Skip to main content

Biotechnological Solutions to Improve Nitrogenous Nutrition in Nonlegume Crops

  • Chapter
  • First Online:
Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 36))

  • 476 Accesses

Abstract

In many developing countries around the world, nitrogen availability greatly limits crop production. On the other hand, nitrogen (N) fertilization in industrialized countries has become unsustainable and lead to environmental consequences. It has therefore become necessary to find alternatives to chemical nitrogen fertilizers to ensure a secure, sustainable food production. Plants are unable to directly utilize the freely available N2 in the atmosphere, necessitating the chemical application of N fertilization. However, certain archaea and bacteria possess the ability to convert atmospheric N2 to ammonia, which can directly be utilized by plants for various biological processes. This opens engineering possibilities to improve the N nutrition in nonlegume plants, such as (1) applying nitrogenase to plant cells; (2) introducing legume symbiosis for nonlegumes; and (3) imparting the ability to associate with N2-fixing bacteria and/or other plant growth-promoting bacteria (PGPB) in nonlegumes. These are challenging biotechnological approaches, but the groundwork upon which these solutions may be implemented have been laid out by recent advances in the field. This chapter attempts to review and collect important up-to-date information on biotechnological solutions to improve N nutrition in nonlegume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addo MA, Dos Santos PC (2020) Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBiochem 21(12):1749–1759

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12

    CAS  PubMed  Google Scholar 

  • Akao S, Nakata S, Yoneyama T (1991) Formation of nodules on non-nodulating soybean T201 with treatment of 2,4-D. Plant Soil, 138, 207–212

    Article  CAS  Google Scholar 

  • Akkermans ADL, Abdulkadir S, Trinick MJ (1978) N2-fixing root nodules in Ulmaceae: Parasponia or (and) Trema spp.? Plant Soil 49(3):711–715

    Article  CAS  Google Scholar 

  • Alkama N, Ounane G, Drevon JJ (2012) Is genotypic variation of H+ efflux under P deficiency linked with nodulated-root respiration of N2-Fixing common-bean (Phaseolus vulgaris L.)? J Plant Physiol 169(11):1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Tilbrook K, Warden AC, Campbell PC, Rolland V, Singh SP, Wood CC (2017) Expression of 16 nitrogenase proteins within the plant mitochondrial matrix. Front Plant Sci 8:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambrosio R, Ortiz-Marquez JCF, Curatti L (2017) Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metabol Eng 40:59–68

    Article  CAS  Google Scholar 

  • Anas M, Liao F, Verma KK, Sarwar MA, Mahmood A, Chen Z-L, Li Q, Zeng X-P, Liu Y, Li Y-R (2020) Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res 53(1):1–20

    Article  Google Scholar 

  • Azam F (2002) Nodulation in cereals as a means to decreasing their dependence on nitrogenous fertilizers—an achievable target or a dogma. Pak J Biol Sci 5(1):122–127

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biolgic Chem 288(7):4502–4512

    Article  CAS  Google Scholar 

  • Bageshwar UK, Srivastava M, Pardha-Saradhi P, Paul S, Gothandapani S, Jaat RS, Shankar P, Yadav R, Biswas DR, Kumar PA (2017) An environmentally friendly engineered Azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield. Appl Environ Microbiol 83(15):e00590-00517

    Article  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575(7781):109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bänziger M, Edmeades GO, Lafitte HR (1999) Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci 39(4):1035–1040

    Article  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43(2):103–121

    Article  CAS  Google Scholar 

  • Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Science 333(6041):416–417

    Article  CAS  PubMed  Google Scholar 

  • Behm JE, Geurts R, Kiers ET (2014) Parasponia: a novel system for studying mutualism stability. Trend Plant Sci 19(12):757–763

    Article  CAS  Google Scholar 

  • Bennett AB, Pankievicz VCS, Ané J-M (2020) A model for nitrogen fixation in cereal crops. Trend Plant Sci 25(3):226–235

