Skip to main content

Biofuel Economy, Development, and Food Security

  • Chapter
  • First Online:
Biofuels in Circular Economy

Abstract

This paper describes the biofuel economy and food security in the current scenario, focusing on the competing demands for food and fuel. The biofuel economy is expected to increase rapidly in the twenty-first century. This increase may, however, disrupt the agri-food system that threatens food security. Understanding the diverse aspects of the agriculture landscape to meet the demands for food and biofuel that rely on agricultural biomass is essential to satisfy the needs of the exponentially growing global population. The concepts of industrial symbiosis and circular economy offer potential solutions to sustain the biofuel economy without putting at risk the supply of food and utilizing wastes and residues from the farm, including the refuse from food processing plants, as raw materials for biofuel generation are probable ways to optimize the overall productivity of agriculture towards addressing the requirements for food and biofuel. Also, adopting Smart Agriculture/Agriculture 4.0 is explored for the management of the entire agri-food supply chain from pre-production to post-harvest stage to sustain the biofuels endeavour without disrupting the food supply. Agriculture 4.0 can provide a holistic view of the agri-food system crucial in a circular economy to ensure efficiency in biofuel production and food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambaye, T. G., Vaccari, M., Bonilla-Petriciolet, A., Prasad, S., van Hullebusch, E. D., & Rtimi, S. (2021). Emerging technologies for biofuel production: a critical review on recent progress, challenges and perspectives. Journal of Environmental Management, 290. https://doi.org/10.1016/j.jenvman.2021.112627, PubMed: 112627.

  • Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. L. (2021). Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, 139. https://doi.org/10.1016/j.rser.2020.110691, PubMed: 110691.

  • Avraam, C., Zhang, Y., Sankaranarayanan, S., Zaitchik, B., Moynihan, E., Juturu, P., Neff, R., & Siddiqui, S. (2021). Optimization-based systems modeling for the food-energy-water nexus. Current Sustainable/renewable Energy Reports, 8(1), 4–16. https://doi.org/10.1007/s40518-020-00161-5

    Article  Google Scholar 

  • Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., Awasthi, S. K., Jain, A., Liu, T., Duan, Y., Pandey, A., Zhang, Z., & Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109876, PubMed: 109876.

  • Bakker, S., Dematera Contreras, K., Kappiantari, M., Tuan, N. A., Guillen, M. D., Gunthawong, G., Zuidgeest, M., Liefferink, D., & Van Maarseveen, M. (2017). Low-carbon transport policy in four ASEAN countries: developments in Indonesia, the Philippines, Thailand and Vietnam. Sustainability, 9(7), 1217. https://doi.org/10.3390/su9071217

  • Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282. https://doi.org/10.1016/j.apenergy.2009.03.015

    Article  Google Scholar 

  • Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 28(3), 267–284. https://doi.org/10.1016/S0360-3199(02)00074-5

    Article  Google Scholar 

  • Benjamin, M. F. D., Ventura, J. S., Sangalang, K. P. H., Adorna, Jr., J. A., Belmonte, B. A., & Andiappan, V. (2021). Optimal synthesis of Philippine agricultural residue-based integrated biorefinery via the P-graph method under supply and demand constraints. Journal of Cleaner Production, 308. https://doi.org/10.1016/j.jclepro.2021.127348, PubMed: 127348.

  • Chum, H. L., Warner, E., Seabra, J. E. A., & Macedo, I. C. (2014). A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels, Bioproducts and Biorefining, 8(2), 205–223. https://doi.org/10.1002/bbb.1448

    Article  Google Scholar 

  • Clarke, R., Sosa, A., & Murphy, F. (2019). Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland. Science of the Total Environment, 664, 262–275. https://doi.org/10.1016/j.scitotenv.2019.01.397

    Article  Google Scholar 

  • Dalena, F., Senatore, A., Basile, M., Marino, D., & Basile, A. (2019). From sugars to ethanol—from agricultural wastes to algal sources: an overview. Second and Third Generation of Feedstocks, 3–34.

