Skip to main content

Radiative Cooling Materials and Devices

  • Chapter
  • First Online:
Infrared Radiative Cooling and Its Applications

Part of the book series: Energy and Environment Research in China ((EERC))

  • 277 Accesses

Abstract

In this chapter, the types of radiators are introduced in detail, including natural radiators, film-based radiators, nanoparticle radiators, and photon radiators. The materials, structures, and optical properties of various radiators are introduced and analyzed, and the effects of these factors on radiation refrigeration are discussed. According to the basic cooling principle of radiation cooling, it is proved that the radiation characteristics of radiation cooler are one of the key parameters for effective heat dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Zhao, M. Hu, X. Ao et al., Radiative cooling: A review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019)

    Google Scholar 

  2. A. Addeo, E. Monza, M. Peraldo et al., Selective covers for natural cooling devices. Il nuovo cimento della Società italiana di fisica. Sezione C, Geophys. Space Phys. 1(5), 419–429 (1978)

    Google Scholar 

  3. F. Trombe, Perspectives sur l'utilisation des rayonnements solaires et terrestres dans certaines régions du monde. Rev. Gen. Therm. (6) 1285 (1967)

    Google Scholar 

  4. Ph. Grenier. Réfrigération radiative. Effet de serre inverse. Rev. Phys. Appl. 14(1), 87–90 (1979)

    Google Scholar 

  5. C.G. Granqvist, A. Hjortsberg, Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52(6), 4205–4220 (1981)

    Google Scholar 

  6. B. Landro, P.G. McCormick, Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky. Int. J. Heat Mass Transf. 23(5), 613–620 (1980)

    Google Scholar 

  7. A. Srinivasan, Q. Yin, B. Czapla, Potential for passive radiative cooling by PDMS selective emitters, 2017

    Google Scholar 

  8. M. Hu, G. Pei, Q. Wang et al., Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Appl. Energy 179, 899–908 (2016)

    Google Scholar 

  9. J. Kou, Z. Jurado, Z. Chen et al., Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4(3), 626–630 (2017)

    Google Scholar 

  10. A.W. Harrison, M.R. Walton, Radiative cooling of TiO2 white paint. Solar Energy 20(2), 185–188 (1978)

    Google Scholar 

  11. D. Michell, K.L. Biggs, Radiation cooling of buildings at night. Appl. Energy 5(4), 263–275 (1979)

    Google Scholar 

  12. T.M. Nilsson, G.A. Niklasson, C.G. Granqvist, Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene. SPIE 249–261 (1992)

    Google Scholar 

  13. T.M.J. Nilsson, G.A. Niklasson, Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils. Solar Energy Mater. Solar Cells 37(1), 93–118 (1995)

    Google Scholar 

  14. P. Berdahl, Radiative cooling with MgO and/or LiF layers. Appl. Opt. 23(3), 370–372 (1984)

    Google Scholar 

  15. C.G. Granqvist, A. Hjortsberg, T. Eriksson, Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films 90(2), 187–190 (1982)

    Google Scholar 

  16. T.S. Eriksson, C.G. Granqvist, Infrared optical properties of electron-beam evaporated silicon oxynitride films. Appl. Opt. 22(20), 3204 (1983)

    Google Scholar 

  17. T.S. Eriksson, S.J. Granqvist, Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering. Solar Energy Mater. 12(5), 319–325 (1985)

    Google Scholar 

  18. A.R. Gentle, G.B. Smith, Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10(2), 373–379 (2010)

    Google Scholar 

  19. Y. Xie, It’s whom you know that counts. Science 355(6329), 1022–1023 (2017)

    Google Scholar 

  20. A.P. Raman, M.A. Anoma, L. Zhu et al., Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540–544 (2014)

    Google Scholar 

  21. M.A. Kecebas, M.P. Menguc, A. Kosar et al., Passive radiative cooling design with broadband optical thin-film filters. J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017)

    Google Scholar 

  22. L. Zhu, A. Raman, S. Fan, Color-preserving daytime radiative cooling. Appl. Phys. Lett. 103(22), 223902 (2013)

    Google Scholar 

  23. A. Raman, K. Xingze, L. Zhu, M.A. Anoma, S. Fan, Radiative cooling of solar cells. Optical 1(1) (2014)

    Google Scholar 

  24. L. Zhu, A.P. Raman, S. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. 112(40), 12282–12287 (2015)

    Google Scholar 

  25. E. Rephaeli, A. Raman, S. Fan Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. (13), 1457–1461 (2013)

    Google Scholar 

  26. M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3(8), 1047–1051 (2015)

    Google Scholar 

  27. C.G. Granqvist, Radiative heating and cooling with spectrally selective surfaces. Appl. Opt. 20(15), 2606–2615 (1981)

    Google Scholar 

  28. H. Eguchi, K. Mori, T. Matsui, Control of dew and frost formations on leaf by radiative cooling. Environ. Control Biol. 19(2) (1981)

