Skip to main content

Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials

  • Chapter
  • First Online:
Photocatalytic Activities for Environmental Remediation and Energy Conversion

Abstract

Textile industry wastewater is considered one of the most terrible sources of pollution to our precious aquatic environment because it is mutagenic, carcinogenic, cytotoxic, and other genotoxic to natural compounds. This literature review collects and investigates the latest available research on photocatalytic wastewater or organic pollutant degradation using carbon-based materials in textile industrial wastewater treatment. Materials such as carbon have been used in several studies to enhance photocatalytic performance due to superior properties such as small particle size, high specific surface area-to-volume ratio, high reactivity, excellent chemistry, high thermal stability, wide availability, and catalytic potential on the nanoscale. Heterojunction formation is one of the most effective methods for increasing charge separation efficiency and reducing photogenerated electron–hole pair recombination. There are many ways to increase the photocatalytic performance for carbon-based material, such as heterojunction formation, using g-C3N4 or zinc oxide/carbon nanocomposite as a photocatalyst, surface modification to improve electron transport efficiency in semiconductor particles, using a green hydrothermal method to synthesize a hierarchy of graphene oxide/zinc nanocomposites, and more. Interestingly, the membrane separation technique explains the removal and recovery of synthetic colors from wastewater, which is a potential technical route. Functional composite membranes integrating photoelectrocatalysis and membrane filtration have been the subject of recent research. Finally, carbon-based materials are prospective to improve photocatalytic reaction due to their adsorption capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olisah C, Adams JB, Rubidge G (2021) The state of persistent organic pollutants in South African estuaries: a review of environmental exposure and sources. Ecotoxicol Environ Saf 219:112316

    Article  CAS  Google Scholar 

  2. Almroth BC, Cartine J, Jönander C, Karlsson M, Langlois J, Lindström M et al (2021) Assessing the effects of textile leachates in fish using multiple testing methods: from gene expression to behavior. Ecotoxicol Environ Saf 207:111523

    Article  Google Scholar 

  3. Ali SS, Al-Tohamy R, Sun J (2022) Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Sci Total Environ 806:150665

    Article  CAS  Google Scholar 

  4. Chandanshive V, Kadam S, Rane N, Jeon B-H, Jadhav J, Govindwar S (2020) In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 252:126513

    Article  CAS  Google Scholar 

  5. Akpomie KG, Conradie J (2020) Advances in application of cotton-based adsorbents for heavy metals trapping, surface modifications and future perspectives. Ecotoxicol Environ Saf 201:110825

    Article  CAS  Google Scholar 

  6. Silva AC, Silvestre AJ, Freire CS, Vilela C (2021) Modification of textiles for functional applications. In: Fundamentals of natural fibres and textiles. Elsevier, pp 303–65

    Google Scholar 

  7. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M et al (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng 9(2):105012

    Article  CAS  Google Scholar 

  8. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YA-G, Elsamahy T, et al (2022) A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160

    Google Scholar 

  9. Parmar S, Daki S, Bhattacharya S, Shrivastav A (2022) Microorganism: an ecofriendly tool for waste management and environmental safety. In: Development in wastewater treatment research and processes. Elsevier, pp 175–93

    Google Scholar 

  10. Khan S, Anas M, Malik A (2019) Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicol Rep 6:193–201

    Article  CAS  Google Scholar 

  11. Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y et al (2020) Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-A comprehensive review. J Clean Prod 272:122636

    Article  CAS  Google Scholar 

  12. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290

    Article  Google Scholar 

  13. Li F, Zhao K, Ng TSA, Dai Y, Wang C-H (2022) Sustainable production of bio-oil and carbonaceous materials from biowaste co-pyrolysis. Chem Eng J 427:131821

    Article  CAS  Google Scholar 

  14. Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A et al (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon 5(11):e02711

    Article  Google Scholar 

  15. Islam M, Mostafa M (2018) Textile dyeing effluents and environment concerns-a review. J Environ Sci Nat Resourc 11(1–2):131–144

    Google Scholar 

  16. Michael-Kordatou I, Karaolia P, Fatta-Kassinos D (2018) The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water Res 129:208–230

    Article  CAS  Google Scholar 

  17. Peng S, He X, Pan H (2018) Spectroscopic study on transformations of dissolved organic matter in coal-to-liquids wastewater under integrated chemical oxidation and biological treatment process. J Environ Sci 70:206–216

    Article  CAS  Google Scholar 

  18. Huong PTL, Tu N, Lan H, Van Quy N, Tuan PA, Dinh NX et al (2018) Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As (V) ions from aqueous solution. RSC Adv 8(22):12376–12389

    Article  Google Scholar 

  19. Beheshti A, Hashemi F, Behvandi F, Mayer P, Atzei D (2018) Selective high adsorption capacity for Congo red dye of a new 3D supramolecular complex and its magnetic hybrid. Inorgan Chem Front 5(3):694–704

    Article  CAS  Google Scholar 

  20. Jilani A, Othman MHD, Ansari MO, Hussain SZ, Ismail AF, Khan IU (2018) Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environ Chem Lett 16(4):1301–1323

    Article  CAS  Google Scholar 

  21. Zhang G, Hu L, Zhao R, Su R, Wang Q, Wang P (2018) Microwave-assisted synthesis of ZnNiAl-layered double hydroxides with calcination treatment for enhanced PNP photo-degradation under visible-light irradiation. J Photochem Photobiol A 356:633–641

    Article  CAS  Google Scholar 

  22. Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71

    Article  Google Scholar 

  23. Wei H, Gao B, Ren J, Li A, Yang H (2018) Coagulation/flocculation in dewatering of sludge: a review. Water Res 143:608–631

    Article  CAS  Google Scholar 

  24. Couto CF, Lange LC, Amaral MCS (2018) A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J Water Process Eng 26:156–175

    Article  Google Scholar 

  25. Tawalbeh M, Al Mojjly A, Al-Othman A, Hilal N (2018) Membrane separation as a pre-treatment process for oily saline water. Desalination 447:182–202

    Article  CAS  Google Scholar 

  26. Vilardi G, Rodríguez-Rodríguez J, Ochando-Pulido JM, Verdone N, Martinez-Ferez A, Di Palma L (2018) Large laboratory-plant application for the treatment of a tannery wastewater by Fenton oxidation: Fe (II) and nZVI catalysts comparison and kinetic modelling. Process Saf Environ Prot 117:629–638

    Article  CAS  Google Scholar 

  27. Sadeghassadi M, Macnab CJ, Gopaluni B, Westwick D (2018) Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment. Comput Chem Eng 115:150–160

    Article  CAS  Google Scholar 

  28. Islam MA, Ali I, Karim SA, Firoz MSH, Chowdhury A-N, Morton DW et al (2019) Removal of dye from polluted water using novel nano manganese oxide-based materials. J Water Process Eng 32:100911

    Article  Google Scholar 

  29. Natarajan S, Bajaj HC, Tayade RJ (2018) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci 65:201–222

    Article  CAS  Google Scholar 

  30. Gurbuz F, Ozcan A, Çiftçi H, Acet O, Odabasi M (2019) Treatment of textile effluents through bio-composite column: decolorization and COD reduction. Int J Environ Sci Technol 16(12):8653–8662

    Article  CAS  Google Scholar 

  31. Nasrabadi T, Ruegner H, Schwientek M, Bennett J, Fazel Valipour S, Grathwohl P (2018) Bulk metal concentrations versus total suspended solids in rivers: time-invariant & catchment-specific relationships. PLoS One 13(1):e0191314

    Article  Google Scholar 

  32. Xiao N, Wu R, Huang JJ, Selvaganapathy PR (2020) Development of a xurographically fabricated miniaturized low-cost, high-performance microbial fuel cell and its application for sensing biological oxygen demand. Sens Actuat B Chem 304:127432

    Article  CAS  Google Scholar 

  33. Meng X, Khoso SA, Jiang F, Zhang Y, Yue T, Gao J et al (2020) Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation–flocculation treatment. Sep Purif Technol 235:116233

    Article  CAS  Google Scholar 

  34. Aldossary MHA, Ahmad S, Bahraq AA (2020) Effect of total dissolved solids-contaminated water on the properties of concrete. J Build Eng 32:101496

    Article  Google Scholar 

  35. López Grimau V (2021) Study of a hybrid system: moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) in the treatment and reuse of textile industrial effluents

    Google Scholar 

  36. Samsami S, Mohamadizaniani M, Sarrafzadeh M-H, Rene ER, Firoozbahr M (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ Prot 143:138–163

    Article  CAS  Google Scholar 

  37. Cao G, Wang R, Ju Y, Jing B, Duan X, Ao Z et al (2021) Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms. Water Res 206:117741

    Article  CAS  Google Scholar 

  38. Behera M, Nayak J, Banerjee S, Chakrabortty S, Tripathy SK (2021) A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J Environ Chem Eng 9(4):105277

    Article  CAS  Google Scholar 

  39. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  Google Scholar 

  40. Mudhoo A, Ramasamy DL, Bhatnagar A, Usman M, Sillanpää M (2020) An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicol Environ Saf 197:110587

    Article  CAS  Google Scholar 

  41. Li F, Katz L, Hu Z (2019) Adsorption of major nitrogen-containing components in microalgal bio-oil by activated carbon: equilibrium, kinetics, and ideal adsorbed solution theory (IAST) model. ACS Sustain Chem Eng 7(19):16529–16538

    Article  CAS  Google Scholar 

  42. Abu-Nada A, Abdala A, McKay G (2021) Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: a review. J Environ Chem Eng 9(5):105858

    Article  CAS  Google Scholar 

  43. Jadhav AC, Jadhav NC (2021) Treatment of textile wastewater using adsorption and adsorbents. In: Sustainable technologies for textile wastewater treatments. Elsevier, pp 235–73

    Google Scholar 

  44. Brião GV, Jahn SL, Foletto EL, Dotto GL (2018) Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption. Colloids Surf A 556:43–50

    Article  Google Scholar 

  45. Madan S, Shaw R, Tiwari S, Tiwari SK (2019) Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Appl Surf Sci 487:907–917

    Article  CAS  Google Scholar 

  46. Keskin B, Ersahin ME, Ozgun H, Koyuncu I (2021) Pilot and full-scale applications of membrane processes for textile wastewater treatment: a critical review. J Water Process Eng 42:102172

    Article  Google Scholar 

  47. Willet J, Wetser K, Vreeburg J, Rijnaarts HH (2019) Review of methods to assess sustainability of industrial water use. Water Resourc Indus 21:100110

    Article  Google Scholar 

  48. Haque MS, Nahar N, Sayem SM (2021) Industrial water management and sustainability: development of SIWP tool for textile industries of Bangladesh. Water Resourc Indus 25:100145

    Article  Google Scholar 

  49. Gracia-de-Rentería P, Barberán R, Mur J (2020) The groundwater demand for industrial uses in areas with access to drinking publicly-supplied water: a microdata analysis. Water 12(1):198

    Article  Google Scholar 

  50. Khattab TA, Abdelrahman MS, Rehan M (2020) Textile dyeing industry: environmental impacts and remediation. Environ Sci Pollut Res 27(4):3803–3818

    Article  CAS  Google Scholar 

  51. Gomes da Silva FJ, Gouveia RM (2020) Cleaner production main concept and history. In: Cleaner Production. Springer, pp 15–31

    Google Scholar 

  52. Madhav S, Ahamad A, Singh P, Mishra PK (2018) A review of textile industry: wet processing, environmental impacts, and effluent treatment methods. Environ Qual Manage 27(3):31–41

    Article  Google Scholar 

  53. Velusamy S, Roy A, Sundaram S, Kumar MT (2021) A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem Rec 21(7):1570–1610

    Article  CAS  Google Scholar 

  54. Yogalakshmi KN, Das A, Rani G, Jaswal V, Randhawa JS (2020) Nano-bioremediation: a new age technology for the treatment of dyes in textile effluents. In: Bioremediation of Industrial Waste for Environmental Safety. Springer, 313–347

    Google Scholar 

  55. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365

    Article  CAS  Google Scholar 

  56. Singh AP, Dhadse K, Ahalawat J (2019) Managing water quality of a river using an integrated geographically weighted regression technique with fuzzy decision-making model. Environ Monit Assess 191(6):1–17