    Google Scholar 

  • De Menna, F., Vittuari, M., & Molari, G. (2015). Impact evaluation of integrated food-bioenergy systems: a comparative LCA of peach nectar. Biomass and Bioenergy, 73, 48–61. https://doi.org/10.1016/j.biombioe.2014.12.004

    Article  Google Scholar 

  • Dumortier, J., Carriquiry, M., & Elobeid, A. (2021). Where does all the biofuel go? Fuel efficiency gains and its effects on global agricultural production. Energy Policy, 148. https://doi.org/10.1016/j.enpol.2020.111909, PubMed: 111909.

  • Elshout, P. M. F., Zelm, R., Velde, M., Steinmann, Z., & Huijbregts, M. A. J. (2019). Global relative species loss due to first-generation biofuel production for the transport sector. GCB Bioenergy, 11(6), 763–772. https://doi.org/10.1111/gcbb.12597

    Article  Google Scholar 

  • French, K. E. (2019). Assessing the bioenergy potential of grassland biomass from conservation areas in England. Land Use Policy, 82, 700–708. https://doi.org/10.1016/j.landusepol.2018.12.001

    Article  Google Scholar 

  • Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770. https://doi.org/10.1016/j.scitotenv.2020.144449, PubMed: 144449.

  • Gingrich, S., & Krausmann, F. (2018). At the core of the socio-ecological transition: agroecosystem energy fluxes in Austria 1830–2010. Science of the Total Environment, 645, 119–129. https://doi.org/10.1016/j.scitotenv.2018.07.074

    Article  Google Scholar 

  • Guo, M., van Dam, K. H., Touhami, N. O., Nguyen, R., Delval, F., Jamieson, C., & Shah, N. (2020). Multi-level system modelling of the resource-food-bioenergy nexus in the global south. Energy, 197. https://doi.org/10.1016/j.energy.2020.117196, PubMed: 117196

  • Helliwell, R. (2018). Where did the marginal land go? Farmers perspectives on marginal land and its implications for adoption of dedicated energy crops. Energy Policy, 117, 166–172. https://doi.org/10.1016/j.enpol.2018.03.011

    Article  Google Scholar 

  • Howarth, R. W., Bringezu, S., Martinelli, L. A., Santoro, R., Messem, D., & Sala, O. E. (2009). Introduction: Biofuels and the environment in the 21st century. Cornell University library’s Initiatives in Publishing (CIP).

    Google Scholar 

  • James, J., Page-Dumroese, D., Busse, M., Palik, B., Zhang, J., Eaton, B., Slesak, R., Tirocke, J., & Kwon, H. (2021). Effects of forest harvesting and biomass removal on soil carbon and nitrogen: two complementary meta-analyses. Forest Ecology and Management, 485. https://doi.org/10.1016/j.foreco.2021.118935, PubMed: 118935.

  • Johari, A., Nyakuma, B. B., Mohd Nor, S. H., Mat, R., Hashim, H., Ahmad, A., Yamani Zakaria, Z., & Tuan Abdullah, T. A. (2015). The challenges and prospects of palm oil-based biodiesel in Malaysia. Energy, 81, 255–261. https://doi.org/10.1016/j.energy.2014.12.037

  • Kannah, R. Y., Merrylin, J., Devi, T. P., Kavitha, S., Sivashanmugham, P., Kumar, G., & Banu, J. R. (2020). Food waste valorization: biofuels and value-added product recovery. Bioresource Technology Reports, 11. PubMed: 100524.

    Google Scholar 

  • Karabulut, A. A., Crenna, E., Sala, S., & Udias, A. (2018). A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: a synthesis matrix system for food security. Journal of Cleaner Production, 172, 3874–3889. https://doi.org/10.1016/j.jclepro.2017.05.092

    Article  Google Scholar 

  • Kline, K. L., Msangi, S., Dale, V. H., Woods, J., Souza, G. M., Osseweijer, P., Clancy, J. S., Hilbert, J. A., Johnson, F. X., McDonnell, P. C., & Mugera, H. K. (2017). Reconciling food security and bioenergy: priorities for action. GCB Bioenergy, 9(3), 557–576. https://doi.org/10.1111/gcbb.12366

    Article  Google Scholar 

  • Kraxner, F., Nordstr ̈om E-M., Havlík, P., Gusti, M., Mosnier, A., Frank, S., et al. Global bioenergy scenarios–future forest development, land-use implications, and trade-offs. Biomass Bioenergy, 57, 86–96.