    Article  CAS  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Biswas J, Ladha J, Dazzo F (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64(5):1644–1650

    Article  CAS  Google Scholar 

  • Boddey RM, Dobereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. In: Ahmad N (ed) Nitrogen economy in tropical soils: proceedings of the international symposium on nitrogen economy in tropical soils, held in Trinidad, W.I., January 9–14, 1994, pp 241–250

    Chapter  Google Scholar 

  • Boujenna A, del Moral LFG (2021) Biotechnological approaches to develop nitrogen-fixing cereals: a review. Span J Agric Res 19(4):e08R01

    Article  Google Scholar 

  • Bozorg A, Gates ID, Sen A (2015) Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties. J Microbiol Method 109:84–92

    Article  CAS  Google Scholar 

  • Burén S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol Lett 365(2):fnx274

    Article  Google Scholar 

  • Burén S, Young EM, Sweeny EA, Lopez-Torrejón G, Veldhuizen M, Voigt CA, Rubio LM (2017) Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae. ACS Syn Biol 6(6):1043–1055

    Article  Google Scholar 

  • Carter AY, Ottman MJ, Curlango-Rivera G, Huskey DA, D’Agostini BA, Hawes MC (2019) Drought-tolerant barley: II. Root tip characteristics in emerging roots. Agronomy 9(5):220

    Article  Google Scholar 

  • Chaboud A (1983) Isolation, purification and chemical composition of maize root cap slime. Plant Soil 73(3):395–402

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocking EC, Al-Mallah MK, Benson E, Davey MR (1990) Nodulation of non-legumes by rhizobia. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation. Springer, Boston, MA, pp 813–823

    Chapter  Google Scholar 

  • Cocking EC, Stone PJ, Davey MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cell Dev Biol-Plant 42:74–82

    Article  Google Scholar 

  • Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32(4):607–626

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Cong PT, Dung TD, Hien NT, Choudhury ATMA, Rose MT, Kecskes ML, Deaker R, Kennedy IR (2011) Effects of a multistrain biofertilizer and phosphorus rates on nutrition and grain yield of paddy rice on a sandy soil in Southern Vietnam. J Plant Nutr 34(7):1058–1069

    Article  CAS  Google Scholar 

  • Conway G (2019) The doubly green revolution: food for all in the twenty-first century. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci 225:130–137

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JG, Serra GE, Moreira JR, Conçalves JC, Goldemberg J (1978) Energy balance for ethyl alcohol production from crops. Science 210:903–906

    Article  Google Scholar 

  • Davidson FW, Whitney HG, Tahlan K (2015) Genome Sequences of Klebsiella variicola isolates from dairy animals with bovine mastitis from Newfoundland, Canada. Genom Announce 3(5):e00938-00915. https://doi.org/10.1128/genomeA.00938-15

    Article  Google Scholar 

  • de Almeida CV, Andreote FD, Yara R, Tanaka FAO, Azevedo JL, de Almeida M (2009) Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World J Microbiol Biotechnol 25(10):1757–1764

    Article  Google Scholar 

  • de Souza R, Beneduzi A, Ambrosini A, Da Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LM (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366(1-2):585–603

    Article  Google Scholar 

  • de Souza R, Schoenfeld R, Passaglia LM (2016) Bacterial inoculants for rice: effects on nutrient uptake and growth promotion. Arch Agron Soil Sci 62(4):561–569

    Article  Google Scholar 

  • Deng Y, Wu T, Wang M, Shi S, Yuan G, Li X, Chong H, Wu B, Zheng P (2019) Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat Commun 10(1):1–11

    Article  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72(3):313–327

    Article  CAS  PubMed  Google Scholar 

  • Dent D, Cocking E (2017) Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: the Greener Nitrogen Revolution. Agric Food Sec 6(1):1–9

    Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10(4):348–358

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2(8):621–631

    Article  CAS  PubMed  Google Scholar 

  • Döbereiner J, Baldani VLD, Reis VM (1995) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms. NATO ASI series, vol 37. Springer, Berlin. https://doi.org/10.1007/978-3-642-79906-8_1

    Chapter  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13(1):1–12

    Article  Google Scholar 

  • Duarah I, Deka M, Saikia N, Boruah HPD (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech 1(4):227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Erisman JW, Galloway JN, Dise NB, Sutton MA, Bleeker A, Grizzetti B, Leach AM, De Vries W (2015) Nitrogen: too much of a vital resource. Sci Brief WWF, Netherlands

    Google Scholar 

  • Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen-fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron 2014:208383

    Article  Google Scholar 

  • Estrada GA, Baldani VLD, de Oliveira DM, Urquiaga S, Baldani JI (2013) Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369(1-2):115–129

    Article  CAS  Google Scholar 

  • Etesami H (2019) Plant growth promotion and suppression of fungal pathogens in rice (Oryza sativa L.) by plant growth-promoting bacteria. In: Maheshwari DK, Dheeman S (eds) Field crops: sustainable management by PGPR. Springer, Cham, pp 351–383

    Chapter  Google Scholar 

  • Etesami H, Alikhani HA (2016) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:5–12

    Article  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200

    Chapter  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth-promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Hosseini HM, Alikhani HA, Mohammadi L (2014) Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33(3):654–670

    Article  CAS  Google Scholar 

  • Forni C, Caiola MG (1993) Azolla: an efficient N2-fixing association with three components. Plant Biosys 127(3):422–427

    Google Scholar 

  • Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1):35–59

    Article  CAS  Google Scholar 

  • Francisco PB, Akao S (1994) The 2, 4-D-induced wheat para-nodules are modified lateral roots with structure enhanced by rhizobial inoculation. Plant Soil 159(2):121–129

    Article  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30(1):57–66

    Article  CAS  Google Scholar 

  • Gaby JC, Rishishwar L, Valderrama-Aguirre LC, Green SJ, Valderrama-Aguirre A, Jordan IK, Kostka JE (2018) Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Appl Environ Microbiol 84(4):e01512-01517

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  CAS  PubMed  Google Scholar 

  • Garcia de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soil 23(3):249–256

    Article  CAS  Google Scholar 

  • Garcia de Salomone I, Döbereiner J (1996) Maize genotype effects on the response to Azospirillum inoculation. Biol Fertil Soil 21(3):193–196

    Article  Google Scholar 

  • Geddes BA, Ryu M-H, Mus F, Garcia Costas A, Peters JW, Voigt CA, Poole P (2015) Use of plant-colonizing bacteria as chassis for transfer of N2-fixation to cereals. Curr Opin Biotechnol 32:216–222. https://doi.org/10.1016/j.copbio.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  • Geddes BA, Paramasivan P, Joffrin A, Thompson AL, Christensen K, Jorrin B, Brett P, Conway SJ, Oldroyd GED, Poole PS (2019) Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat Commun 10(1):1–11

    Article  CAS  Google Scholar 

  • Glendining MJ, Dailey AG, Williams AG, Van Evert FK, Goulding KWT, Whitmore AP (2009) Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs? Agric Sys 99(2–3):117–125

    Article  Google Scholar 

  • Good A (2018) Toward nitrogen-fixing plants. Science 359(6378):869–870

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM, Ryder MH, Heinrich K, Murphy PJ (1996) An experimental test of the rhizopine concept in Rhizobium meliloti. Appl Environ Microbiol 62(11):3991–3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal RK, Schmidt MA, Hynes MF (2021) Molecular biology in the improvement of biological nitrogen fixation by rhizobia and extending the scope to cereals. Microorganisms 9(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361(6398):eaat1743

    Article  PubMed  Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 11. Springer, Dordrecht, pp 183–221