    Google Scholar 

  29. A. Hjortsberg, C.G. Granqvist, Radiative cooling with selectively emitting ethylene gas. Appl. Phys. Lett. 39(6): 507–509 (1981)

    Google Scholar 

  30. E.M. Lushiku, T. Eriksson, C.G. Granqvist, Radiative cooling to low temperatures with selectively infrared-emitting gases. Solar Wind Technol. 1(2), 115–121 (1984)

    Google Scholar 

  31. P.D. Dan, J.C.V. Chinnappa, The cooling of water flowing over an inclined surface exposed to the night sky. Solar Wind Technol. 6(1), 41–50 (1989)

    Google Scholar 

  32. Y. Etzion, E. Erell, Low-cost Longwave radiators for passive cooling of buildings. Architectural Sci. Rev. 42(2), 79–85 (2011)

    Google Scholar 

  33. S. Catalanotti et al., The radiative cooling of selective surfaces. Solar Energy (1975)

    Google Scholar 

  34. S. Ito, N. Miura, Studies of radiative cooling systems for storing thermal energy. J. Solar Energy Eng. 111(3), 251–256 (1989)

    Google Scholar 

  35. C.I. Ezekwe, Performance of a heat pipe assisted night sky radiative cooler. Energy Convers. Manag. 30(4), 403–408 (1990)

    Google Scholar 

  36. P. Berdahl, Comments on radiative cooling efficiency of white pigmented paints. 54(3), 203 (1995)

    Google Scholar 

  37. M.D. Diatezua, P.A. Thiry, R. Caudano, Characterization of silicon oxynitride multilayered systems for passive radiative cooling application. Vacuum 46(8–10), 1121–1124 (1995)

    Google Scholar 

  38. M. Tazawa, P. Jin, S. Tanemura, Thin film used to obtain a constant temperature lower than the ambient. Thin Solid Films 281(none), 232–234 (1996)

    Google Scholar 

  39. H. Miyazaki, K. Okada, K. Jinno et al., Fabrication of radiative cooling devices using Si2N2O nano-particles. J. Ceram. Soc. Jpn. (2016)

    Google Scholar 

  40. B. Czapla, A. Srinivasan, Q. Yin et al. Potential for passive radiative cooling by PDMS selective emitters, 2017

    Google Scholar 

  41. C. Zou, G. Ren, M.M. Hossain et al., Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 5(20), 1700460 (2017)

    Google Scholar 

  42. A.R. Gentle, G.B. Smith, A subambient open roof surface under the mid-summer Sun. Adv. Sci. 2(9), 1500119 (2015)

    Google Scholar 

  43. Z. Chen, L. Zhu, A. Raman et al., Radiative cooling to deep sub-freezing temperatures through a 24 h day-night cycle. Nat. Commun. 7(1) (2016)

    Google Scholar 

  44. T. Suichi, A. Ishikawa, Y. Hayashi et al., Structure optimization of metal-dielectric multilayer for high-efficiency daytime radiative cooling, 2017

    Google Scholar 

  45. Z. Huang, X. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890–896 (2017)

    Google Scholar 

  46. H. Bao, C. Yan, B. Wang et al., Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Solar Energy Mater. Solar Cells 168, 78–84 (2017)

    Google Scholar 

  47. Y. Zhai, Y. Ma, S.N. David et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 1062 (2017)

    Google Scholar 

  48. J.Y. Wu, Y.Z. Gong, P.R. Huang et al., Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure. Chin. Phys. B 26(010), 213–218 (2017)

    Google Scholar 

  49. D. Wu, C. Liu, Z. Xu et al., The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 139, 104–111 (2018)

    Google Scholar 

  50. S. Atiganyanun, J.B. Plumley, S.J. Han et al., Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 7b-1492b (2018)

    Google Scholar 

  51. J. Mandal, Fu Y. et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science (New York, N.Y.), 2018

    Google Scholar 

  52. Y. Lu, Z. Chen, L. Ai et al., A universal route to realize radiative cooling and light management in photovoltaic modules. Solar RRL 1(10), 1700084 (2017)

    Google Scholar 

  53. W. Li, Y. Shi, K. Chen et al., A comprehensive photonic approach for solar cell cooling. ACS Photonics 4(4), 774–782 (2017)

    Google Scholar 

  54. K. Sun, C.A. Riedel, Y. Wang et al., Dataset for metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics 7b-99 (2018)

    Google Scholar 

  55. J.P. Whiteman, H.J. Harlow, G.M. Durner et al., Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349(6245), 295–298 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Z., Mu, E. (2022). Radiative Cooling Materials and Devices. In: Infrared Radiative Cooling and Its Applications. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-19-6609-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6609-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6608-8

  • Online ISBN: 978-981-19-6609-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics