Skip to main content

Synthesis and Application of Nanoengineered Cellulosic Biomass in Biohydrogen Production

  • Chapter
  • First Online:
NanoBioenergy: Application and Sustainability Assessment

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Hydrogen is a ray of hope under drastically increasing energy needs that are affecting the environmental conditions on earth. Hydrogen is clean, fuel efficient, and has a higher energy density and here biohydrogen is more environment friendly, and therefore seems more lucrative yet there are certain limitations in its development on large scale. Nano-engineered partials (NPs) can overcome these limitations to contribute a significant part in biohydrogen production. Production of biohydrogen entirely depends upon the success rateĀ of pretreatment, enzymatic hydrolysis, and fermentation and here nano-engineered particles help in increasing the efficiency of the whole process. In the pretreatment method, the use of NPs decreases the processing cost by eliminating the utilization of acid/base. Enzymatic hydrolysis of pretreated material has a slow reaction rate, nonreproducibility of enzymes, and incomplete conversion of substrates therefore enzyme immobilization of enzymes using magnetic NPs makes the enzyme reusable with improved temperature stability. Fermentation is the last step and here also the biohydrogen production can also be increased via the incorporation of NPs. This chapter provides significant details for the synthesis of NPs and their implementation in H2 production using different cellulosic biomass materials to enhance the efficiency of biohydrogen production at each step along with the synthesis of some important nano particles derived from Iron, Silver, and Palladium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weā€™re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticles immobilized cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    ArticleĀ  Google ScholarĀ 

  • Amin FR, Khalid H, Zhang H, Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. Appl Microbiol 7:72. https://doi.org/10.1186/s13568-017-0375-4

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ansari SA, Satar R, Chibber S, Khan MJ (2013) Enhanced stability of Kluyveromyced lactis Ī² galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. J Mol Catal B Enzym 97:258ā€“263

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Asada Y, Koike Y, Schnackenberg J, Miyake M, Uemura I, Miyake J (2000) Heterologous expression of clostridial hydrogenase in the cyanobacterium synechococcus PCC7942. Biochim Biophys Acta 1490(3):269ā€“278. https://doi.org/10.1016/S0167-4781(00)00010-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Assawamongkholsiri T, Reungsang A, Pattra S (2013) Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. Int J Hydrogen Energy 38:6146ā€“6153

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Azman NF, Abdeshahian P, Kadier A, Nasser Al-Shorgani NK, Salih NKM, Lananan I, Kalil MS (2016) Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int J Hydrog Energy 41(1):145ā€“156. https://doi.org/10.1016/j.ijhydene.2015.10.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34(9):3589ā€“3603. https://doi.org/10.1016/j.ijhydene.2009.02.067

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by clostridium butyricum. Bioresour Technol 133:109ā€“117. https://doi.org/10.1016/j.biortech.2012.12.168

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bensah EC, Mensah M (2013) Chemical pre-treatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng 2013:719607. https://doi.org/10.1155/2013/719607

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bohara RA, Thorat ND, Pawar SH (2016) Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean J Chem Eng 33:216ā€“222

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bunker CE, Smith MJ (2005) Nanoparticles for hydrogen generation. J Mater Chem 21:12173ā€“12180

    ArticleĀ  Google ScholarĀ 

  • Chandrasekhar K, Venkata Mohan S (2014) Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol 165:372ā€“382

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen HZ, Liu ZH (2017) Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci 17:489ā€“499

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541ā€“3549. https://doi.org/10.1016/j.renene.2011.04.031

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chozhavendhan S, Rajamehala M, Karthigadevi G, Praveenkumar R, Bharathiraja B (2020) A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production. CSCEE 2:100038

    Google ScholarĀ 

  • Cianchetta S, Maggio BD, Burzi PL, Galletti S (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173:609ā€“623

    CASĀ  Google ScholarĀ 

  • Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, de Oliveira D (2014) Nanomaterials for biocatalyst immobilization-state of the art and future trends. J Mol Cata B Enzym 99:56ā€“67

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Das D, VeziroĒ§lu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13ā€“28

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1ā€“9

    ArticleĀ  Google ScholarĀ 

  • Ding J, Wang X, Zhou XF, Ren NQ, Guo WQ (2010) CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresour Technol 101(18):7005ā€“7013. https://doi.org/10.1016/j.biortech.2010.03.146

