen M, Jiang S, Wu D, Zhao Z (2020) Efficient room-temperature terahertz detection via bolometric and photothermoelectric effects in EuBiTe3 crystal. Opt Mater Exp 10(4):952–961

    Article  Google Scholar 

  143. Jenabi S, Malekabadi A, Deslandes D, Boone F, Charlebois SA (2017) Submillimeter wave GaAs Schottky diode application based study and optimization for 0.1–1.5 THz. Solid State Electron 134:65–73

    Article  Google Scholar 

  144. Shin JH, Park DW, Lee ES, Kim M, Lee DH, Lee IM, Park KH (2021) Highly reliable THz hermetic detector based on InGaAs/InP Schottky barrier diode. Infrared Phys Technol 115:103736

    Article  Google Scholar 

  145. Javadi E, But DB, Ikamas K, Zdanevičius J, Knap W, Lisauskas A (2021) Sensitivity of field-effect transistor-based terahertz detectors. Sensors 21:2909

    Article  Google Scholar 

  146. Kim J, Yoon D, Son H, Kim D, Yoo J, Yun J, Ng HJ, Kaynak M, Rieh JS (2021) Terahertz signal source and receiver operating near 600 GHz and their 3-D imaging application. IEEE Trans Microw Theor Tech 69:2762–2775

    Article  Google Scholar 

  147. Xu LJ, Yin PC, Bai X, Li YX (2020) Design of 300 GHz heterodyne detector based on 40 nm CMOS. In: 2020 IEEE MTT-S international wireless symposium (IWS), pp 1–3

    Google Scholar 

  148. Tong J, Qu Y, Suo F, Zhou W, Huang Z, Zhang DH (2019) Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves. Photonics Res 7(1):89–97. https://doi.org/10.1364/PRJ.7.000089

  149. de Olvera AJF, Roggenbuck A, Dutzi K, Vieweg N, Lu H, Gossard AC, Preu S (2019) International system of units (SI) traceable noise-equivalent power and responsivity characterization of continuous wave ErAs: InGaAs photoconductive terahertz detectors. Photonics 6:15

    Google Scholar 

  150. Hübers HW (2008) Terahertz heterodyne receivers. IEEE J Sel Top Quantum Electron 14:378–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiban Kishen Koul .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koul, S.K., Kaurav, P. (2022). Terahertz Spectrum in Biomedical Engineering. In: Sub-Terahertz Sensing Technology for Biomedical Applications. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-3140-6_1

Download citation

Publish with us

Policies and ethics