    Chapter  Google Scholar 

  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza–specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20(11):2989–3005. https://doi.org/10.1105/tpc.108.062414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. J Nutr 130(5):1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hasan M, Bano A, Hassan SG, Iqbal J, Awan U, Rong-ji D, Khan KA (2014) Enhancement of rice growth and production of growth-promoting phytohormones by inoculation with Rhizobium and other rhizobacteria. World Appl Sci J 31(10):1734–1743

    Google Scholar 

  • Hegazi N, Fayez M, Amin G, Hamza M, Abbas M, Youssef H, Monib M (1998) Diazotrophs associated with non-legumes grown in sandy soils. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Developments in plant and soil sciences, vol 79. Springer, Dordrecht, pp 209–222. https://doi.org/10.1007/978-94-011-5232-7_24

    Chapter  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84(4):858–868

    Article  Google Scholar 

  • Hongrittipun P, Youpensuk S, Rerkasem B (2014) Screening of nitrogen-fixing endophytic bacteria in Oryza sativa L. J Agric Sci 6(6):66

    Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Article  Google Scholar 

  • Huang S, Zhao C, Zhang Y, Wang C (2018) Nitrogen use efficiency in rice. In: Amanullah, Fahad S (eds) . Nitrogen in agriculture-updates, InTech, Croatia, pp 189–208

    Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annl Rev Plant Biol 44(1):483–511

    Article  CAS  Google Scholar 

  • Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS One 11(8):e0160951

    Article  PubMed  PubMed Central  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15(9):894–906. https://doi.org/10.1094/mpmi.2002.15.9.894

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth-promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Johansson C, Bergman B (1992) Early events during the establishment of the Gunnera/Nostoc symbiosis. Planta 188(3):403–413

    Article  CAS  PubMed  Google Scholar 

  • Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbe Environ 2009:E09113. https://doi.org/10.1264/jsme2.ME09113

    Article  Google Scholar 

  • Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosys Environ 231:68–78

    Article  CAS  Google Scholar 

  • Keymer DP, Kent AD (2014) Contribution of nitrogen fixation to first year Miscanthus× giganteus. GCB Bioenergy 6(5):577–586

    Article  CAS  Google Scholar 

  • Khan MMA, Haque E, Paul NC, Khaleque MA, Al-Garni SMS, Rahman M, Islam MT (2017) Enhancement of growth and grain yield of rice in nutrient deficient soils by rice probiotic bacteria. Rice Sci 24(5):264–273

    Article  Google Scholar 

  • Khorshidi YR, Ardakani MR, Ramezanpour MR, Khavazi K, Zargari K (2011) Response of yield and yield components of rice (Oryza sativa L.) to Pseudomonas flouresence and Azospirillum lipoferum under different nitrogen levels. Am Euras J Agric Environ Sci 10:387–395

    Google Scholar 

  • Knee EM, Gong F-C, Gao M, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant-Microbe Interact 14(6):775–784

    Article  CAS  PubMed  Google Scholar 

  • Kroener E, Holz M, Zarebanadkouki M, Ahmed M, Carminati A (2018) Effects of mucilage on rhizosphere hydraulic functions depend on soil particle size. Vadose Zone J 17(1):1–11. https://doi.org/10.2136/vzj2017.03.0056

    Article  CAS  Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice—necessity and possibilities. GeoJournal 35(3):363–372

    Article  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252(1):151–167

    Article  CAS  Google Scholar 

  • Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, Van Kessel C, Richter DB, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals: a 50-year assessment for maize, rice and wheat production systems. Sci Rep 6(1):1–9

    Article  Google Scholar 

  • Lee S, Reth A, Meletzus D, Sevilla M, Kennedy C (2000) Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J Bacteriol 182(24):7088–7091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Chen S (2020) Transfer of nitrogen fixation (nif) genes to non-diazotrophic hosts. ChemBioChem 21(12):1717–1722