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dutta N, Saha MK (2019) Nanoparticle induced enzyme pre-treatment method for increased glucose production from lignocellulosic biomass under cold conditions. J Sci Food Agric 99(2):767ā€“780

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Engliman NS, Abdul PM, Wu SY, Jahim JM (2017) Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. Int J Hydrog Energy 42(45):27482ā€“27493. https://doi.org/10.1016/j.ijhydene.2017.05

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40:4502ā€“4511

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gill CS, Price BA, Jones CW (2007) Sulfonic acid-functionalized silica coated magnetic nanoparticles catalysts. J Catal 251(1):145ā€“152. https://doi.org/10.1016/j.jcat.2007.07.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gong X, Chen L, Lin B (2020) Analyzing dynamic impacts of different oil shocks on oil price. Energy 198:117306

    ArticleĀ  Google ScholarĀ 

  • Gonzalez G, Urrutia H, Roeckel M, Aspe E (2005) Protein hydrolysis under anaerobic, saline conditions in presence of acetic acid. J Chem Technol Biotechnol 157:151ā€“157. https://doi.org/10.1002/jctb.1165

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hallenbeck P (2012) Hydrogen production by cyanobacteria. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New York, pp 15ā€“28

    ChapterĀ  Google ScholarĀ 

  • Han J, Rong J, Wang Y, Liu Q, Tang X, Li C, Ni L (2018) Immobilization of cellulase on thermo-sensitive magnetic microspheres: improved stability and reproducibility. Bioprocess Biosyst Eng 41:1051ā€“1060

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Harmoko C, Sucipto KI, Ery RS, Hartono SB (2016) Vinyl functionalized cubic mesoporous silica nanoparticles as supporting material to enhance cellulase enzyme stability. J Eng Appl Sci 11:2981ā€“2992

    CASĀ  Google ScholarĀ 

  • Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicasā€”benefits and challenges. Chem Soc Rev 42:6277ā€“6289

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Heinrichs B, Rebbouh L, Geus JW, Lambert S, Abbenhuis HCL, Grandjean F, Long GJ, Pirard JP, van Santen RA (2008) Iron (III) species dispersed in porous silica through sol-gel chemistry. J Non-Cryst Solids 354(2ā€“9):665ā€“672

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hu C, Wang N, Zhang W, Zhang S, Meng Y, Yu X (2015a) Immobilization of Aspergillus terreus lipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester. J Biotechnol 194:12ā€“18

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hu S, Jiang F, Hsieh YL (2015b) 1D lignin-based solid catalysts for cellulose hydrolysis to glucose and nanocellulose. ACS Sustain Chem Eng 3:2566ā€“2574

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Huang YB, Fu YJ (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15(5):1095ā€“1111

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Huang PJ, Chang KL, Hsieh JF, Chen ST (2015) Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on Ī²-cyclodextrin-Fe3O4 nanoparticles and ionic liquid. Biomed Res Int 2015:1ā€“9. https://doi.org/10.1155/2015/409103

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ingle AP, Rathod J, Pandit R, da Silva SS, Rai M (2017) Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulase 24:5529ā€“5540

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ismail I, Hassan MA, Soon CS (2011) Effect of retention time on biohydrogen production by microbial consortia immobilised in polydimethylsiloxane. Afr J Biotechnol 10:601ā€“609

    CASĀ  Google ScholarĀ 

  • Jafari O, Zilouei H (2014) Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment. Bioresour Technol 2014:670ā€“678

    Google ScholarĀ 

  • Jariyaboon R, Sompong O, Kongjan P (2015) Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. Bioresour Technol 198:198ā€“206

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kapdan IK, Kargi F (2006) Biohydrogen production from waste materials. Enzyme Microb Technol 38:569ā€“582

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Khan MM, Lee J, Cho MH (2013) Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. Int J Hydrog Energy 38:5243ā€“5250

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim DH, Jang S, Yun YM, Lee MK, Moon C, Kang WS et al (2014) Effect of acid pretreatment on hydrogen fermentation of food waste: microbial community analysis by next generation sequencing. Int J Hydrog Energy 39:16302ā€“16329