    Article  Google Scholar 

  57. Srinivas R, Singh AP (2018) Impact assessment of industrial wastewater discharge in a river basin using interval-valued fuzzy group decision-making and spatial approach. Environ Dev Sustain 20(5):2373–2397

    Article  Google Scholar 

  58. Mani S, Chowdhary P, Bharagava RN (2019) Textile wastewater dyes: toxicity profile and treatment approaches. Emerging and eco-friendly approaches for waste management. Springer, pp 219–244

    Google Scholar 

  59. Agarwal S, Singh AP (2022) Performance evaluation of textile wastewater treatment techniques using sustainability index: an integrated fuzzy approach of assessment. J Clean Prod 130384

    Google Scholar 

  60. Chowdhary P, Bharagava RN, Mishra S, Khan N (2020) Role of industries in water scarcity and its adverse effects on environment and human health. In: Environmental concerns and sustainable development. Springer, pp 235–256

    Google Scholar 

  61. Patil CS, Kadam AN, Gunjal DB, Naik VM, Lee S-W, Kolekar GB et al (2020) Sugarcane molasses derived carbon sheet@ sea sand composite for direct removal of methylene blue from textile wastewater: industrial wastewater remediation through sustainable, greener, and scalable methodology. Sep Purif Technol 247:116997

    Article  CAS  Google Scholar 

  62. Oyeniran DO, Sogbanmu TO, Adesalu TA (2021) Antibiotics, algal evaluations and subacute effects of abattoir wastewater on liver function enzymes, genetic and haematologic biomarkers in the freshwater fish Clarias gariepinus. Ecotoxicol Environ Saf 212:111982

    Article  CAS  Google Scholar 

  63. Bhattacharya S, Gupta AB, Gupta A, Pandey A (2018) Introduction to water remediation: importance and methods. In: Water remediation. Springer, pp 3–8

    Google Scholar 

  64. Singha K, Pandit P, Maity S, Sharma SR (2021) Harmful environmental effects for textile chemical dyeing practice. In: Green Chemistry for Sustainable Textiles. Elsevier, pp 153–164

    Google Scholar 

  65. Jiku MAS, Singha A, Faruquee M, Rahaman MA, Alam MA, Ehsanullah M (2021) Toxic wastewater status for irrigation usage at Gazipur and Savar industrial vicinity of Bangladesh. Acta Ecol Sin 41(4):358–364

    Article  Google Scholar 

  66. Sojobi AO, Zayed T (2022) Impact of sewer overflow on public health: a comprehensive scientometric analysis and systematic review. Environ Res 203:111609

    Article  CAS  Google Scholar 

  67. Al Sawaf MB, Karaca F (2018) Different stakeholders’ opinions toward the sustainability of common textile wastewater treatment technologies in Turkey: a case study Istanbul province. Sustain Cities Soc 42:194–205

    Article  Google Scholar 

  68. Chen G, An X, Li H, Lai F, Yuan E, Xia X, et al (2021) Detoxification of azo dye Direct Black G by thermophilic Anoxybacillus sp. PDR2 and its application potential in bioremediation. Ecotoxicol Environ Saf 214:112084

    Google Scholar 

  69. Chen Y-G, Huang J-H, Luo R, Ge H-Z, Wołowicz A, Wawrzkiewicz M et al (2021) Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. Ecotoxicol Environ Saf 219:112336

    Article  CAS  Google Scholar 

  70. Soni V, Keswani K, Bhatt U, Kumar D, Singh H (2021) In vitro propagation and analysis of mixotrophic potential to improve survival rate of Dolichandra unguis-cati under ex vitro conditions. Heliyon. 7(2):e06101

    Article  CAS  Google Scholar 

  71. Khalaj M, Kamali M, Khodaparast Z, Jahanshahi A (2018) Copper-based nanomaterials for environmental decontamination–an overview on technical and toxicological aspects. Ecotoxicol Environ Saf 148:813–824

    Article  CAS  Google Scholar 

  72. Tounsadi H, Metarfi Y, Taleb M, El Rhazi K, Rais Z (2020) Impact of chemical substances used in textile industry on the employee’s health: epidemiological study. Ecotoxicol Environ Saf 197:110594

    Article  CAS  Google Scholar 

  73. Jin X, Wu C, Tian X, Wang P, Zhou Y, Zuo J (2021) A magnetic-void-porous MnFe2O4/carbon microspheres nano-catalyst for catalytic ozonation: preparation, performance and mechanism. Environ Sci Ecotechnol 7:100110

    Article  Google Scholar 

  74. Wu L, Xu Y, Lv X, Chang X, Ma X, Tian X et al (2021) Impacts of an azo food dye tartrazine uptake on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in crucian carp (Carassius auratus). Ecotoxicol Environ Saf 223:112551

    Article  CAS  Google Scholar 

  75. Piątkowska M, Jedziniak P, Olejnik M, Żmudzki J, Posyniak A (2018) Absence of evidence or evidence of absence? A transfer and depletion study of Sudan I in eggs. Food Chem 239:598–602

    Article  Google Scholar 

  76. Haq I, Raj A (2018) Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 196:58–68

    Article  CAS  Google Scholar 

  77. Ayub I, Munir A, Amjad W, Ghafoor A, Nasir MS (2018) Energy-and exergy-based thermal analyses of a solar bakery unit. J Therm Anal Calorim 133(2):1001–1013

    Article  CAS  Google Scholar 

  78. Nasir MS, Yang G, Ayub I, Wang S, Wang L, Wang X et al (2019) Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl Catal B 257:117855

    Article  CAS  Google Scholar 

  79. Kumar P, Boukherroub R, Shankar K (2018) Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J Mater Chem A 6(27):12876–12931

    Article  CAS  Google Scholar 

  80. Hasija V, Raizada P, Sudhaik A, Sharma K, Kumar A, Singh P et al (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524

    Article  Google Scholar 

  81. Hasija V, Nguyen V-H, Kumar A, Raizada P, Krishnan V, Khan AAP et al (2021) Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J Hazard Mater 413:125324

    Article  CAS  Google Scholar 

  82. Farhadian N, Liu S, Asadi A, Shahlaei M, Moradi S (2021) Enhanced heterogeneous Fenton oxidation of organic pollutant via Fe-containing mesoporous silica composites: a review. J Mol Liq 321:114896

    Article  CAS  Google Scholar 

  83. Soni V, Raizada P, Kumar A, Hasija V, Singal S, Singh P et al (2021) Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environ Chem Lett 19(2):1065–1095

    Article  CAS  Google Scholar 

  84. Gong H, Jin Z, Xu H, Wang Q, Zuo J, Wu J et al (2018) Redesigning C and N mass flows for energy-neutral wastewater treatment by coagulation adsorption enhanced membrane (CAEM)-based pre-concentration process. Chem Eng J 342:304–309

    Article  CAS  Google Scholar 

  85. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A et al (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769

    Article  CAS  Google Scholar 

  86. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V et al (2021) An overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng 9(1):105018

    Article  CAS  Google Scholar 

  87. Sharma K, Dutta V, Sharma S, Raizada P, Hosseini-Bandegharaei A, Thakur P et al (2019) Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J Ind Eng Chem 78:1–20

    Article  Google Scholar 

  88. Kumar A, Raizada P, Hosseini-Bandegharaei A, Thakur VK, Nguyen V-H, Singh P (2021) C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. J Mat Chem A 9(1):111–153

    Article  CAS  Google Scholar 

  89. Hasija V, Patial S, Raizada P, Khan AAP, Asiri AM, Van Le Q et al (2022) Covalent organic frameworks promoted single metal atom catalysis: strategies and applications. Coord Chem Rev 452:214298

    Article  CAS  Google Scholar 

  90. Hasija V, Kumar A, Sudhaik A, Raizada P, Singh P, Van Le Q et al (2021) Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review. Environ Chem Lett 19(4):2941–2966

    Article  CAS  Google Scholar 

  91. Dutta V, Sharma S, Raizada P, Kumar R, Thakur VK, Nguyen V-H et al (2020) Recent progress on bismuth-based Z-scheme semiconductor photocatalysts for energy and environmental applications. J Environ Chem Eng 8(6):104505

    Article  CAS  Google Scholar 

  92. Adegoke KA, Iqbal M, Louis H, Bello OS (2019) Synthesis, characterization and application of CdS/ZnO nanorod heterostructure for the photodegradation of Rhodamine B dye. Mater Sci Energy Technol 2(2):329–336

    Google Scholar 

  93. Dutta V, Sonu S, Raizada P, Thakur VK, Ahamad T, Thakur S, et al (2022) Prism-like integrated Bi2WO6 with Ag-CuBi2O4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. Environ Sci Pollut Res 1–16

    Google Scholar 

  94. Mukherjee D, Van der Bruggen B, Mandal B (2022) Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: a review. Chemosphere 295:133835. https://doi.org/10.1016/j.chemosphere.2022.133835

    Article  CAS  Google Scholar 

  95. Chen L, Caro F, Corbett CJ, Ding X (2019) Estimating the environmental and economic impacts of widespread adoption of potential technology solutions to reduce water use and pollution: application to China’s textile industry. Environ Impact Assess Rev 79:106293. https://doi.org/10.1016/j.eiar.2019.106293

    Article  Google Scholar 

  96. Lin H, Wu J, Zhou F, Zhao X, Lu P, Sun G et al (2023) Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis. J Environ Sci 124:570–590. https://doi.org/10.1016/j.jes.2021.11.017

    Article  Google Scholar 

  97. Pirsaheb M, Asadi A, Sillanpää M, Farhadian N (2018) Application of carbon quantum dots to increase the activity of conventional photocatalysts: a systematic review. J Mol Liq 271:857–871. https://doi.org/10.1016/j.molliq.2018.09.064

    Article  CAS  Google Scholar 

  98. Madima N, Mishra SB, Inamuddin I, Mishra AK (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environ Chem Lett 18(4):1169–1191. https://doi.org/10.1007/s10311-020-01001-0

    Article  CAS  Google Scholar 

  99. Yao Y, Zhang H, Hu K, Nie G, Yang Y, Wang Y et al (2022) Carbon dots based photocatalysis for environmental applications. J Environ Chem Eng 10(2):107336. https://doi.org/10.1016/j.jece.2022.107336

    Article  CAS  Google Scholar 

  100. Mu F, Dai B, Wu Y, Yang G, Li S, Zhang L et al (2022) 2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation. J Colloid Interface Sci 612:722–736. https://doi.org/10.1016/j.jcis.2021.12.196

    Article  CAS  Google Scholar 

  101. Zhang Y, Cao W, Zhu B, Cai J, Li X, Liu J et al (2022) Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. J Colloid Interface Sci 611:706–717. https://doi.org/10.1016/j.jcis.2021.12.073

    Article  CAS  Google Scholar 

  102. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27(3):2522–2565. https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  103. Lee G-J, Wu JJ (2017) Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technol 318:8–22. https://doi.org/10.1016/j.powtec.2017.05.022

    Article  CAS  Google Scholar 

  104. Phin H-Y, Ong Y-T, Sin J-C (2020) Effect of carbon nanotubes loading on the photocatalytic activity of zinc oxide/carbon nanotubes photocatalyst synthesized via a modified sol-gel method. J Environ Chem Eng 8(3):103222. https://doi.org/10.1016/j.jece.2019.103222

    Article  CAS  Google Scholar 

  105. Martins AC, Cazetta AL, Pezoti O, Souza JRB, Zhang T, Pilau EJ et al (2017) Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram Int 43(5):4411–4418. https://doi.org/10.1016/j.ceramint.2016.12.088

    Article  CAS  Google Scholar 

  106. Mkhalid IA (2022) Hydrogen evolution over sol-gel prepared visible-light-responsive Ag2O/SrAl2O4/CNT ternary photocatalyst. Ceram Int 48(2):1542–1549. https://doi.org/10.1016/j.ceramint.2021.09.233

    Article  CAS  Google Scholar 

  107. Zhao Q, Feng G, Jiang F, Lan S, Chen J, Zhong F et al (2020) Nonhydrolytic sol-gel in-situ synthesis of novel recoverable amorphous Fe2TiO5/C hollow spheres as visible-light driven photocatalysts. Mater Des 194:108928. https://doi.org/10.1016/j.matdes.2020.108928

    Article  CAS  Google Scholar 

  108. Dahman Y (2017) Nanotechnology and functional materials for engineers. Elsevier

    Google Scholar 

  109. Shen T, Wang Q, Guo Z, Kuang J, Cao W (2018) Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity. Ceram Int 44(10):11828–11834. https://doi.org/10.1016/j.ceramint.2018.03.271

    Article  CAS  Google Scholar 

  110. Perumal K, Shanavas S, Karthigeyan A, Ahamad T, Alshehri SM, Murugakoothan P (2020) Hydrothermal assisted precipitation synthesis of highly stable g-C3N4/BiOBr/CdS photocatalyst with enhanced visible light photocatalytic degradation of tetracycline. Diam Relat Mater 110:108091. https://doi.org/10.1016/j.diamond.2020.108091

    Article  CAS  Google Scholar 

  111. Rani K, Gupta V (2022) Surfactant assisted solvothermal synthesis of Bi2Te3 nanostructure for thermoelectric applications. Mater Today Proc https://doi.org/10.1016/j.matpr.2022.04.109.