    Article  CAS  PubMed  Google Scholar 

  • Li R, Han Y, Lv P, Du R, Liu G (2014) Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench). Breed Sci 64(2):193–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Xu J, Gao Z, Tian H, Gao Y, Kariman K (2020) Genetically modified crops are superior in their nitrogen use efficiency—a meta-analysis of three major cereals. Sci Rep 10(1):1–9

    Google Scholar 

  • López-Torrejón G, Jiménez-Vicente E, Buesa JM, Hernandez JA, Verma HK, Rubio LM (2016) Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nat Commun 7(1):1–6

    Article  Google Scholar 

  • Luo T, Ou-Yang XQ, Yang LT, Li YR, Song XP, Zhang GM, Gao YJ, Duan WX, An Q (2016) Raoultella sp. strain L03 fixes N2 in association with micropropagated sugarcane plants. J Basic Microbiol 56(8):934–940

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A (2011) Inoculation of root microorganisms for sustainable wheat–rice and wheat–black gram rotations in India. Soil Biol Biochem 43(3):609–619

    Article  Google Scholar 

  • Mahmud K, Makaju S, Ibrahim R, Missaoui A (2020) Current progress in nitrogen-fixing plants and microbiome research. Plants 9(1):97

    Article  CAS  PubMed Central  Google Scholar 

  • Malik KA, Mirza MS, Hassan U, Mehnaz S, Rasul G, Haurat J, Bally R, Normand P (2002) The role of plant-associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Choudhury ATMA (eds) Biofertilisers in action: a report for the rural industries research and development corporation. RIRDC Publication, Barton, pp 73–83. https://www.agrifutures.com.au/wp-content/uploads/publications/02-086.pdf#page=82. Accessed 11 Apr 2022

    Google Scholar 

  • Marchal K, Vanderleyden J (2000) The “oxygen paradox” of dinitrogen-fixing bacteria. Biol Fertil Soil 30(5):363–373

    Article  CAS  Google Scholar 

  • Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trend Plant Sci 14(2):77–86. https://doi.org/10.1016/j.tplants.2008.11.009

    Article  CAS  Google Scholar 

  • Martinez-Romero E (2006) Dinitrogen-fixing prokaryotes. In: The prokaryotes, vol 2. Springer, New York, p 793

    Chapter  Google Scholar 

  • Masepohl B, Drepper T, Klipp W (2004) Nitrogen fixation in the photosynthetic purple bacterium Rhodobacter capsulatus. In: Klipp W, Masepohl B, Gallon JR, Newton WE (eds) Genetics and regulation of nitrogen fixation in free-living bacteria. Nitrogen fixation: origins, applications, and research progress, vol 2. Springer, Dordrecht, pp 141–173. https://doi.org/10.1007/1-4020-2179-8_7

    Chapter  Google Scholar 

  • Mondy S, Lenglet A, Beury-Cirou A, Libanga C, Ratet P, Faure D, Dessaux Y (2014) An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol Ecol 23(19):4846–4861

    Article  PubMed  Google Scholar 

  • Murphy PJ, Heycke N, Banfalvi Z, Tate ME, De Bruijn F, Kondorosi A, Tempé J, Schell J (1987) Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid. Proc Nat Acad Sci U S A 84(2):493–497

    Article  CAS  Google Scholar 

  • Murphy PJ, Wexler W, Grzemski W, Rao JP, Gordon D (1995) Rhizopines—their role in symbiosis and competition. Soil Biol Biochem 27(4-5):525–529

    Article  CAS  Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GED, Poole PS (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW (2018) Exploring the alternatives of biological nitrogen fixation. Metallomics 10(4):523–538

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, Sinclair I, Koebernick N, Cooper L, Hackett CA (2017) Plant exudates may stabilize or weaken soil depending on species, origin and time. Euro J Soil Sci 68(6):806–816

    Article  CAS  Google Scholar 

  • Newton WE (2007) Physiology, biochemistry, and molecular biology of nitrogen fixation. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, pp 109–129