    Google Scholar 

  • Krzyżaniak, M., & Stolarski, M. J. (2019). Life cycle assessment of camelina and crambe production for biorefinery and energy purposes. Journal of Cleaner Production, 237, 117755. https://doi.org/10.1016/j.jclepro.2019.117755.

  • Kurczyński, D., Łagowski, P., & Wcisło, G. (2021). Experimental study into the effect of the second-generation BBuE biofuel use on the diesel engine parameters and exhaust composition. Fuel, 284. https://doi.org/10.1016/j.fuel.2020.118982, PubMed: 118982.

  • Langeveld, J. W. A., Dixon, J., van Keulen, H., & Quist-Wessel, P. M. F. (2014). Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping. Biofuels, Bioproducts and Biorefining, 8(1), 49–58. https://doi.org/10.1002/bbb.1432

    Article  Google Scholar 

  • Li, M., Fu, Q., Singh, V. P., Liu, D., & Li, J. (2020). Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty. Agricultural Systems, 184. https://doi.org/10.1016/j.agsy.2020.102900, PubMed: 102900.

  • Ma, C., Liu, J., Ye, M., Zou, L., Qian, G., & Li, Y. Y. (2018). Towards utmost bioenergy conversion efficiency of food waste: pretreatment, co-digestion, and reactor type. Renewable and Sustainable Energy Reviews, 90, 700–709. https://doi.org/10.1016/j.rser.2018.03.110

    Article  Google Scholar 

  • Mandegari, M., Petersen, A. M., Benjamin, Y., & Görgens, J. F. (2019). Sugarcane biofuel production in South Africa, Guatemala, the Philippines, Argentina, Vietnam, Cuba, and Sri Lanka. In Sugarcane biofuels (pp. 319–346). Springer.

    Google Scholar 

  • Maruyama, A., Aquino, A. P., Dimaranan, X. B., & Kai, S. (2009). Potential of biofuel crop production in the Philippines: a preliminary analysis. Horticulture Research, 63, 67–76.

    Google Scholar 

  • Melikoglu, M. (2020). Reutilisation of food wastes for generating fuels and value-added products: a global review. Environmental Technology and Innovation, 19. https://doi.org/10.1016/j.eti.2020.101040, PubMed: 101040

  • Mercure, J.-F., Paim, M. A., Bocquillon, P., Lindner, S., Salas, P., Martinelli, P., Berchin, I. I., de Andrade Guerra, J. B. S. O., Derani, C., de Albuquerque Junior, C. L., Ribeiro, J. M. P., Knobloch, F., Pollitt, H., Edwards, N. R., Holden, P. B., Foley, A., Schaphoff, S., Faraco, R. A., & Vinuales, J. E. (2019). System complexity and policy integration challenges: the Brazilian energy-water-food nexus. Renewable and Sustainable Energy Reviews, 105, 230–243. https://doi.org/10.1016/j.rser.2019.01.045

    Article  Google Scholar 

  • Montefrio, M. J. F., & Dressler, W. H. (2016). The green economy and constructions of the “idle” and “unproductive” uplands in the Philippines. World Development, 79, 114–126. https://doi.org/10.1016/j.worlddev.2015.11.009

    Article  Google Scholar 

  • Moretti, C., López-Contreras, A., de Vrije, T., Kraft, A., Junginger, M., & Shen, L. (2021). From agricultural (by-) products to jet fuels: carbon footprint and economic performance. Science of the Total Environment, 775. https://doi.org/10.1016/j.scitotenv.2021.145848, PubMed: 145848.