  112. Wang C, Yang K, Wei X, Ding S, Tian F, Li F (2018) One-pot solvothermal synthesis of carbon dots/Ag nanoparticles/TiO2 nanocomposites with enhanced photocatalytic performance. Ceram Int 44(18):22481–22488. https://doi.org/10.1016/j.ceramint.2018.09.017

    Article  CAS  Google Scholar 

  113. Guan Y, Wang S, Du Q, Wu M, Zheng Z, Li Z et al (2022) C-scheme electron transfer mechanism: an efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2022.05.091

    Article  Google Scholar 

  114. Yu W, Wan S, Yuan D, Sun L, Wang Y, Wang M (2021) Microwave solvothermal-assisted calcined synthesis of Bi2WxMo1−XO6 solid solution photocatalysts for degradation and detoxification of bisphenol A under simulated sunlight irradiation. Sep Purif Technol 275:119175. https://doi.org/10.1016/j.seppur.2021.119175

    Article  CAS  Google Scholar 

  115. Wang X, Meng J, Zhang X, Liu Y, Ren M, Yang Y et al (2021) Controllable approach to carbon-deficient and oxygen-doped graphitic carbon nitride: robust photocatalyst against recalcitrant organic pollutants and the mechanism insight. Adv Func Mater 31(20):2010763

    Article  CAS  Google Scholar 

  116. Raizada P, Sudhaik A, Singh P, Hosseini-Bandegharaei A, Thakur P (2019) Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity. Sep Purif Technol 227:115692. https://doi.org/10.1016/j.seppur.2019.115692

    Article  CAS  Google Scholar 

  117. Zhang R, Jiang J, Zeng K (2022) Synthesis of Bi2WO6/g-C3N4 heterojunction on activated carbon fiber membrane as a thin-film photocatalyst for treating antibiotic wastewater. Inorgan Chem Commun 2022:109418. https://doi.org/10.1016/j.inoche.2022.109418

  118. Kafle BP (2019) Chemical analysis and material characterization by spectrophotometry. Elsevier

    Google Scholar 

  119. Liu P, Bao R, Fang D, Yi J, Li L (2018) A facile synthesis of CNTs/Cu2O-CuO heterostructure composites by spray pyrolysis and its visible light responding photocatalytic properties. Adv Powder Technol 29(9):2027–2034. https://doi.org/10.1016/j.apt.2018.05.009

    Article  CAS  Google Scholar 

  120. Zhu S, Nie L (2021) Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J Ind Eng Chem 93:28–56. https://doi.org/10.1016/j.jiec.2020.09.016

    Article  CAS  Google Scholar 

  121. Wang W, Yang R, Li T, Komarneni S, Liu B (2021) Advances in recyclable and superior photocatalytic fibers: material, construction, application and future perspective. Compos B Eng 205:108512. https://doi.org/10.1016/j.compositesb.2020.108512

    Article  CAS  Google Scholar 

  122. Pant B, Prasad Ojha G, Acharya J, Park M (2021) Ag3PO4-TiO2-Carbon nanofiber composite: an efficient visible-light photocatalyst obtained from eelectrospinning and hydrothermal methods. Sep Purif Technol 276:119400. https://doi.org/10.1016/j.seppur.2021.119400

    Article  CAS  Google Scholar 

  123. Shen X, Song L, Luo L, Zhang Y, Zhu B, Liu J et al (2018) Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater. J Colloid Interface Sci 532:798–807. https://doi.org/10.1016/j.jcis.2018.08.028

    Article  CAS  Google Scholar 

  124. Ji M, Zhang Z, Xia J, Di J, Liu Y, Chen R et al (2018) Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chin Chem Lett 29(6):805–810. https://doi.org/10.1016/j.cclet.2018.05.002

    Article  CAS  Google Scholar 

  125. Qu Z, Wang J, Tang J, Shu X, Liu X, Zhang Z et al (2018) Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production. Mol Catal 445:1–11. https://doi.org/10.1016/j.mcat.2017.11.002

    Article  CAS  Google Scholar 

  126. Li C, Che H, Liu C, Che G, Charpentier PA, Xu WZ et al (2019) Facile fabrication of g-C3N4 QDs/BiVO4 Z-scheme heterojunction towards enhancing photodegradation activity under visible light. J Taiwan Inst Chem Eng 95:669–681. https://doi.org/10.1016/j.jtice.2018.10.011

    Article  CAS  Google Scholar 

  127. Peng H, Guo J (2020) Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environ Chem Lett 18(6):2055–2068. https://doi.org/10.1007/s10311-020-01058-x

    Article  CAS  Google Scholar 

  128. Ihsanullah I, Jamal A, Ilyas M, Zubair M, Khan G, Atieh MA (2020) Bioremediation of dyes: current status and prospects. J Water Proc Eng 38:101680. https://doi.org/10.1016/j.jwpe.2020.101680

  129. Hansima MACK, Makehelwala M, Jinadasa KBSN, Wei Y, Nanayakkara KGN, Herath AC, et al (2021) Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: a review. Chemosphere 263:127951. https://doi.org/10.1016/j.chemosphere.2020.127951

  130. Tahir MB, Kiran H, Iqbal T (2019) The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ Sci Pollut Res 26(11):10515–10528. https://doi.org/10.1007/s11356-019-04547-x

    Article  CAS  Google Scholar 

  131. Sutar S, Patil P, Jadhav J (2022) Recent advances in biochar technology for textile dyes wastewater remediation: a review. Environ Res 209:112841. https://doi.org/10.1016/j.envres.2022.112841

  132. Danish MS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, et al (2021) Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals 11(1). https://doi.org/10.3390/met11010080

  133. Bilal Tahir M, Nadeem Riaz K, Asiri AM (2019) Boosting the performance of visible light-driven WO3/g-C3N4 anchored with BiVO4 nanoparticles for photocatalytic hydrogen evolution. Int J Energy Res 43(11):5747–5758. https://doi.org/10.1002/er.4673

    Article  CAS  Google Scholar 

  134. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube–a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens Int 1:100003. https://doi.org/10.1016/j.sintl.2020.100003

  135. Vidas L, Castro R (2021) Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Appl Sci 11(23). https://doi.org/10.3390/app112311363

  136. Egbedina AO, Bolade OP, Ewuzie U, Lima EC (2022) Emerging trends in the application of carbon-based materials: a review. J Environ Chem Eng 10(2):107260. https://doi.org/10.1016/j.jece.2022.107260

  137. Chen T-W, Kalimuthu P, Veerakumar P, Lin K-C, Chen S-M, Ramachandran R, et al (2022) Recent developments in carbon-based nanocomposites for fuel cell applications: a review. Molecules 27(3). https://doi.org/10.3390/molecules27030761

  138. Hao L, Huang H, Zhang Y, Ma T (2021) Oxygen vacant semiconductor photocatalysts. Adv Funct Mater 31(25):2100919. https://doi.org/10.1002/adfm.202100919

  139. Hossain S, Chu W-S, Lee CS, Ahn S-H, Chun D-M (2019) Photocatalytic performance of few-layer Graphene/WO3 thin films prepared by a nano-particle deposition system. Mater Chem Phys 226:141–150. https://doi.org/10.1016/j.matchemphys.2019.01.026

    Article  CAS  Google Scholar 

  140. Zhang C, Bai J, Ma L, Lv Y, Wang F, Zhang X et al (2018) Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X = Cl, Br) solution-hydrothermal post-treatment. Diam Relat Mater 87:215–222. https://doi.org/10.1016/j.diamond.2018.06.013

    Article  CAS  Google Scholar 

  141. Vaiano V, Sacco O, Matarangolo M (2018) Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catal Today 315:230–236. https://doi.org/10.1016/j.cattod.2018.02.002

    Article  CAS  Google Scholar 

  142. Lopes JL, Martins MJ, Nogueira HIS, Estrada AC, Trindade T (2021) Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. Environ Chem Lett 19(1):643–668. https://doi.org/10.1007/s10311-020-01092-9

    Article  CAS  Google Scholar 

  143. Liu Z, Ling Q, Cai Y, Xu L, Su J, Yu K et al (2022) Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Adv 4(5):1246–1262. https://doi.org/10.1039/D1NA00843A

    Article  CAS  Google Scholar 

  144. Filik H, Avan AA (2020) Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers. Arab J Chem 13(7):6092–6105. https://doi.org/10.1016/j.arabjc.2020.05.009

    Article  CAS  Google Scholar 

  145. Mao H, Zhang F, Du M, Dai L, Qian Y, Pang H (2021) Review on synthesis of porous TiO2-based catalysts for energy conversion systems. Ceram Int 47(18):25177–25200. https://doi.org/10.1016/j.ceramint.2021.06.039

    Article  CAS  Google Scholar 

  146. Nguyen D-B, Dong TMT, Nguyen TMN, Nguyen T-T, Vuong V-D, Thanh Phong M, et al (2021) Multi-layered thin film nanocomposite MoS2@MoO2/MWCNP/ITO-PET: electrochemical approaches for synthesis and structural characterizations. Appl Surf Sci 565:150508. https://doi.org/10.1016/j.apsusc.2021.150508

  147. Shi Y, Huang J, Zeng G, Cheng W, Hu J (2019) Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J Membr Sci 584:364–392. https://doi.org/10.1016/j.memsci.2019.04.078

    Article  CAS  Google Scholar 

  148. Jain VP, Chaudhary S, Sharma D, Dabas N, Lalji RSK, Singh BK, et al (2021) Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur Polymer J 142:110124. https://doi.org/10.1016/j.eurpolymj.2020.110124

  149. Davydov VN (2018) The recurrent relations for the electronic band structure of the multilayer graphene. Proc R Soc A Math Phys Eng Sci 474(2220):20180439. https://doi.org/10.1098/rspa.2018.0439

  150. Lv M, Yan L, Liu C, Su C, Zhou Q, Zhang X et al (2018) Non-covalent functionalized graphene oxide (GO) adsorbent with an organic gelator for co-adsorption of dye, endocrine-disruptor, pharmaceutical and metal ion. Chem Eng J 349:791–799. https://doi.org/10.1016/j.cej.2018.04.153

    Article  CAS  Google Scholar 

  151. Patnaik S, Behera A, Parida K (2021) A review on g-C3N4/graphene nanocomposites: multifunctional roles of graphene in the nanohybrid photocatalyst toward photocatalytic applications. Catal Sci Technol 11(18):6018–6040. https://doi.org/10.1039/D1CY00784J

    Article  CAS  Google Scholar 

  152. Stathis A, Bouza Z, Papadakis I, Couris S (2022) Tailoring the nonlinear optical response of some graphene derivatives by ultraviolet (UV) irradiation. Nanomaterials 12(1). https://doi.org/10.3390/nano12010152

  153. Van Khai T, Viet Hai L, Thi Thu Ha N, Thi Thom N, Van Trang N, Thi Nam P, et al (2021) Combined experimental and theoretical studies on enlarged bandgap and improved photoelectrochemical properties of reduced graphene oxide film by hydrogen annealing. J Electroanalyt Chem 900:115722. https://doi.org/10.1016/j.jelechem.2021.115722

  154. Heng ZW, Chong WC, Pang YL, Koo CH (2021) An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation. J Environ Chem Eng 9(3):105199. https://doi.org/10.1016/j.jece.2021.105199