    Chapter  Google Scholar 

  • Nguyen HT, Deaker R, Kennedy IR, Roughley RJ (2003) The positive yield response of field-grown rice to inoculation with a multi-strain biofertiliser in the Hanoi area, Vietnam. Symbiosis 35(1):231–245

    Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants-producing opines alter their biological environment. Nat Biotechnol 15(4):369–372

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annl Rev Genet 45:119–144

    Article  CAS  Google Scholar 

  • Olivares J, Bedmar EJ, Sanjuán J (2013) Biological nitrogen fixation in the context of global change. Mol Plant-Microbe Interact 26(5):486–494

    Article  CAS  PubMed  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242(2):205–215

    Article  CAS  Google Scholar 

  • Osborn HMI, Lochey F, Mosley L, Read D (1999) Analysis of polysaccharides and monosaccharides in the root mucilage of maize (Zea mays L.) by gas chromatography. J Chromatogr A 831(2):267–276

    Article  CAS  Google Scholar 

  • Pankievicz VCS, do Amaral FP, Santos KFDN, Agtuca B, Xu Y, Schueller MJ, Arisi ACM, Steffens MBR, de Souza EM, Pedrosa FO (2015) Robust biological nitrogen fixation in a model grass–bacterial association. Plant J 81(6):907–919

    Article  CAS  PubMed  Google Scholar 

  • Pankievicz V, Irving TB, Maia LGS, Ané J-M (2019) Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol 17(1):1–17

    Article  Google Scholar 

  • Prayitno J, Rolfe B (2010) Characterization of endophytic diazotroph bacteria isolated from rice. HAYATI J Biosci 17(2):73–78

    Article  Google Scholar 

  • Prayitno J, Stefaniak J, McIver J, Weinman JJ, Dazzo FB, Ladha JK, Barraquio W, Yanni YG, Rolfe BG (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Funct Plant Biol 26(6):521–535

    Article  Google Scholar 

  • Priyadarshini P, Choudhury S, Tilgam J, Bharati A, Sreeshma N (2021) Nitrogen fixing cereal: a rising hero towards meeting food security. Plant Physiol Biochem 167:912–920

    Article  CAS  PubMed  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Tansley review no. 116 cyanobacterium–plant symbioses. New Phytol 147(3):449–481

    Article  CAS  PubMed  Google Scholar 

  • Rai AN, Singh AK, Syiem MB (2019) Plant growth-promoting abilities in cyanobacteria. In: Mishra AK, Tiwari DN, Rai AN (eds) Cyanobacteria. Elsevier, pp 459–476

    Chapter  Google Scholar 

  • Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Prasanna R, Nain L (2015) Prospecting plant growth-promoting bacteria and cyanobacteria as options for enrichment of macro-and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1(1):1037379

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Krause A, Leyser B, Miché L, Hurek T (2007) the rice apoplast as a habitat for endophytic N2-fixing bacteria. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reactions. Springer, Dordrecht, pp 427–443

    Chapter  Google Scholar 

  • Reyna-Flores F, Barrios-Camacho H, Dantán-González E, Ramírez-Trujillo JA, Lozano Aguirre Beltrán LF, Rodríguez-Medina N, Garza-Ramos U, Suárez-Rodríguez R (2018) Draft genome sequences of endophytic isolates of Klebsiella variicola and Klebsiella pneumoniae obtained from the same sugarcane plant. Genom Announc 6(12):e00147-00118

    Article  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  PubMed  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin Iii FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ (2009) A safe operating space for humanity: identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues. Nature 461(7263):472–476

    Article  PubMed  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302(1):91–104. https://doi.org/10.1007/s11104-007-9458-3

    Article  CAS  Google Scholar 

  • Roger P-A, Ladha JK (1992) Biological N2 fixation in wetland rice fields: estimation and contribution to nitrogen balance. In: Ladha JK, George T, Bohlool BB (eds) Biological nitrogen fixation for sustainable agriculture. Developments in plant and soil sciences, vol 49. Springer, Dordrecht, pp 41–55