  • Montefrio, M. J. F., & Sonnenfeld, D. A. (2013). Global–local tensions in contract farming of biofuel crops involving indigenous communities in the Philippines. Society and Natural Resources, 26(3), 239–253. https://doi.org/10.1080/08941920.2012.682114

    Article  Google Scholar 

  • Montefrio, M. J. F., & Sonnenfeld, D. A. (2011). Forests, fuel, or food? Competing coalitions and biofuels policy making in the Philippines. Journal of Environment and Development, 20(1), 27–49. https://doi.org/10.1177/1070496510394321

    Article  Google Scholar 

  • Mukherjee, I., & Sovacool, B. K. (2014). Palm oil-based biofuels and sustainability in Southeast Asia: a review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Reviews, 37, 1–12. https://doi.org/10.1016/j.rser.2014.05.001

    Article  Google Scholar 

  • Negri, C., Ricci, M., Zilio, M., D’Imporzano, G., Qiao, W., Dong, R., & Adani, F. (2020). Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: a review. Renewable and Sustainable Energy Reviews, 133. https://doi.org/10.1016/j.rser.2020.110138, PubMed: 110138.

  • OECD/FAO. (2007). Agricultural outlook 2007–2016. OECD/FAO, Paris, Rome.

    Google Scholar 

  • Panichelli, L., & Gnansounou, E. (2015). Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: key modelling choices. Renewable and Sustainable Energy Reviews, 42, 344–360. https://doi.org/10.1016/j.rser.2014.10.026

    Article  Google Scholar 

  • Parthiba Karthikeyan, O. P., Trably, E., Mehariya, S., Bernet, N., Wong, J. W. C., & Carrere, H. (2018). Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresource Technology, 249, 1025–1039. https://doi.org/10.1016/j.biortech.2017.09.105

  • Pereira, L. G., Cavalett, O., Bonomi, A., Zhang, Y., Warner, E., & Chum, H. L. (2019). Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat. Renewable and Sustainable Energy Reviews, 110, 1–12. https://doi.org/10.1016/j.rser.2019.04.043

    Article  Google Scholar 

  • Peskett, L., Slater, R., Stevens, C., & Dufey, A. (2007). Biofuels, agriculture and poverty reduction. Natural Resource Perspectives, 107, 1–6.

    Google Scholar 

  • Philippidis, G., Sartori, M., Ferrari, E., & M’Barek, R. (2019). Waste not, want not: a bio-economic impact assessment of household food waste reductions in the EU. Resources, Conservation and Recycling, 146, 514–522. https://doi.org/10.1016/j.resconrec.2019.04.016

    Article  Google Scholar 

  • Piranfar, D. H., Alba, C. E., & Subhani, F. (2019). The economic impact of higher-blend biodiesel on the Philippine coconut industry and end-users amid rising oil prices and falling prices of coconut oil. Journal of Economics, 7(4), 38–52. https://doi.org/10.15640/jeds.v7n4a4

  • Poláková, J., Holec, J., & Soukup, J. (2021). Biomass production in farms in Less Favoured Areas: Is it feasible to reconcile energy objectives with production and soil protection? Biomass and Bioenergy, 148. https://doi.org/10.1016/j.biombioe.2021.106015, PubMed: 106015.

  • Pulighe, G., Bonati, G., Colangeli, M., Morese, M. M., Traverso, L., Lupia, F., Khawaja, C., Janssen, R., & Fava, F. (2019). Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions. Renewable and Sustainable Energy Reviews, 103, 58–70. https://doi.org/10.1016/j.rser.2018.12.043

    Article  Google Scholar 

  • Purkus, A., Hagemann, N., Bedtke, N., & Gawel, E. (2018). Towards a sustainable innovation system for the German wood-based bioeconomy: Implications for policy design. Journal of Cleaner Production, 172, 3955–3968. https://doi.org/10.1016/j.jclepro.2017.04.146

    Article  Google Scholar 

  • Sarmiento, R. T., & Varela, R. P. (2015). Assessing the biomass potential of major industrial tree plantation species for green energy production. Open Journal of Forestry, 05(5), 557–562. https://doi.org/10.4236/ojf.2015.55049

    Article  Google Scholar 

  • Schröder, P., Beckers, B., Daniels, S., Gnädinger, F., Maestri, E., Marmiroli, N., Mench, M., Millan, R., Obermeier, M. M., Oustriere, N., Persson, T., Poschenrieder, C., Rineau, F., Rutkowska, B., Schmid, T., Szulc, W., Witters, N., & Sæbø, A. (2017). Intensify production, transform biomass to energy and novel goods and protect soils in Europe—a vision how to mobilize marginal lands. Science of the Total Environment, 616–617, 1101–1123.