  155. Wu J, Li L, Li X-A, Min X, Xing Y (2022) A novel 2D graphene oxide modified α-AgVO3 nanorods: design, fabrication, and enhanced visible-light photocatalytic performance. J Adv Ceram 11(2):308–320. https://doi.org/10.1007/s40145-021-0534-6

  156. Long X, Feng C, Yang S, Ding D, Feng J, Liu M, et al (2022) Oxygen doped graphitic carbon nitride with regulatable local electron density and band structure for improved photocatalytic degradation of bisphenol A. Chem Eng J 435:134835. https://doi.org/10.1016/j.cej.2022.134835

  157. Raja A, Rajasekaran P, Selvakumar K, Arunpandian M, Kaviyarasu K, Asath Bahadur S, et al (2020) Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Separat Purif Technol 233:115996. https://doi.org/10.1016/j.seppur.2019.115996

  158. Selvakumar K, Raja A, Arunpandian M, Stalindurai K, Rajasekaran P, Sami P et al (2019) Efficient photocatalytic degradation of ciprofloxacin and bisphenol A under visible light using Gd2WO6 loaded ZnO/bentonite nanocomposite. Appl Surf Sci 481:1109–1119. https://doi.org/10.1016/j.apsusc.2019.03.178

    Article  CAS  Google Scholar 

  159. Raja A, Rajasekaran P, Selvakumar K, Ganapathi Raman R, Swaminathan M (2020) Visible active TiO2-CdS-rGO ternary nanocomposite for enhanced photodecomposition of methylene blue. Mater Today Proc 29:1125–1128. https://doi.org/10.1016/j.matpr.2020.05.272

    Article  CAS  Google Scholar 

  160. Li X, Huang G, Chen X, Huang J, Li M, Yin J, et al (2021) A review on graphitic carbon nitride (g-C3N4) based hybrid membranes for water and wastewater treatment. Sci Total Environ 792:148462. https://doi.org/10.1016/j.scitotenv.2021.148462

  161. Lee SJ, Begildayeva T, Jung HJ, Koutavarapu R, Yu Y, Choi M, et al (2021) Plasmonic ZnO/Au/g-C3N4 nanocomposites as solar light active photocatalysts for degradation of organic contaminants in wastewater. Chemosphere 263:128262. https://doi.org/10.1016/j.chemosphere.2020.128262

  162. Li C, Wang B, Zhang F, Song N, Liu G, Wang C et al (2020) Performance of Ag/BiOBr/GO composite photocatalyst for visible-light-driven dye pollutants degradation. J Market Res 9(1):610–621. https://doi.org/10.1016/j.jmrt.2019.11.001

    Article  CAS  Google Scholar 

  163. Liu X, Cai L (2019) A novel double Z-scheme BiOBr-GO-polyaniline photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism. Appl Surf Sci 483:875–887. https://doi.org/10.1016/j.apsusc.2019.03.273

    Article  CAS  Google Scholar 

  164. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W-W, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Proc Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  165. Bai Y, Mao W, Wu Y, Gao Y, Wang T, Liu S (2021) Synthesis of novel ternary heterojunctions via Bi2WO6 coupling with CuS and g-C3N4 for the highly efficient visible-light photodegradation of ciprofloxacin in wastewater. Coll Surf A Physicochem Eng Aspects 610:125481. https://doi.org/10.1016/j.colsurfa.2020.125481

  166. Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5(1):1–23. https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  CAS  Google Scholar 

  167. Masugi Y, Kawai H, Ejiri M, Hirano H, Fujiwara Y, Tanaka T, et al (2022) Early strong predictors of decline in instrumental activities of daily living in community-dwelling older Japanese people. PLOS One 17(4):e0266614-e

    Google Scholar 

  168. Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095. https://doi.org/10.1016/j.mseb.2021.115095

  169. Jauhari H, Grover R, Gupta N, Nanda O, Mehta DS, Saxena K (2018) Solid state dye sensitized solar cells with polyaniline-thiourea based polymer electrolyte composition. J Renew Sustain Energy 10(3):033502. https://doi.org/10.1063/1.5019293

    Article  CAS  Google Scholar 

  170. Poudel YR, Li W (2018) Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater Today Phys 7:7–34. https://doi.org/10.1016/j.mtphys.2018.10.002

    Article  Google Scholar 

  171. Azzam EMS, Fathy NA, El-Khouly SM, Sami RM (2019) Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/Surfactant nanocomposites. J Water Proc Eng 28:311–321. https://doi.org/10.1016/j.jwpe.2019.02.016

    Article  Google Scholar 

  172. Zhao H, Li H, Yu H, Chang H, Quan X, Chen S (2013) CNTs–TiO2/Al2O3 composite membrane with a photocatalytic function: fabrication and energetic performance in water treatment. Sep Purif Technol 116:360–365. https://doi.org/10.1016/j.seppur.2013.06.007

    Article  CAS  Google Scholar 

  173. Yang Y, Liu K, Sun F, Liu Y, Chen J (2022) Enhanced performance of photocatalytic treatment of Congo red wastewater by CNTs-Ag-modified TiO2 under visible light. Environ Sci Pollut Res 29(11):15516–15525. https://doi.org/10.1007/s11356-021-16734-w

    Article  CAS  Google Scholar 

  174. Zhang K, Meng Z, Oh W (2010) Degradation of Rhodamine B by Fe-Carbon Nanotubes/TiO2 composites under UV light in aerated solution. Chin J Catal 31(7):751–758. https://doi.org/10.1016/S1872-2067(09)60084-X

    Article  CAS  Google Scholar 

  175. Zhu J, Jiang Z (2021) Electrochemical photocatalytic degradation of eriochrome black T dye using synthesized TiO2@ CNTs nanofibers. Int J Electrochem Sci 16:210318. https://doi.org/10.20964/2021.03.55

  176. Huang Y, Chen D, Hu X, Qian Y, Li D (2018) Preparation of TiO2/carbon nanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of Rhodamine B. Nanomaterials 8(6). https://doi.org/10.3390/nano8060431

  177. Gagic M, Kociova S, Smerkova K, Michalkova H, Setka M, Svec P et al (2020) One-pot synthesis of natural amine-modified biocompatible carbon quantum dots with antibacterial activity. J Colloid Interface Sci 580:30–48. https://doi.org/10.1016/j.jcis.2020.06.125

    Article  CAS  Google Scholar 

  178. Vieira KO, Bettini J, de Oliveira LFC, Ferrari JL, Schiavon MA (2017) Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths. New Carbon Mater 32(4):327–337. https://doi.org/10.1016/S1872-5805(17)60126-4

    Article  CAS  Google Scholar 

  179. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428. https://doi.org/10.1016/j.carbon.2013.04.055

    Article  CAS  Google Scholar 

  180. Pan M, Xie X, Liu K, Yang J, Hong L, Wang S (2020) Fluorescent carbon quantum dots—synthesis, functionalization and sensing application in food analysis. Nanomaterials 10(5). https://doi.org/10.3390/nano10050930

  181. Molaei MJ (2020) Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods 12(10):1266–1287. https://doi.org/10.1039/C9AY02696G

    Article  CAS  Google Scholar 

  182. Chen H, Pina JM, Hou Y, Sargent EH (2022) Synthesis, applications, and prospects of quantum-dot-in-perovskite solids. Adv Energy Mater 12(4):2100774. https://doi.org/10.1002/aenm.202100774

  183. Fernando KAS, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A et al (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7(16):8363–8376. https://doi.org/10.1021/acsami.5b00448

    Article  CAS  Google Scholar 

  184. Murillo-Sierra JC, Hernández-Ramírez A, Zhao Z-Y, Martínez-Hernández A, Gracia-Pinilla MA (2021) Construction of direct Z-scheme WO3/ZnS heterojunction to enhance the photocatalytic degradation of tetracycline antibiotic. J Environ Chem Eng 9(2):105111. https://doi.org/10.1016/j.jece.2021.105111

  185. Xu X, Lin H, Xiao P, Zhu J, Bi H, Carabineiro SAC (2022) Construction of Ag-bridged Z-Scheme LaFe0.5Co0.5O3/Ag10/graphitic carbon nitride heterojunctions for photo-fenton degradation of tetracycline hydrochloride: interfacial electron effect and reaction mechanism. Adv Mater Interfaces 9(5):2101902. https://doi.org/10.1002/admi.202101902

  186. Kokilavani S, Syed A, Elgorban AM, Bahkali AH, Al-Shwaiman HA, Varma RS, et al (2022) Designing Z-scheme AgIO4 nanorod embedded with Bi2S3 nanoflakes for expeditious visible light photodegradation of congo red and rhodamine B. Chemosphere 294:133755. https://doi.org/10.1016/j.chemosphere.2022.133755

  187. Bokare A, Chinnusamy S, Erogbogbo F (2021) TiO2-graphene quantum dots nanocomposites for photocatalysis in energy and biomedical applications. Catalysts 11(3). https://doi.org/10.3390/catal11030319

  188. Liang H, Tai X, Du Z, Yin Y (2020) Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater. Opt Mater 100:109674. https://doi.org/10.1016/j.optmat.2020.109674

  189. Zhang L, Zhang J, Xia Y, Xun M, Chen H, Liu X, et al (2020) Metal-free carbon quantum dots implant graphitic carbon nitride: enhanced photocatalytic dye wastewater purification with simultaneous hydrogen production. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21031052

  190. Wang S, Li L, Zhu Z, Zhao M, Zhang L, Zhang N, et al (2019) Remarkable improvement in photocatalytic performance for tannery wastewater processing via SnS2 modified with N-doped carbon quantum dots: synthesis, characterization, and 4-Nitrophenol-Aided Cr(VI) photoreduction. Small 15(29):1804515. https://doi.org/10.1002/smll.201804515

  191. Ming H, Wei D, Yang Y, Chen B, Yang C, Zhang J, et al (2021) Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation. Chem Eng J 424:130296. https://doi.org/10.1016/j.cej.2021.130296

  192. Mishra A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM (2019) Chapter 27–Photocatalysis of graphene and carbon nitride-based functional carbon quantum dots. In: Thomas S, Pasquini D, Leu S-Y, Gopakumar D (eds) ABTNMiWP. Elsevier, pp.759–81

    Google Scholar 

  193. Hamblin MR (2018) Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci 17(11):1515–1533. https://doi.org/10.1039/C8PP00195B

    Article  CAS  Google Scholar 

  194. Cortés-Arriagada D, Ortega DE (2021) Fullerene–phosphorene–nanoflake nanostructures: modulation of their interaction mechanisms and electronic properties through the size of carbon fullerenes. Carbon 182:354–365. https://doi.org/10.1016/j.carbon.2021.06.036

    Article  CAS  Google Scholar 

  195. Pan Y, Liu X, Zhang W, Liu Z, Zeng G, Shao B, et al (2020) Advances in photocatalysis based on fullerene C60 and its derivatives: properties, mechanism, synthesis, and applications. Appl Catal B Environ 265:118579. https://doi.org/10.1016/j.apcatb.2019.118579

  196. Ghosh A, Banerjee S, Debnath T, Das AK (2022) Dehydrogenation of ammonia–borane to functionalize neutral and Li+-encapsulated C60, C70 and C36 fullerene cages: a DFT approach. Phys Chem Chem Phys 24(6):4022–4041. https://doi.org/10.1039/D1CP05770G

    Article  CAS  Google Scholar 

  197. Gergeroglu H, Yildirim S, Ebeoglugil MF (2020) Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60). SN Appl Sci 2(4):603. https://doi.org/10.1007/s42452-020-2404-1

  198. Baskar AV, Benzigar MR, Talapaneni SN, Singh G, Karakoti AS, Yi J, et al (2022) Self-assembled fullerene nanostructures: synthesis and applications. Adv Funct Mater 32(6):2106924. https://doi.org/10.1002/adfm.202106924

  199. Panahian Y, Arsalani N, Nasiri R (2018) Enhanced photo and sono-photo degradation of crystal violet dye in aqueous solution by 3D flower like F-TiO2(B)/fullerene under visible light. J Photochem Photobiol, A 365:45–51. https://doi.org/10.1016/j.jphotochem.2018.07.035

    Article  CAS  Google Scholar 

  200. Regulska E, Rivera-Nazario DM, Karpinska J, Plonska-Brzezinska ME, Echegoyen L (2019) Zinc porphyrin-functionalized fullerenes for the sensitization of titania as a visible-light active photocatalyst: river waters and wastewaters remediation. Molecules 24(6). https://doi.org/10.3390/molecules24061118

  201. Ajiboye TO, Oyewo OA, Onwudiwe DC (2021) Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 29:100277. https://doi.org/10.1016/j.flatc.2021.100277

  202. Wu Z-Y, Xu Y-J, Huang L-J, Zhang Q-X, Tang D-L (2021) Fullerene-cored star-shaped polyporphyrin-incorporated TiO2 as photocatalysts for the enhanced degradation of rhodamine B. J Environ Chem Eng 9(5):106142. https://doi.org/10.1016/j.jece.2021.106142

  203. Chen M, Zhang G, Jiang Y, Yin K, Zhang L, Li H et al (2019) Fullerene-directed synthesis of flowerlike Cu3(PO4)2 crystals for efficient photocatalytic degradation of dyes. Langmuir 35(26):8806–8815. https://doi.org/10.1021/acs.langmuir.9b00193

    Article  CAS  Google Scholar 

  204. Williams R (2007) Introduction to electron transfer

    Google Scholar 

  205. Mohamed HH, Bahnemann DW (2012) The role of electron transfer in photocatalysis: fact and fictions. Appl Catal B 128:91–104. https://doi.org/10.1016/j.apcatb.2012.05.045

    Article  CAS  Google Scholar 

  206. Zhen G, Zheng S, Lu X, Zhu X, Mei J, Kobayashi T et al (2018) A comprehensive comparison of five different carbon-based cathode materials in CO2 electromethanogenesis: long-term performance, cell-electrode contact behaviors and extracellular electron transfer pathways. Biores Technol 266:382–388. https://doi.org/10.1016/j.biortech.2018.06.101

    Article  CAS  Google Scholar 

  207. Shi J, Claussen JC, McLamore ES, ul Haque A, Jaroch D, Diggs AR, et al (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22(35):355502. https://doi.org/10.1088/0957-4484/22/35/355502

  208. Hwa K-Y, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62:127–133. https://doi.org/10.1016/j.bios.2014.06.023

    Article  CAS  Google Scholar 

  209. Liu X, Yan R, Zhang J, Zhu J, Wong DKY (2015) Evaluation of a carbon nanotube-titanate nanotube nanocomposite as an electrochemical biosensor scaffold. Biosens Bioelectron 66:208–215. https://doi.org/10.1016/j.bios.2014.11.028

    Article  CAS  Google Scholar 

  210. Gu H-Y, Yu A-M, Chen H-Y (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J Electroanal Chem 516(1):119–126. https://doi.org/10.1016/S0022-0728(01)00669-6

    Article  CAS  Google Scholar 

  211. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta (BBA) Rev Bioenerget 811(3):265–322. https://doi.org/10.1016/0304-4173(85)90014-X

  212. Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P (2016) Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 79:386–397. https://doi.org/10.1016/j.bios.2015.12.055

    Article  CAS  Google Scholar 

  213. Palanisamy S, Cheemalapati S, Chen S-M (2012) Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal Biochem 429(2):108–115. https://doi.org/10.1016/j.ab.2012.07.001

    Article  CAS  Google Scholar 

  214. Kafi AKM, Crossley MJ (2013) Synthesis of a conductive network of crosslinked carbon nanotube/hemoglobin on a thiol-modified Au surface and its application to biosensing. Biosens Bioelectron 42:273–279. https://doi.org/10.1016/j.bios.2012.10.040

    Article  CAS  Google Scholar 

  215. Bagreev A, Bandosz TJ, Locke DC (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 39(13):1971–1979. https://doi.org/10.1016/S0008-6223(01)00026-4

    Article  CAS  Google Scholar 

  216. Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML et al (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74(3):291–307. https://doi.org/10.1016/j.talanta.2007.10.013

    Article  CAS  Google Scholar 

  217. Cai C, Chen J (2004) Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem 325(2):285–292. https://doi.org/10.1016/j.ab.2003.10.040

    Article  CAS  Google Scholar 

  218. Cai C, Chen J (2004) Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 332(1):75–83. https://doi.org/10.1016/j.ab.2004.05.057

    Article  CAS  Google Scholar 

  219. Tominaga M, Nomura S, Taniguchi I (2008) Bioelectrocatalytic current based on direct heterogeneous electron transfer reaction of glucose oxidase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode surfaces. Electrochem Commun 10(6):888–890. https://doi.org/10.1016/j.elecom.2008.04.011

    Article  CAS  Google Scholar 

  220. Salimi A, Noorbakhsh A, Ghadermarz M (2005) Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode. Anal Biochem 344(1):16–24. https://doi.org/10.1016/j.ab.2005.05.035

    Article  CAS  Google Scholar 

  221. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem 74(9):1993–1997. https://doi.org/10.1021/ac010978u

    Article  CAS  Google Scholar 

  222. Li J, Wang Y-B, Qiu J-D, Sun D-C, Xia X-H (2005) Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Anal Bioanaly Chem 383(6):918–922. https://doi.org/10.1007/s00216-005-0106-6

  223. Manesh KM, Kim HT, Santhosh P, Gopalan AI, Lee K-P (2008) A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes–polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens Bioelectron 23(6):771–779. https://doi.org/10.1016/j.bios.2007.08.016

    Article  CAS  Google Scholar 

  224. Zhang P, Yang C, Li Z, Liu J, Xiao X, Li D et al (2022) Accelerating the extracellular electron transfer of Shewanella oneidensis MR-1 by carbon dots: the role of carbon dots concentration. Electrochim Acta 421:140490. https://doi.org/10.1016/j.electacta.2022.140490

    Article  CAS  Google Scholar 

  225. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS et al (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6(8):592–603. https://doi.org/10.1038/nrmicro1947

    Article  CAS  Google Scholar 

  226. Ter Heijne A, Schaetzle O, Gimenez S, Fabregat-Santiago F, Bisquert J, Strik DPBTB, et al (2011) Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy Environ Sci 4(12):5035–5043. https://doi.org/10.1039/C1EE02131A

  227. Li W-W, Yu H-Q, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7(3):911–924. https://doi.org/10.1039/C3EE43106A

    Article  CAS  Google Scholar 

  228. Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906. https://doi.org/10.1039/C1EE02229F

    Article  CAS  Google Scholar 

  229. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629. https://doi.org/10.1039/B703627M

    Article  Google Scholar 

  230. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508. https://doi.org/10.1038/nrmicro1442

    Article  CAS  Google Scholar 

  231. Zhang T, Cui C, Chen S, Yang H, Shen P (2008) The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem Commun 10(2):293–297. https://doi.org/10.1016/j.elecom.2007.12.009

    Article  CAS  Google Scholar 

  232. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35. https://doi.org/10.1111/j.1758-2229.2010.00211.x

    Article  CAS  Google Scholar 

  233. Yang M-Q, Zhang N, Pagliaro M, Xu Y-J (2014) Artificial photosynthesis over graphene–semiconductor composites. Are we getting better? Chem Soc Rev 43(24):8240–8254. https://doi.org/10.1039/C4CS00213J

  234. Xia Y, Li Q, Lv K, Tang D, Li M (2017) Superiority of graphene over carbon analogs for enhanced photocatalytic H2-production activity of ZnIn2S4. Appl Catal B 206:344–352. https://doi.org/10.1016/j.apcatb.2017.01.060

    Article  CAS  Google Scholar 

  235. Ma X, Xiang Q, Liao Y, Wen T, Zhang H (2018) Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Appl Surf Sci 457:846–855. https://doi.org/10.1016/j.apsusc.2018.07.003

  236. Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y et al (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2(10):3344–3351. https://doi.org/10.1039/C3TA14108J

    Article  CAS  Google Scholar 

  237. Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ Sci 8(3):731–759. https://doi.org/10.1039/C4EE03271C

    Article  CAS  Google Scholar 

  238. Wang J, Wang G, Wei X, Liu G, Li J (2018) ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB. Appl Surf Sci 456:666–675. https://doi.org/10.1016/j.apsusc.2018.06.182

    Article  CAS  Google Scholar 

  239. Yuan Y, Guo R-T, Hong L-F, Ji X-Y, Lin Z-D, Li Z-S, et al (2021) A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater Today Energy 21:100829. https://doi.org/10.1016/j.mtener.2021.100829

  240. Cao W, Jiang C, Chen C, Zhou H, Wang Y (2021) A novel Z-scheme CdS/Bi4O5Br 2 heterostructure with mechanism analysis: enhanced photocatalytic performance. J Alloy Compd 861:158554. https://doi.org/10.1016/j.jallcom.2020.158554

    Article  CAS  Google Scholar 

  241. Wong KT, Kim SC, Yun K, Choong CE, Nah IW, Jeon B-H et al (2020) Understanding the potential band position and e–/h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: comparative experimental and DFT studies. Appl Catal B 273:119034. https://doi.org/10.1016/j.apcatb.2020.119034

    Article  CAS  Google Scholar 

  242. He S, Yan C, Chen X-Z, Wang Z, Ouyang T, Guo M-L et al (2020) Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl Catal B 276:119138. https://doi.org/10.1016/j.apcatb.2020.119138

    Article  CAS  Google Scholar 

  243. Zhang M, Lai C, Li B, Huang D, Zeng G, Xu P et al (2019) Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: kinetics, intermediates, and mechanism insight. J Catal 369:469–481. https://doi.org/10.1016/j.jcat.2018.11.029

    Article  CAS  Google Scholar 

  244. Natarajan TS, Thampi KR, Tayade RJ (2018) Visible light driven redox-mediator-free dual semiconductor photocatalytic systems for pollutant degradation and the ambiguity in applying Z-scheme concept. Appl Catal B 227:296–311. https://doi.org/10.1016/j.apcatb.2018.01.015

    Article  CAS  Google Scholar 

  245. Zhang P, Wang T, Chang X, Gong J (2016) Effective charge carrier utilization in photocatalytic conversions. Acc Chem Res 49(5):911–921. https://doi.org/10.1021/acs.accounts.6b00036

    Article  CAS  Google Scholar 

  246. Lee SL, Chang C-J (2019) Recent developments about conductive polymer based composite photocatalysts. Polymers 11(2). https://doi.org/10.3390/polym11020206

  247. Guo Y, Li H, Ma W, Shi W, Zhu Y, Choi W (2020) Photocatalytic activity enhanced via surface hybridization. Carbon Energy 2(3):308–349. https://doi.org/10.1002/cey2.66

    Article  CAS  Google Scholar 

  248. Kandy MM (2020) Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuels. Sustain Energy Fuels 4(2):469–484. https://doi.org/10.1039/C9SE00827F

    Article  CAS  Google Scholar 

  249. Li X, Shen R, Ma S, Chen X, Xie J (2018) Graphene-based heterojunction photocatalysts. Appl Surf Sci 430:53–107. https://doi.org/10.1016/j.apsusc.2017.08.194

    Article  CAS  Google Scholar 

  250. Jiang D, Ma W, Xiao P, Shao L, Li D, Chen M (2018) Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator. J Colloid Interface Sci 512:693–700. https://doi.org/10.1016/j.jcis.2017.10.074

    Article  CAS  Google Scholar 

  251. Gebreslassie G, Bharali P, Chandra U, Sergawie A, Boruah PK, Das MR et al (2019) Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts. J Photochem Photobiol A 382:111960. https://doi.org/10.1016/j.jphotochem.2019.111960

    Article  CAS  Google Scholar 

  252. Syed N, Huang J, Feng Y, Wang X, Cao L. Carbon-based nanomaterials via heterojunction serving as photocatalyst. Front Chem 7

    Google Scholar 

  253. Liu E, Xu C, Jin C, Fan J, Hu X (2019) Carbon quantum dots bridged TiO2 and Cd0.5Zn0.5S film as solid-state Z-scheme photocatalyst with enhanced H2 evolution activity. J Taiwan Inst Chem Eng 97:316–325. https://doi.org/10.1016/j.jtice.2019.02.027

  254. Pan J, Liu J, Zuo S, Khan UA, Yu Y, Li B (2018) Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination. Appl Surf Sci 444:177–186. https://doi.org/10.1016/j.apsusc.2018.01.189