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kirli B, Kapdan IK (2016) Selection of microorganism immobilization particle for dark fermentative biohydrogen production by repeated batch operation. Renew Energy 87:697ā€“702

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar SG, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S (2012) Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf B: Biointerfaces 95:235ā€“240. https://doi.org/10.1016/j.colsurfb.2012.03.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lai DM, Deng L, Guo QX, Fu Y (2011) Hydrolysis of biomass by magnetic solid acid. Energy Environ Sci 4(9):3552ā€“3557

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lambert S, AliĆ© C, Pirard JP, Heinrichs B (2004) Study of textural properties and nucleation phenomenon in Pd/SiO2, Ag/SiO2 and Cu/SiO2 cogelled xerogel catalysts. J Non-Cryst Solids 342(1ā€“3):70ā€“81

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lee I, Wang W, Ji S (2012) Device and method for pretreatment of biomass. US Patent No. US20120036765 A1

    Google ScholarĀ 

  • Lenihan P, Orozco A, Oā€™Neil E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395ā€“403

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li Y, Wang XY, Jiang XP, Ye JJ, Zhang YW, Zhang XY (2015) Fabrication of graphene oxide decorated with Fe3O4@SiO2 for immobilization of cellulase. J Nanopart Res 17:8

    ArticleĀ  Google ScholarĀ 

  • Lima JS, AraĆŗjo PHH, Sayer C, Souza AAU, Viegas AC, de Oliveira D (2017) Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess Biosyst Eng 40:511ā€“518

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lin CY, Lay CH, Sen B, Chu CY, Kumar G, Chen CC, Chang JS (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632ā€“15642

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lin R, Cheng J, Ding L, Song W, Liu M, Zhou J, Cen K (2016) Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacteraerogenes. Bioresour Technol 207:213ā€“219. https://doi.org/10.1016/j.biortech.2016.02.009

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lineweaver H, Burk DJ (1934) The determination of enzyme dissociation constants. Am Chem Soc 56(3):658ā€“666

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Logan BE (2004) Biologically extracting energy from wastewater: bio-hydrogen production and microbial fuel cells. Environ Sci Technol 38:160ā€“167

    ArticleĀ  Google ScholarĀ 

  • Matijevic E, Scheiner P (1978) Ferric hydrous oxide sols. III. Preparation of uniform particles by hydrolysis of Fe (III)- chloride, -nitrate and -perchlorate solutions. J Colloid Interface Sci 63:509ā€“524

    CASĀ  Google ScholarĀ 

  • Mittal A, Black SK, Vinzant TB, Oā€™Brien M, Tucker MP, Johnson DK (2017) Production of furfural from process-relevant biomass-derived pentoses in a biphasic reaction system. ACS Sustain Chem Eng 5:5694ā€“5701

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mohanraj S, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2014) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion and phytogenic palladium nanoparticles. J Biotechnol 192:87ā€“95

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticlesā€”a novel approach. Bioresour Technol 141:212ā€“219

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M (2015) Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89 Bull. Mater Sci 38:1533ā€“1538

    CASĀ  Google ScholarĀ 

  • Navlani-Garcia M, Mori K, Kuwahara Y, Yamashita H (2018) Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. NPG Asia Mater 10:277ā€“292

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10(10):1033ā€“1037

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Orts WJ, McMahan CM (2016) Biorefinery developments for advanced biofuels from a sustainable array of biomass feedstocks: survey of recent biomass conversion research from agricultural research service. Bioenergy Res 9(2):430ā€“446

    ArticleĀ  CASĀ  Google ScholarĀ 

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrog Energy 33(4):1204ā€“1214. https://doi.org/10.1016/j.ijhydene.2007.12.015

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Otto M, Floyd M, Bajpai S (2008) Nanotechnology for site remediation. Remediation J 19(1):99ā€“108

    ArticleĀ  Google ScholarĀ 

  • Pedersen JV, Iverseb FK (2009) Devices and methods for discharging pretreated biomass from higher to lower pressure regions. Patent No. 2009147512 A2

    Google ScholarĀ 

  • Pena L, Ikenberry M, Hohn KL, Wang D (2012) Acid functionalized nanoparticles for pretreatment of wheat straw. J Biomater Nanobiotechnol 3:342ā€“352