    Chapter  Google Scholar 

  • Rogers C, Oldroyd GED (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Biol 65(8):1939–1946

    CAS  Google Scholar 

  • Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, Reddy PM, Martínez-Romero E (2018) Nitrogen fixation in cereals. Front Microbiol 9:1794. https://doi.org/10.3389/fmicb.2018.01794

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossbach S, McSpadden B, Kulpa D, Rasul G, Ganoof M, De Bruijn FJ (1994) Use of rhizopine synthesis and catabolism genes to monitor soil bacteria and to create biased rhizospheres. Mol Ecol 3:610–611

    Google Scholar 

  • Roy ML, Srivastava RC (2010) Single and co-inoculation effects of different biofertilizers on growth, in vivo nitrate reductase activity and soluble protein in Oryza sativa L. J Appl Biosci 36(1):101–104

    Google Scholar 

  • Roy M, Saha S, Das J, Srivastava RC (2015) Technologies of microbial inoculation in rice—a review. Agric Rev 36(2):125–132

    Article  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annl Rev Microbiol 62:93–111. https://doi.org/10.1146/annurev.micro.62.081307.162737

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth-promoting rhizobacteria: a critical review. Life Sci Med Res 2011:LSMR-21. https://agris.fao.org/agris-search/search.do?recordID=DJ2012070623. Accessed 11 Apr 2022

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15(4):363–368

    Article  CAS  PubMed  Google Scholar 

  • Savka MA, Dessaux Y, McSpadden Gardener BB, Mondy S, Kohler PRA, de Bruijn FJ, Rossbach S (2013) The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in the phytosphere. Mol Microbial Ecol Rhizosph 1:1145–1161

    Article  Google Scholar 

  • Schulze J, Drevon J-J (2005) P-deficiency increases the O2 uptake per N2 reduced in alfalfa. J Exp Bot 56(417):1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Ann Rev Biochem 78:701–722

    Article  CAS  PubMed  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2012) Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol 16(1-2):19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 8(5):e63666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant-Microbe Interact 14(3):358–366

    Article  CAS  PubMed  Google Scholar 

  • Shin W, Islam R, Benson A, Joe MM, Kim K, Gopal S, Samaddar S, Banerjee S, Sa T (2016) Role of diazotrophic bacteria in biological nitrogen fixation and plant growth improvement. Korean J Soil Sci Fertil 49(1):17–29

    Article  CAS  Google Scholar 

  • Sinha Roy S, Mittra B, Sharma S, Das TK, Babu CR (2002) Detection of root mucilage using an anti-fucose antibody. Ann Bot 89(3):293–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Yang J, Jeong BR (2021) Growth, quality, and nitrogen assimilation in response to high ammonium or nitrate supply in cabbage (Brassica campestris L.) and lettuce (Lactuca sativa L.). Agronomy 11(12):2556

    Article  CAS  Google Scholar 

  • Song J, Yang J, Jeong BR (2022) Root GS and NADH-GDH play important roles in enhancing the ammonium tolerance in three bedding plants. Int J Mol Sci 23(3):1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306. https://doi.org/10.3390/12071290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokstad E (2016) The nitrogen fix. Science 353(6305):1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109(18):7085–7090

    Article  PubMed  PubMed Central  Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186(1):29–38

    Article  CAS  Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF, Batista RB, Schultz N, Leite JM, Maia e Sá J, Barbosa KP, de Resende AS, BJR A (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356(1):5–21

    Article  CAS  Google Scholar 

  • Uthiraselvam M, Ravikumar S, Abideen S, Selvam MB, Fathima SA (2012) Effect of multiple inoculation of magnetotactic bacteria on along with nitrogen fixers and phosphate solubilisers on the growth and yield of agriculture crop Oryza Sativa. J Microbiol Biotechnol Res 2(5):758–765

    CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67(4):453–516

    Article  Google Scholar 

  • Van Deynze A, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D, Schwartz KD (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8):e2006352