    Article  CAS  Google Scholar 

  255. Xia T, Lin Y, Li W, Ju M (2021) Photocatalytic degradation of organic pollutants by MOFs based materials: a review. Chin Chem Lett 32(10):2975–2984. https://doi.org/10.1016/j.cclet.2021.02.058

    Article  CAS  Google Scholar 

  256. Cao H-L, Cai F-Y, Yu K, Zhang Y-Q, Lü J, Cao R (2019) Photocatalytic degradation of tetracycline antibiotics over CdS/nitrogen-doped–carbon composites derived from in situ carbonization of metal-organic frameworks. ACS Sustain Chem Eng 7(12):10847–10854. https://doi.org/10.1021/acssuschemeng.9b01685

    Article  CAS  Google Scholar 

  257. Miao R, Luo Z, Zhong W, Chen S-Y, Jiang T, Dutta B et al (2016) Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl Catal B 189:26–38. https://doi.org/10.1016/j.apcatb.2016.01.070

    Article  CAS  Google Scholar 

  258. Yu H, Shi R, Zhao Y, Waterhouse GIN, Wu L-Z, Tung C-H et al (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28(43):9454–9477. https://doi.org/10.1002/adma.201602581

    Article  CAS  Google Scholar 

  259. Wang Z, Wang J, Li L, Zheng J, Jia S, Chen J et al (2017) Fabricating efficient CdSe–CdS photocatalyst systems by spatially resetting water splitting sites. J Mater Chem A 5(38):20131–20135. https://doi.org/10.1039/C7TA06085H

    Article  CAS  Google Scholar 

  260. Lian Z, Sakamoto M, Kobayashi Y, Tamai N, Ma J, Sakurai T et al (2018) Durian-shaped CdS@ZnSe Core@Mesoporous-shell nanoparticles for enhanced and sustainable photocatalytic hydrogen evolution. J Phys Chem Lett 9(9):2212–2217. https://doi.org/10.1021/acs.jpclett.8b00789

    Article  CAS  Google Scholar 

  261. Tan Y, Shu Z, Zhou J, Li T, Wang W, Zhao Z (2018) One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl Catal B 230:260–268. https://doi.org/10.1016/j.apcatb.2018.02.056

    Article  CAS  Google Scholar 

  262. Wang W, Zhu S, Cao Y, Tao Y, Li X, Pan D et al (2019) Edge-enriched ultrathin MoS2 embedded yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv Func Mater 29(36):1901958. https://doi.org/10.1002/adfm.201901958

    Article  CAS  Google Scholar 

  263. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31(30):1807660. https://doi.org/10.1002/adma.201807660

    Article  CAS  Google Scholar 

  264. Guo X, Li X, Qin L, Kang S-Z, Li G (2019) A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production. Appl Catal B 243:1–9. https://doi.org/10.1016/j.apcatb.2018.10.030

    Article  CAS  Google Scholar 

  265. Xiao X, Gao Y, Zhang L, Zhang J, Zhang Q, Li Q et al (2020) A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv Mater 32(33):2003082. https://doi.org/10.1002/adma.202003082

    Article  CAS  Google Scholar 

  266. Lopes JC, Sampaio MJ, Fernandes RA, Lima MJ, Faria JL, Silva CG (2020) Outstanding response of carbon nitride photocatalysts for selective synthesis of aldehydes under UV-LED irradiation. Catal Today 357:32–38. https://doi.org/10.1016/j.cattod.2019.03.050

    Article  CAS  Google Scholar 

  267. Lima MJ, Pastrana-Martínez LM, Sampaio MJ, Dražić G, Silva AMT, Faria JL et al (2018) Selective production of benzaldehyde using metal-free reduced graphene oxide/carbon nitride hybrid photocatalysts. Chem Select 3(28):8070–8081. https://doi.org/10.1002/slct.201800962

    Article  CAS  Google Scholar 

  268. Bellardita M, García-López EI, Marcì G, Krivtsov I, García JR, Palmisano L (2018) Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl Catal B 220:222–233. https://doi.org/10.1016/j.apcatb.2017.08.033

    Article  CAS  Google Scholar 

  269. Wang C, Dai Y, Fu X, Lu H, Zhang J (2021) A novel layer-layer crossed structure of bentonite/g-C3N4 for enhanced photocatalytic oxidation of arsenic(III) in a wide pH range. Surf Interf 26:101365. https://doi.org/10.1016/j.surfin.2021.101365

    Article  CAS  Google Scholar 

  270. Zhou M, Yang P, Wang S, Luo Z, Huang C, Wang X (2018) Structure-mediated charge separation in boron carbon nitride for enhanced photocatalytic oxidation of alcohol. Chemsuschem 11(22):3949–3955. https://doi.org/10.1002/cssc.201801827

    Article  CAS  Google Scholar 

  271. Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L et al (2012) Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem Commun 48(95):11656–11658. https://doi.org/10.1039/C2CC34620F

    Article  CAS  Google Scholar 

  272. Chen Y, Zhang J, Zhang M, Wang X (2013) Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem Sci 4(8):3244–3248. https://doi.org/10.1039/C3SC51203G

    Article  CAS  Google Scholar 

  273. Svoboda L, Praus P, Lima MJ, Sampaio MJ, Matýsek D, Ritz M et al (2018) Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater Res Bull 100:322–332. https://doi.org/10.1016/j.materresbull.2017.12.049

    Article  CAS  Google Scholar 

  274. Torres-Pinto A, Sampaio MJ, Silva CG, Faria JL, Silva AMT (2019) Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl Catal B 252:128–137. https://doi.org/10.1016/j.apcatb.2019.03.040

    Article  CAS  Google Scholar 

  275. Moreira NFF, Sampaio MJ, Ribeiro AR, Silva CG, Faria JL, Silva AMT (2019) Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl Catal B 248:184–192. https://doi.org/10.1016/j.apcatb.2019.02.001

    Article  CAS  Google Scholar 

  276. Panimalar S, Uthrakumar R, Selvi ET, Gomathy P, Inmozhi C, Kaviyarasu K et al (2020) Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surf Interf 20:100512. https://doi.org/10.1016/j.surfin.2020.100512

    Article  CAS  Google Scholar 

  277. Liu W, Li Y, Liu F, Jiang W, Zhang D, Liang J (2019) WITHDRAWN: Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: mechanisms, degradation pathway and DFT calculation. Water Res 150:431–441. https://doi.org/10.1016/j.watres.2018.12.001

    Article  CAS  Google Scholar 

  278. fiqar Z, Tao J, Yang T, Liu Q, Hu J, Tang H (2021) Designing 0D/2D CdS nanoparticles/g-C3N4 nanosheets heterojunction as efficient photocatalyst for improved H2-evolution. Surf Interf 26:101312. https://doi.org/10.1016/j.surfin.2021.101312

  279. Pawar RC, Kang S, Park JH, Kim J-H, Ahn S, Lee CS (2016) Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability. Sci Rep 6(1):31147. https://doi.org/10.1038/srep31147

  280. Torres-Pinto A, Sampaio MJ, Teixo J, Silva CG, Faria JL, Silva AMT (2020) Photo-Fenton degradation assisted by in situ generation of hydrogen peroxide using a carbon nitride photocatalyst. J Water Proc Eng 37:101467. https://doi.org/10.1016/j.jwpe.2020.101467

    Article  Google Scholar 

  281. Han Q, Wang B, Gao J, Cheng Z, Zhao Y, Zhang Z et al (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2):2745–2751. https://doi.org/10.1021/acsnano.5b07831

    Article  CAS  Google Scholar 

  282. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  283. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  284. Chen S, Lu W, Han J, Zhong H, Xu T, Wang G et al (2019) Robust three-dimensional g-C3N4@cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics. Chem Eng J 359:119–129. https://doi.org/10.1016/j.cej.2018.11.110

    Article  CAS  Google Scholar 

  285. Chen Y, Lu W, Shen H, Gu Y, Xu T, Zhu Z et al (2019) Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites. Appl Catal B 258:117960. https://doi.org/10.1016/j.apcatb.2019.117960

    Article  CAS  Google Scholar 

  286. Marchal C, Cottineau T, Méndez-Medrano MG, Colbeau-Justin C, Caps V, Keller V (2018) Au/TiO2–gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv Energy Mater 8(14):1702142. https://doi.org/10.1002/aenm.201702142

    Article  CAS  Google Scholar 

  287. Ma L, Wang G, Jiang C, Bao H, Xu Q (2018) Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light. Appl Surf Sci 430:263–272. https://doi.org/10.1016/j.apsusc.2017.07.282

    Article  CAS  Google Scholar 

  288. Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol 29(3):841–845

    Article  CAS  Google Scholar 

  289. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90(12):2555–2560

    Article  CAS  Google Scholar 

  290. Wells RL, Gladfelter WL (1997) Pathways to nanocrystalline III-V (13–15) compound semiconductors. J Cluster Sci 8(2):217–238

    Article  CAS  Google Scholar 

  291. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873

    Article  CAS  Google Scholar 

  292. Vogel R, Hoyer P, Weller H (2002) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98(12):3183–3188

    Article  Google Scholar 

  293. Hotchandani S, Kamat PV (1992) Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system. J Phys Chem 96(16):6834–6839

    Google Scholar 

  294. Resch U, Weller H, Henglein A (1989) Photochemistry and radiation chemistry of colloidal semiconductors. 33. Chemical changes and fluorescence in CdTe and ZnTe. Langmuir 5(4):1015–1020

    Google Scholar 

  295. Zaban A, Mićić OI, Gregg BA, Nozik AJ (1998) Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 14(12):3153–3156

    Article  CAS  Google Scholar 

  296. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@ TiO2 core− shell composite clusters under UV−irradiation. J Am Chem Soc 127(11):3928–3934

    Article  CAS  Google Scholar 

  297. Nasr C, Hotchandani S, Kim WY, Schmehl RH, Kamat PV (1997) Photoelectrochemistry of composite semiconductor thin films. Photosensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex. J Phys Chem B 101(38):7480–7487

    Google Scholar 

  298. Ismail AA, Bahnemann DW, Bannat I, Wark M (2009) Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J Phys Chem C 113(17):7429–7435

    Article  CAS  Google Scholar 

  299. Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21(32):11686–11707

    Article  CAS  Google Scholar 

  300. Tayade RJ, Kulkarni RG, Jasra RV (2006) Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res 45(15):5231–5238

    Article  CAS  Google Scholar 

  301. Schattka JH, Shchukin DG, Jia J, Antonietti M, Caruso RA (2002) Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique. Chem Mater 14(12):5103–5108

    Article  CAS  Google Scholar 

  302. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed Engl 34(18):2014–2017

    Article  CAS  Google Scholar 

  303. Wang X, Caruso RA (2011) Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J Mater Chem 21(1):20–28

    Article  Google Scholar 

  304. Jing D, Zhang Y, Guo L (2005) Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett 415(1–3):74–78

    Article  CAS  Google Scholar 

  305. Huang Y, Ho W, Lee S, Zhang L, Li G, Yu JC (2008) Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x. Langmuir 24(7):3510–3516

    Article  CAS  Google Scholar 

  306. Choi H, Antoniou MG, Pelaez M, De la Cruz AA, Shoemaker JA, Dionysiou DD (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41(21):7530–7535

    Article  CAS  Google Scholar 

  307. Liu S, Zou Q, Ma Y, Chi D, Chen R, Fang H et al (2022) Metal-organic frameworks derived TiO2/carbon nitride heterojunction photocatalyst with efficient catalytic performance under visible light. Inorg Chim Acta 536:120918. https://doi.org/10.1016/j.ica.2022.120918

    Article  CAS  Google Scholar 

  308. Jin M, Qian X, Gao J, Chen J, Hensley DK, Ho HC et al (2019) Solvent-free synthesis of CuO/HKUST-1 composite and its photocatalytic application. Inorg Chem 58(13):8332–8338. https://doi.org/10.1021/acs.inorgchem.9b00362

    Article  CAS  Google Scholar 

  309. Liang Q, Gao W, Liu C, Xu S, Li Z (2020) A novel 2D/1D core-shell heterostructures coupling MOF-derived iron oxides with ZnIn2S4 for enhanced photocatalytic activity. J Hazard Mater 392:122500. https://doi.org/10.1016/j.jhazmat.2020.122500