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Periyasamy K, Santhalembi L, Mortha G, Aurousseau M, Boyer A, Subramanian S (2018) Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir 34:6546ā€“6555

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Phan NTS, Jones CW (2006) Highly accessible catalytic sites on recyclable organosilane functionalized magnetic nanoparticles: an alternative to functionalized porous silica catalysts. J Mol Catal 253(1ā€“2):123ā€“131

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Qi W, He C, Wang Q, Liu S, Yu Q, Wang W et al (2018) Carbon-based solid acid pretreatment in corncob saccharification: specific xylose production and efficient enzymatic hydrolysis. ACS Sustain Chem Eng 6(3):3640ā€“3648

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rai M, Ingle AP, Gaikwad S, Dussan KJ and da Silva SS (2017) Role of nanoparticles in enzymatic hydrolysis of lignocellulose in ethanol. In: Nanotechnology for bioenergy and biofuel production. Springer, pp 153ā€“171

    Google ScholarĀ 

  • Raita M, Arnthong J, Champreda V, Laosiripojana N (2015) Modification of magnetic nanoparticles lipase designs for biodiesel production from palm oil. Fuel Process Technol 134:189ā€“197

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ Sci Pollut Control Ser 24:8790ā€“8804

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Reynaldo PB, Adriano E, Marcelo M, Silvia N (2018) Enzymatic hydrolysis of sugarcane biomass and heat integration as enhancers of ethanol production. J Renew Mater 6:183ā€“194

    ArticleĀ  Google ScholarĀ 

  • Rizwan M, Buthe A, Hamid M, Wang P (2016) Cost-efficient entrapment of Ī²-glucosidase in nanoscale latex and silicone polymeric thin films for use as stable biocatalysts. Food Chem 190:1078ā€“1085

    ArticleĀ  Google ScholarĀ 

  • Rocha GJM, Martin C, da Silva VFN, Gomez EO, Goncalves AR (2012) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour Technol 111:447ā€“452. https://doi.org/10.1016/j.biortech.2012.02.005

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shang CY, Li WX, Zhang RF (2015) Immobilization of Candida rugosa lipase on ZnO nanowires/macroporous silica composites for biocatalytic synthesis of phytosterol esters. Mater Res Bull 68:336ā€“342

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shanmugam S, Hari A, Pandey A, Mathimani T, Felix L, Pugazhendhi A (2020) Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 270:117453

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sheldon RA (2007) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583ā€“1587

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Singh N, Dhanya BS, Verma ML (2020) Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater Sci Energy Technol 3(2020):808ā€“824

    CASĀ  Google ScholarĀ 

  • Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PKO (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresour Technol 238:552ā€“558

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stober W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62ā€“69

    ArticleĀ  Google ScholarĀ 

  • Su TC, Fang Z, Zhang F, Luo J, Li XK (2015) Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave. Sci Rep 5:17538. https://doi.org/10.1038/srep17538

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 75:176ā€“180

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sun Y, He J, Yang G, Sun G, Sage V (2019) A review of the enhancement of bio-hydrogen generation by chemicals addition. Catalysts 9(4):353

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Swarnalatha V, Esther RA, Dhamodharan R (2013) Immobilization of Ī±-amylase on gum acacia stabilized magnetic nanoparticles, an easily recoverable and reusable support. J Mol Catal B Enzym 96:6ā€“13

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Taha M, Shahsavari E, Al-Hothaly K, Mouradov A, Smith AT, Ball AS, Adetutu EM (2015) Enhanced biological straw saccharification through co-culturing of lignocellulosic degrading microorganisms. Appl Biochem Biotechnol 175:3709ā€“3728

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Taherdanak M, Zilouei H, Karimi K (2016) The effects of FeO and NiO nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation. Int J Hydrog Energy 41:167ā€“173

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocelulosic materials: a review. Bioresources 2:707ā€“738

    CASĀ  Google ScholarĀ 

  • Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water tolerant solid acid catalyst. Chem Commun 42:5363ā€“5365. https://doi.org/10.1039/B810346A

    ArticleĀ  Google ScholarĀ 

  • Thandavan K, Gandhi S, Sethuraman S, Rayappan JBB, Krishnan UM (2013) A novel nano-interfaced superoxide biosensor. Sens Actuators B 176:884ā€“892