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dommelen A, Croonenborghs A, Spaepen S, Vanderleyden J (2009) Wheat growth promotion through inoculation with an ammonium-excreting mutant of Azospirillum brasilense. Biol Fertil Soil 45(5):549–553

    Article  Google Scholar 

  • van Veelen A, Tourell MC, Koebernick N, Pileio G, Roose T (2018) Correlative visualization of root mucilage degradation using X-ray CT and MRI. Front Environ Sci 6. https://doi.org/10.3389/fenvs.2018.00032

  • van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, Santuari L, Cao Q, Sharma T, Shen D (2018) Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc Natl Acad Sci U S A 115(20):E4700–E4709

    PubMed  PubMed Central  Google Scholar 

  • Vermeiren H, Willems A, Schoofs G, De Mot R, Keijers V, Hai W, Vanderleyden J (1999) The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Volk E, Iden SC, Furman A, Durner W, Rosenzweig R (2016) Biofilm effect on soil hydraulic properties: experimental investigation using soil-grown real biofilm. Water Resour Res 52(8):5813–5828

    Article  Google Scholar 

  • Wang D, Xu A, Elmerich C, Ma LZ (2017) Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J 11(7):1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werker E, Kislev M (1978) Mucilage on the root surface and root hairs of Sorghum: heterogeneity in structure, manner of production and site of accumulation. Ann Bot 42(4):809–816

    Article  Google Scholar 

  • Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5(1):1–9

    Article  Google Scholar 

  • Wessel AK, Arshad TA, Fitzpatrick M, Connell JL, Bonnecaze RT, Shear JB, Whiteley M (2014) Oxygen limitation within a bacterial aggregate. MBio 5(2):e00992–e00914

    Article  PubMed  PubMed Central  Google Scholar 

  • Westhoff P (2009) The economics of biological nitrogen fixation in the global economy. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production. Agronomy Monograph 52. Madison, WI, pp 309–328

    Google Scholar 

  • Wexler M, Gordon D, Murphy PJ (1995) The distribution of inositol rhizopine genes in Rhizobium populations. Soil Biol Biochem 27(4-5):531–537

    Article  CAS  Google Scholar 

  • Williams RL, Kennedy IR (2002) A model for testing the effectiveness of biofertiliser for Australian rice production. In: Kennedy IR, Choudhury ATMA (eds) Biofertilizers in action: a report for the rural industries research and devlopment coporation. RIRDC Publications, pp 112–114

    Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336(1–2):129–142

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. In: Ladha JK, de Bruijn FJ, Malik KA (eds) Opportunities for biological nitrogen fixation in rice and other non-legumes. Developments in plant and soil sciences, vol 75. Springer, Dordrecht, pp 99–114

    Chapter  Google Scholar 

  • Yoneyama T, Terakado-Tonooka J, Minamisawa K (2017) Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: a review and synthesis. Soil Sci Plant Nutr 63(6):578–590

    Article  CAS  Google Scholar 

  • Zhang T, Yan Y, He S, Ping S, Alam KM, Han Y, Liu X, Lu W, Zhang W, Chen M (2012) Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501. Res Microbiol 163(5):332–339

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Zeng S, Bais H, LaManna JM, Hussey DS, Jacobson DL, Jin Y (2018) Plant growth-promoting rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Water Res Res 54(5):3673–3687

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank University of Tehran for providing the necessary facilities for this study.

Conflict of Interest

Author(s) declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etesami, H., Jeong, B.R. (2022). Biotechnological Solutions to Improve Nitrogenous Nutrition in Nonlegume Crops. In: Maheshwari, D.K., Dobhal, R., Dheeman, S. (eds) Nitrogen Fixing Bacteria: Sustainable Growth of Non-legumes. Microorganisms for Sustainability, vol 36. Springer, Singapore. https://doi.org/10.1007/978-981-19-4906-7_4

Download citation

Publish with us

Policies and ethics