    Article  CAS  Google Scholar 

  310. Pi Y, Jin S, Li X, Tu S, Li Z, Xiao J (2019) Encapsulated MWCNT@MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline. Appl Catal B 256:117882. https://doi.org/10.1016/j.apcatb.2019.117882

    Article  CAS  Google Scholar 

  311. Wang Q, Wang W, Zhong L, Liu D, Cao X, Cui F (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B 220:290–302. https://doi.org/10.1016/j.apcatb.2017.08.049

    Article  CAS  Google Scholar 

  312. Liu D, Zhang J, Li C, Zhang X, Chen X, Wang F et al (2019) In-situ fabrication of atomic charge transferring path for constructing heterojunction photocatalysts with hierarchical structure. Appl Catal B 248:459–465. https://doi.org/10.1016/j.apcatb.2019.02.050

    Article  CAS  Google Scholar 

  313. Liu H, Zhang J, Ao D (2018) Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Appl Catal B 221:433–442. https://doi.org/10.1016/j.apcatb.2017.09.043

    Article  CAS  Google Scholar 

  314. Zhang H, Zuo S, Qiu M, Wang S, Zhang Y, Zhang J, et al Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci Adv 6(39):eabb9823. https://doi.org/10.1126/sciadv.abb9823

  315. Li C, Liu X, Yan Y, Song X, Yan Y, Liu C, et al (2021) Synergy between Cu doping and catalytic platform in 2D Ni-MOFs/Cu-Zn0.5Cd0.5S for efficient water-to-hydrogen conversion. Chem Eng J 410:128316. https://doi.org/10.1016/j.cej.2020.128316

  316. Dai D, Qiu J, Li M, Xu J, Zhang L, Yao J (2021) Construction of two-dimensional BiOI on carboxyl-rich MIL-121 for visible-light photocatalytic degradation of tetracycline. J Alloy Compd 872:159711. https://doi.org/10.1016/j.jallcom.2021.159711

    Article  CAS  Google Scholar 

  317. Kumar S, Sharma V, Bhattacharyya K, Krishnan V (2016) Synergetic effect of MoS 2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New J Chem 40(6):5185–5197

    Article  CAS  Google Scholar 

  318. Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR (2016) Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B 162:500–510

    Article  CAS  Google Scholar 

  319. Rabieh S, Nassimi K, Bagheri M (2016) Synthesis of hierarchical ZnO–reduced graphene oxide nanocomposites with enhanced adsorption–photocatalytic performance. Mater Lett 162:28–31

    Article  CAS  Google Scholar 

  320. Guler Ö, Guler SH, Yo F, Aydin H, Aydin C, El-Tantawy F et al (2015) Electrical and optical properties of carbon nanotube hybrid zinc oxide nanocomposites prepared by ball mill technique. Fullerenes Nanotubes Carbon Nanostruct 23(10):865–869

    Article  CAS  Google Scholar 

  321. Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C et al (2009) Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics 180(32–35):1525–1528

    Article  CAS  Google Scholar 

  322. Paul R, Kumbhakar P, Mitra AK (2010) Blue–green luminescence by SWCNT/ZnO hybrid nanostructure synthesized by a simple chemical route. Phys E 43(1):279–284

    Article  CAS  Google Scholar 

  323. Aïssa B, Fauteux C, El Khakani MA, Therriault D (2009) Structural and photoluminescence properties of laser processed ZnO/carbon nanotube nanohybrids. J Mater Res 24(11):3313–3320

    Article  Google Scholar 

  324. Saleh TA, Gondal MA, Drmosh QA (2010) Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology 21(49):495705

    Article  Google Scholar 

  325. Leaper S, Abdel-Karim A, Gad-Allah TA, Gorgojo P (2019) Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chem Eng J 360:1330–1340. https://doi.org/10.1016/j.cej.2018.10.209

    Article  CAS  Google Scholar 

  326. Pal P (2017) Industrial water treatment process technology. Butterworth-Heinemann

    Google Scholar 

  327. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng 7(5):103248. https://doi.org/10.1016/j.jece.2019.103248

    Article  CAS  Google Scholar 

  328. Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA (2000) Testing an electrochemical method for treatment of textile dye wastewater. Waste Manage 20(7):569–574. https://doi.org/10.1016/S0956-053X(00)00028-3

    Article  CAS  Google Scholar 

  329. Al-Gheethi AA, Azhar QM, Senthil Kumar P, Yusuf AA, Al-Buriahi AK, Radin Mohamed RMS et al (2022) Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: a review. Chemosphere 287:132080. https://doi.org/10.1016/j.chemosphere.2021.132080

    Article  CAS  Google Scholar 

  330. Kumari M, Chaudhary GR, Chaudhary S, Umar A (2022) Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere 294:133692. https://doi.org/10.1016/j.chemosphere.2022.133692

    Article  CAS  Google Scholar 

  331. Masengo JL, Mulopo J (2022) Synthesis and performance evaluation of adsorbents derived from sewage sludge blended with waste coal for nitrate and methyl red removal. Sci Rep 12(1):1670. https://doi.org/10.1038/s41598-022-05662-5

    Article  CAS  Google Scholar 

  332. Li CJ, Zhang YJ, Chen H, He PY, Meng Q (2022) Development of porous and reusable geopolymer adsorbents for dye wastewater treatment. J Clean Prod 348:131278. https://doi.org/10.1016/j.jclepro.2022.131278

    Article  CAS  Google Scholar 

  333. Qiang T, Zhu R (2022) Bio-templated synthesis of porous silica nano adsorbents to wastewater treatment inspired by a circular economy. Sci Total Environ 819:152929. https://doi.org/10.1016/j.scitotenv.2022.152929

    Article  CAS  Google Scholar 

  334. Alam S, Khan MS, Bibi W, Zekker I, Burlakovs J, Ghangrekar MM et al (2021) Preparation of activated carbon from the wood of Paulownia tomentosa as an efficient adsorbent for the removal of acid red 4 and methylene blue present in wastewater. Water 13(11):1453

    Article  CAS  Google Scholar 

  335. Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv 8(43):24571–24587

    Article  Google Scholar 

  336. Kadhom M, Albayati N, Alalwan H, Al-Furaiji M (2020) Removal of dyes by agricultural waste. Sustain Chem Pharm 16:100259. https://doi.org/10.1016/j.scp.2020.100259

    Article  Google Scholar 

  337. Kamali M, Esmaeili H, Tamjidi S (2022) Synthesis of Zeolite Clay/Fe-Al hydrotalcite composite as a reusable adsorbent for adsorption/desorption of cationic dyes. Arab J Sci Eng 47(5):6651–6665. https://doi.org/10.1007/s13369-022-06580-4

    Article  CAS  Google Scholar 

  338. Sajednia G, Rahimi E, Alvand N, Karbassi A, Baghdadi M (2019) Fibrous adsorbent derived from sulfonation of cotton waste: application for removal of cadmium sulfide nanoparticles from aquatic media. SN Appl Sci 1(12):1525. https://doi.org/10.1007/s42452-019-1525-x

    Article  CAS  Google Scholar 

  339. Pirsaheb M, Moradi N (2021) A systematic review of the sonophotocatalytic process for the decolorization of dyes in aqueous solution: synergistic mechanisms, degradation pathways, and process optimization. J Water Proc Eng 44:102314. https://doi.org/10.1016/j.jwpe.2021.102314

    Article  Google Scholar 

  340. Sarode S, Upadhyay P, Khosa MA, Mak T, Shakir A, Song S et al (2019) Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int J Biol Macromol 121:1086–1100. https://doi.org/10.1016/j.ijbiomac.2018.10.089

    Article  CAS  Google Scholar 

  341. Bruno P, Campo R, Giustra MG, De Marchis M, Di Bella G (2020) Bench scale continuous coagulation-flocculation of saline industrial wastewater contaminated by hydrocarbons. J Water Proc Eng 34:101156. https://doi.org/10.1016/j.jwpe.2020.101156

    Article  Google Scholar 

  342. Shabir M, Yasin M, Hussain M, Shafiq I, Akhter P, Nizami A-S et al (2022) A review on recent advances in the treatment of dye-polluted wastewater. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2022.05.013

    Article  Google Scholar 

  343. Tabatabaei M, Kazemzadeh F, Sabah M, Wood DA (2022) Chapter Ten–Sustainability in natural gas reservoir drilling: a review on environmentally and economically friendly fluids and optimal waste management. In: Wood DA, Cai J (eds) Sustainable natural gas reservoir and production engineering. Gulf Professional Publishing, pp 269–304

    Chapter  Google Scholar 

  344. Collivignarelli MC, Abbà A, Carnevale Miino M, Damiani S (2019) Treatments for color removal from wastewater: state of the art. J Environ Manage 236:727–745. https://doi.org/10.1016/j.jenvman.2018.11.094

    Article  CAS  Google Scholar 

  345. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1):1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  CAS  Google Scholar 

  346. Foo KY, Hameed BH (2010) Decontamination of textile wastewater via TiO2/activated carbon composite materials. Adv Coll Interface Sci 159(2):130–143. https://doi.org/10.1016/j.cis.2010.06.002

    Article  CAS  Google Scholar 

  347. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155. https://doi.org/10.1007/s10311-018-0785-9

    Article  CAS  Google Scholar 

  348. Sivarajasekar N, Baskar R (2015) Agriculture waste biomass valorization for cationic dyes sequestration: a concise review. J Chem Pharm Res 7(9):737–748

    CAS  Google Scholar 

  349. De Gisi S, Notarnicola M (2017) Industrial wastewater treatment. In: Abraham MA (ed) Encyclopedia of sustainable technologies. Elsevier, Oxford, pp 23–42

    Chapter  Google Scholar 

  350. Kul AR, Benek V, Selçuk A, Onursal N (2017) Using natural stone pumice in van region on adsorption of some textile dyes. J Turkish Chem Soc Sect A Chem 4(2):525–536

    CAS  Google Scholar 

  351. Agboola O (2019) The role of membrane technology in acid mine water treatment: a review. Korean J Chem Eng 36(9):1389–1400. https://doi.org/10.1007/s11814-019-0302-2

    Article  CAS  Google Scholar 

  352. Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, Cornelissen E (2018) Potable water reuse through advanced membrane technology. Environ Sci Technol 52(18):10215–10223. https://doi.org/10.1021/acs.est.8b00562

    Article  CAS  Google Scholar 

  353. Hebbar RS, Isloor AM, Zulhairun AK, Sohaimi Abdullah M, Ismail AF (2017) Efficient treatment of hazardous reactive dye effluents through antifouling polyetherimide hollow fiber membrane embedded with functionalized halloysite nanotubes. J Taiwan Inst Chem Eng 72:244–252. https://doi.org/10.1016/j.jtice.2017.01.022

    Article  CAS  Google Scholar 

  354. Moradihamedani P (2022) Recent advances in dye removal from wastewater by membrane technology: a review. Polym Bull 79(4):2603–2631. https://doi.org/10.1007/s00289-021-03603-2

    Article  CAS  Google Scholar 

  355. Aouni A, Fersi C, Ben Sik Ali M, Dhahbi M (2009) Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J Hazard Mater 168(2):868–874. https://doi.org/10.1016/j.jhazmat.2009.02.112

  356. Hir ZAM, Moradihamedani P, Abdullah AH, Mohamed MA (2017) Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye. Mater Sci Semicond Proc 57:157–165. https://doi.org/10.1016/j.mssp.2016.10.009

    Article  CAS  Google Scholar 

  357. Hadnadjev-Kostic M, Vulic T, Marinkovic-Neducin R, Lončarević D, Dostanić J, Markov S et al (2017) Photo-induced properties of photocatalysts: a study on the modified structural, optical and textural properties of TiO2–ZnAl layered double hydroxide based materials. J Clean Prod 164:1–18. https://doi.org/10.1016/j.jclepro.2017.06.091

    Article  CAS  Google Scholar 

  358. Nasrollahi N, Ghalamchi L, Vatanpour V, Khataee A (2021) Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. J Ind Eng Chem 93:101–116. https://doi.org/10.1016/j.jiec.2020.09.031

    Article  CAS  Google Scholar 

  359. Chiu Y-H, Chang T-FM, Chen C-Y, Sone M, Hsu Y-J (2019) Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9(5):430

    Google Scholar 

  360. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y et al (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9(12):2489