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of Ī²-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2ā€“6

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M (2019) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18(2):1ā€“9. https://doi.org/10.1007/s10311-019-00942-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym 9:113ā€“148

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34(2):799ā€“811. https://doi.org/10.1016/j.ijhydene.2008.11.015

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang W, Ji S, Lee I (2013) Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenergy 51:35ā€“42

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH (2015) Acid functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C 119:26020ā€“26028

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wimonsong P, Nitisoravut R (2014) Biohydrogen enhancement using highly porous activated carbon. Energy Fuels 28:4554ā€“4559

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wimonsong P, Nitisoravut R (2015) Comparison of different catalyst for fermentative hydrogen production. J Clean Energy Technol 3:128ā€“131

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Xu J, Huo S, Yuan Z, Zhang Y, Xu H, Guo Y, Liang C, Zhuang X (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal Biotransform 29:71ā€“76

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yallappa S, Manjanna J, Sindhe MA, Satyanarayan ND, Pramod SN, Nagaraja K (2013) Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc 110:108ā€“115

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang N, Li WH (2013) Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto nonwoven fabrics. Ind Crop Prod 48:81ā€“88. https://doi.org/10.1016/j.indcrop.2013.04.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang G, Wang J (2018) Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresour Technol 266:413ā€“420

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang B, Dai Z, Ding SY, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4):421ā€“449

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang D, Wang X, Shi J, Wang X, Zhang S, Han P, Jiang Z (2015) In situ synthesized Rgo-Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochem Eng J 105:273ā€“228

    ArticleĀ  Google ScholarĀ 

  • Yang C, Mo H, Zang L, Chen J, Wang Z, Qiu J (2016) Surface functionalized natural inorganic nanorod for highly efficient cellulase immobilization. RSC Adv 6:76855ā€“76860

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53:3448ā€“3454

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrog Energy 32(1):17ā€“23. https://doi.org/10.1016/j.ijhydene.2006.06.004

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang F, Deng X, Fang Z, Tian X, Kozinski J (2011) Hydrolysis of crystalline cellulose over Znāˆ’Caāˆ’Fe oxide catalyst. Petrochem Technol 40:43ā€“48

    Google ScholarĀ 

  • Zhang BL, Zhang HP, Fan XL, Li XJ, Yin DZ, Zhang QY (2013) Preparation of thermoresponsive Fe3O4/P(acrylic acid-methylmethacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein. J Colloid Interfaces Sci 398:51ā€“58

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang WJ, Qiu JH, Feng HX, Wu XL, Zang LM, Yi W, Sakai E (2014) Preparation and characterization of functionalized magnetic silica nanospheres with the immobilized cellulase. Appl Mech Mater 543:3892ā€“3895

    ArticleĀ  Google ScholarĀ 

  • Zhang W, Qui J, Feng H, Zang L, Sakai E (2015) Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater 375(1):117ā€“123

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang J, Fan C, Zhang H, Wang Z, Zhang J, Song M (2018) Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose. Int J Hydrog Energy 43:8729ā€“8738

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240ā€“245

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zheng XJ, Yu HQ (2004) Biological hydrogen production by enriched anaerobic cultures in the presence of copper and zinc. J Environ Sci Health A 39(1):89ā€“101. https://doi.org/10.1081/ese-120027370

    ArticleĀ  Google ScholarĀ 

  • Zheng JH, Wu X, Wang MQ, Ran DH, Xu W, Yang JH (2008) Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application. Talanta 74:526ā€“532

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zheng P, Wang J, Lu C, Xu Y, Sun Z (2013) Immobilized Ī²-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose. Process Biochem 48:683ā€“687

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhou Z, Hartmann M (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42:3894ā€“3912. https://doi.org/10.1039/c3cs60059a

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhu S, Xu X, Rong R, Li B, Wang X (2016) Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration. Toxicol Res 5:97ā€“106

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, D., Sahni, T., Kumar, S., Sarao, L.K. (2023). Synthesis and Application of Nanoengineered Cellulosic Biomass in Biohydrogen Production. In: Srivastava, M., Mishra, P.K. (eds) NanoBioenergy: Application and Sustainability Assessment . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-6234-9_6

Download citation

Publish with us

Policies and ethics