    Google Scholar 

  • Sharma, P., Gaur, V. K., Sirohi, R., Varjani, S., Hyoun Kim, S. H., & Wong, J. W. C. (2021). Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 325. https://doi.org/10.1016/j.biortech.2021.124684, PubMed: 124684.

  • Singlitico, A., Goggins, J., & Monaghan, R. F. D. (2018). Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: a case study for the Republic of Ireland. Renewable and Sustainable Energy Reviews, 98, 288–301. https://doi.org/10.1016/j.rser.2018.09.032

    Article  Google Scholar 

  • Socas-Rodríguez, B., Álvarez-Rivera, G., Valdés, A., Ibáñez, E., & Cifuentes, A. (2021). Food by-products and food wastes: are they safe enough for their valorization? Trends in Food Science and Technology, 114, 133–147. https://doi.org/10.1016/j.tifs.2021.05.002

  • Soliño, M., Oviedo, J. L., & Caparrós, A. (2018). Are forest landowners ready for woody energy crops? Preferences for afforestation programs in Southern Spain. Energy Economics, 73, 239–247. https://doi.org/10.1016/j.eneco.2018.05.026

    Article  Google Scholar 

  • Srivastava, N., Srivastava, M., Alhazmi, A., Kausar, T., Haque, S., Singh, R., Ramteke, P. W., Mishra, P. K., Tuohy, M., Leitgeb, M., & Gupta, V. K. (2021). Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: a review. Environmental Pollution, 287. https://doi.org/10.1016/j.envpol.2021.117370, PubMed: 117370.

  • Strazzera, G., Battista, F., Garcia, N. H., Frison, N., & Bolzonella, D. (2018). Volatile fatty acids production from food wastes for biorefinery platforms: a review. Journal of Environmental Management, 226, 278–288. https://doi.org/10.1016/j.jenvman.2018.08.039

    Article  Google Scholar 

  • Stromberg, P. M., Esteban, M., & Gasparatos, A. (2011). Climate change effects on mitigation measures: the case of extreme wind events and Philippines’ biofuel plan. Environmental Science and Policy, 14(8), 1079–1090. https://doi.org/10.1016/j.envsci.2011.06.004

    Article  Google Scholar 

  • Taheripour, F., Cui, H., & Tyner, W. E. (2017). An Exploration of agricultural land use change at the intensive and extensive margins: implications for biofuels induced land use change. Bioenergy and Land Use Change, 19–37.

    Google Scholar 

  • Viccaro, M., Cozzi, M., Rocchi, B., & Romano, S. (2019). Conservation agriculture to promote inland biofuel production in Italy: an economic assessment of rapeseed straight vegetable oil as a self-supply agricultural biofuel. Journal of Cleaner Production, 217, 153–161. https://doi.org/10.1016/j.jclepro.2019.01.251

    Article  Google Scholar 

  • Xu, C. C., Liao, B., Pang, S., Nazari, L., Mahmood, N., Tushar, M. S., Dutta, A., & Ray, M. B. (2018). Biomass energy. Cellulose, 40, 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony B. Halog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varela, R.P., Balanay, R.M., Capangpangan, R.Y., Halog, A.B. (2022). Biofuel Economy, Development, and Food Security. In: Bandh, S.A., Malla, F.A. (eds) Biofuels in Circular Economy. Springer, Singapore. https://doi.org/10.1007/978-981-19-5837-3_2

Download citation

Publish with us

Policies and ethics