    Article  CAS  Google Scholar 

  361. Lee J-W, Choi S-P, Thiruvenkatachari R, Shim W-G, Moon H (2006) Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water Res 40(3):435–444. https://doi.org/10.1016/j.watres.2005.11.034

    Article  CAS  Google Scholar 

  362. Homem NC, de Camargo Lima Beluci N, Amorim S, Reis R, Vieira AMS, Vieira MF, et al (2019) Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci 486:499–507. https://doi.org/10.1016/j.apsusc.2019.04.276

  363. Gul A, Hruza J, Yalcinkaya F (2021) Fouling and chemical cleaning of microfiltration membranes: a mini-review. Polymers 13(6):846

    Article  CAS  Google Scholar 

  364. Gu J, Gu H, Zhang Q, Zhao Y, Li N, Xiong J (2018) Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications. J Coll Interf Sci 514:386–395. https://doi.org/10.1016/j.jcis.2017.12.032

    Article  CAS  Google Scholar 

  365. Santosh V, Gopinath J, Babu PV, Sainath AVS, Reddy AVR (2018) Acetyl-d-glucopyranoside functionalized carbon nanotubes for the development of high performance ultrafiltration membranes. Sep Purif Technol 191:134–143. https://doi.org/10.1016/j.seppur.2017.09.018

    Article  CAS  Google Scholar 

  366. Noamani S, Niroomand S, Rastgar M, Sadrzadeh M (2019) Carbon-based polymer nanocomposite membranes for oily wastewater treatment. npj Clean Water 2(1):20. https://doi.org/10.1038/s41545-019-0044-z

  367. Abdi G, Alizadeh A, Zinadini S, Moradi G (2018) Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Membr Sci 552:326–335. https://doi.org/10.1016/j.memsci.2018.02.018

    Article  CAS  Google Scholar 

  368. Song Y, Sun Y, Chen M, Huang P, Li T, Zhang X et al (2020) Efficient removal and fouling-resistant of anionic dyes by nanofiltration membrane with phosphorylated chitosan modified graphene oxide nanosheets incorporated selective layer. J Water Proc Eng 34:101086. https://doi.org/10.1016/j.jwpe.2019.101086

    Article  Google Scholar 

  369. Gao B, An J, Wang Y, Liu J, Wang L, Sillanpää M (2020) Functional photoelectrocatalytic membrane fabricated from ZnIn2S4, PVDF and carbon fibre for continuous removal of tetracycline. J Solid State Chem 290:121525. https://doi.org/10.1016/j.jssc.2020.121525

    Article  CAS  Google Scholar 

  370. Wang X, Wang G, Chen S, Fan X, Quan X, Yu H (2017) Integration of membrane filtration and photoelectrocatalysis on g-C3N4/CNTs/Al2O3 membrane with visible-light response for enhanced water treatment. J Membr Sci 541:153–161. https://doi.org/10.1016/j.memsci.2017.06.046

    Article  CAS  Google Scholar 

  371. Cheng X, Liu H, Chen Q, Li J, Wang P (2014) Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Carbon 66:450–458. https://doi.org/10.1016/j.carbon.2013.09.021

    Article  CAS  Google Scholar 

  372. Wang G, Chen S, Yu H, Quan X (2015) Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment. J Hazard Mater 299:27–34. https://doi.org/10.1016/j.jhazmat.2015.06.005

    Article  CAS  Google Scholar 

  373. Abdelraheem WHM, Patil MK, Nadagouda MN, Dionysiou DD (2019) Hydrothermal synthesis of photoactive nitrogen-and boron-codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl Catal B 241:598–611. https://doi.org/10.1016/j.apcatb.2018.09.039

    Article  CAS  Google Scholar 

  374. Khan JA, Sayed M, Shah NS, Khan S, Zhang Y, Boczkaj G et al (2020) Synthesis of eosin modified TiO2 film with co-exposed 001 and 101 facets for photocatalytic degradation of para-aminobenzoic acid and solar H2 production. Appl Catal B 265:118557. https://doi.org/10.1016/j.apcatb.2019.118557

    Article  CAS  Google Scholar 

  375. Teow YH, Ahmad AL, Lim JK, Ooi BS (2012) Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method. Desalination 295:61–69. https://doi.org/10.1016/j.desal.2012.03.019

    Article  CAS  Google Scholar 

  376. Anandan S, Narasinga Rao T, Sathish M, Rangappa D, Honma I, Miyauchi M (2013) Superhydrophilic graphene-loaded TiO2 thin film for self-cleaning applications. ACS Appl Mater Interfaces 5(1):207–212. https://doi.org/10.1021/am302557z

    Article  CAS  Google Scholar 

  377. Chen Y, Huang W, He D, Situ Y, Huang H (2014) Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl Mater Interfaces 6(16):14405–14414. https://doi.org/10.1021/am503674e

    Article  CAS  Google Scholar 

  378. Li Y, Zhu L, Guo Y, Song H, Lou Z, Ye Z (2014) A new type of hybrid nanostructure: complete photo-generated carrier separation and ultrahigh photocatalytic activity. J Mater Chem A 2(34):14245–14250

    Article  CAS  Google Scholar 

  379. Linley S, Liu Y, Ptacek CJ, Blowes DW, Gu FX (2014) Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties. ACS Appl Mater Interfaces 6(7):4658–4668. https://doi.org/10.1021/am4039272

    Article  CAS  Google Scholar 

  380. Xu Z, Wu T, Shi J, Teng K, Wang W, Ma M et al (2016) Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Membr Sci 520:281–293. https://doi.org/10.1016/j.memsci.2016.07.060

    Article  CAS  Google Scholar 

  381. Lv N, Li Y, Huang Z, Li T, Ye S, Dionysiou DD et al (2019) Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Appl Catal B 246:303–311. https://doi.org/10.1016/j.apcatb.2019.01.068

    Article  CAS  Google Scholar 

  382. Safarpour M, Khataee A, Vatanpour V (2015) Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Sep Purif Technol 140:32–42. https://doi.org/10.1016/j.seppur.2014.11.010

    Article  CAS  Google Scholar 

  383. Gao P, Liu Z, Tai M, Sun DD, Ng W (2013) Multifunctional graphene oxide–TiO2 microsphere hierarchical membrane for clean water production. Appl Catal B 138–139:17–25. https://doi.org/10.1016/j.apcatb.2013.01.014

    Article  CAS  Google Scholar 

  384. Gao Y, Hu M, Mi B (2014) Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. J Membr Sci 455:349–356. https://doi.org/10.1016/j.memsci.2014.01.011

    Article  CAS  Google Scholar 

  385. Rao G, Zhang Q, Zhao H, Chen J, Li Y (2016) Novel titanium dioxide/iron (III) oxide/graphene oxide photocatalytic membrane for enhanced humic acid removal from water. Chem Eng J 302:633–640. https://doi.org/10.1016/j.cej.2016.05.095

    Article  CAS  Google Scholar 

  386. Zinadini S, Rostami S, Vatanpour V, Jalilian E (2017) Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. J Membr Sci 529:133–141. https://doi.org/10.1016/j.memsci.2017.01.047

    Article  CAS  Google Scholar 

  387. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  Google Scholar 

  388. Fang S, Xia Y, Lv K, Li Q, Sun J, Li M (2016) Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl Catal B 185:225–232. https://doi.org/10.1016/j.apcatb.2015.12.025

    Article  CAS  Google Scholar 

  389. Zhang X, Jiang M, Niu N, Chen Z, Li S, Liu S et al (2018) Natural-product-derived carbon dots: from natural products to functional materials. Chemsuschem 11(1):11–24. https://doi.org/10.1002/cssc.201701847

    Article  CAS  Google Scholar 

  390. Zhao S, Lan M, Zhu X, Xue H, Ng T-W, Meng X et al (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7(31):17054–17060. https://doi.org/10.1021/acsami.5b03228

    Article  CAS  Google Scholar 

  391. Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434. https://doi.org/10.1016/j.carbon.2013.07.095

    Article  CAS  Google Scholar 

  392. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939

    Article  CAS  Google Scholar 

  393. Shchipunov YA, Khlebnikov ON, Silant’ev VE (2015) Carbon quantum dots hydrothermally synthesized from chitin. Polym Sci Ser B 57(1):16–22. https://doi.org/10.1134/S1560090415010121

  394. Gogoi N, Chowdhury D (2014) Novel carbon dot coated alginate beads with superior stability, swelling and pH responsive drug delivery. J Mater Chem B 2(26):4089–4099

    Article  CAS  Google Scholar 

  395. Li W, Zhang Z, Kong B, Feng S, Wang J, Wang L et al (2013) Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed 52(31):8151–8155

    Article  CAS  Google Scholar 

  396. Liu Y, Zhao Y, Zhang Y (2014) One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens Actuat B Chem 196:647–652. https://doi.org/10.1016/j.snb.2014.02.053

    Article  CAS  Google Scholar 

  397. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuat B Chem 213:434–443. https://doi.org/10.1016/j.snb.2015.02.104

    Article  CAS  Google Scholar 

  398. Song P, Zhang L, Long H, Meng M, Liu T, Yin Y et al (2017) A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe (III) ions. RSC Adv 7(46):28637–28646

    Article  CAS  Google Scholar 

  399. Liang Z, Zeng L, Cao X, Wang Q, Wang X, Sun R (2014) Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH 4 OH passivation. J Mater Chem C 2(45):9760–9766

    Article  CAS  Google Scholar 

  400. Alam A-M, Park B-Y, Ghouri ZK, Park M, Kim H-Y (2015) Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem 17(7):3791–3797

    Article  CAS  Google Scholar 

  401. Briscoe J, Marinovic A, Sevilla M, Dunn S, Titirici M (2015) Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew Chem Int Ed 54(15):4463–4468. https://doi.org/10.1002/anie.201409290

    Article  CAS  Google Scholar 

  402. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48(70):8835–8837

    Article  CAS  Google Scholar 

  403. Wang Z, Yu J, Zhang X, Li N, Liu B, Li Y et al (2016) Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS Appl Mater Interfaces 8(2):1434–1439. https://doi.org/10.1021/acsami.5b10660

    Article  CAS  Google Scholar 

  404. Jiang C, Wu H, Song X, Ma X, Wang J, Tan M (2014) Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta 127:68–74. https://doi.org/10.1016/j.talanta.2014.01.046

    Article  CAS  Google Scholar 

  405. Suryawanshi A, Biswal M, Mhamane D, Gokhale R, Patil S, Guin D et al (2014) Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions. Nanoscale 6(20):11664–11670

    Article  CAS  Google Scholar 

  406. Yan Z, Zhang Z, Chen J (2016) Biomass-based carbon dots: synthesis and application in imatinib determination. Sens Actuat B Chem 225:469–473. https://doi.org/10.1016/j.snb.2015.10.107

    Article  CAS  Google Scholar 

  407. Wang L, Bi Y, Hou J, Li H, Xu Y, Wang B et al (2016) Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta 160:268–275. https://doi.org/10.1016/j.talanta.2016.07.020

    Article  CAS  Google Scholar 

  408. Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sens Actuat B Chem 184:156–162. https://doi.org/10.1016/j.snb.2013.04.079

    Article  CAS  Google Scholar 

  409. Li J-Y, Liu Y, Shu Q-W, Liang J-M, Zhang F, Chen X-P et al (2017) One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33(4):1043–1050. https://doi.org/10.1021/acs.langmuir.6b04225

    Article  CAS  Google Scholar 

  410. Ye Q, Yan F, Luo Y, Wang Y, Zhou X, Chen L (2017) Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochim Acta Part A Mol Biomol Spectrosc 173:854–862. https://doi.org/10.1016/j.saa.2016.10.039

    Article  CAS  Google Scholar 

  411. Sharma A, Das J (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol 17(1):1–24

    Article  CAS  Google Scholar 

  412. Niu N, Ma Z, He F, Li S, Li J, Liu S et al (2017) Preparation of carbon dots for cellular imaging by the molecular aggregation of cellulolytic enzyme lignin. Langmuir 33(23):5786–5795

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andromeda Dwi Laksono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laksono, A.D. et al. (2023). Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials. In: Abdullah, H. (eds) Photocatalytic Activities for Environmental Remediation and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-6748-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6748-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6747-4

  • Online ISBN: 978-981-19-6748-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics