Skip to main content

An Overall Insight Into the Attributes, Interactions, and Future Applications of “Microbial Consortium” for Plant Growth Promotion with Contemporary Approaches

  • Chapter
  • First Online:
Sustainable Agrobiology

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 43))

Abstract

Plant-associated microorganisms in the form of microbial consortia play an important role in agricultural production. The use of single strain or individual microorganism-based bioformulation has limitations. Thus, having a microbial consortium, where two or more interacting microorganisms have additive, synergistic, or mutual complementarity in nature, results in the desired effects on plants and soil. In this review, we have discussed the insights of interactions and mechanisms through which an effective microbial consortium promotes plant growth, improves nutrient utilization efficiency, enhances yield, induces tolerance to abiotic stresses, may contribute toward pest and phytopathogen management., etc. within the rhizosphere under their efficient root colonization and biofilm formation. In addition, the activity of microbial consortia has also been highlighted, mainly as a species of plant growth- and health-promoting bacteria. Furthermore, there is a huge impact of microbial consortia on the rhizosphere, which is enhanced by the concept of microbiome engineering and strain improvement. Augmentation of soil with synthetic microbial communities (SynComs), which are extended versions of traditional consortia, is recently being realized as a tool to modulate the complete rhizosphere microbiome for beneficial effects. This article is aimed to explain the wide horizon of the use of microbial consortia that facilitates the sustainable development of agriculture and its applications for human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Wiegel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):1–9

    Article  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trend Biotechnol 38(12):1385–1396

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In Plant growth and health promoting bacteria, Springer, Berlin, Heidelberg, pp 97–116

    Google Scholar 

  • Baliyan N, Dhiman S, Dheeman S, Vishnoi VK, Kumar S, Maheshwari DK (2022) Bacteriophage cocktails as antibacterial agents in crop protection. Environ Sustain:1–7

    Google Scholar 

  • Bashan Y, Prabhu SR, de-Bashan LE, Kloepper JW (2020) Disclosure of exact protocols of fermentation, identity of microorganisms within consortia, formation of advanced consortia with microbe-based products. Biol Fertil Soils 56:443-445

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trend Plant Sci 17:478–486

    Article  CAS  Google Scholar 

  • Bisht DS, Bhatia V, Bhattacharya R (2019) Improving plant-resistance to insect-pests and pathogens: the new opportunities through targeted genome editing. Semin Cell Dev Biol 99:65–78

    Article  Google Scholar 

  • Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58(4):575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran H, Meena M, Sharma K (2020) Microbial biodiversity and bioremediation assessment through omics approaches. Front Environ Chem 1(570326):1–22

    Google Scholar 

  • Chaneton EJ, Bonsall MB (2000) Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88(2):380–394

    Article  Google Scholar 

  • Da Costa PB, Beneduzi A, De Souza R, Schoenfeld R, Vargas LK, Passaglia LMP (2013) The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant Soil 368:267–280

    Article  Google Scholar 

  • De Oliveira ALM, De Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • De Souza RSC, Armanhi JSL, Arruda P (2020) From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. Front Plant Sci 11(1179):1–7

    Google Scholar 

  • Dheeman S, Baliyan N, Dubey RC, Maheshwari DK, Kumar S, Chen L (2020) Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (ragi). Can J Microbiol 66(2):111–124

    Article  CAS  PubMed  Google Scholar 

  • Dubey RC, Maheshwari DK (2022) Textbook of microbiology. S. Chand and Company Limited, New Delhi

    Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Critic Rev Microbial 36(3):232–244

    Article  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Safe 156:225–246

    Article  CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Xiong C, Gao C, Tsui CK, Wang MM, Zhou X, Cai L (2021) Disease-induced changes in plant microbiome assembly and functional adaptation. Microbiome 9(1):1–18

    Article  CAS  Google Scholar 

  • Glick BR (2015) Stress control and ACC deaminase. In: Principles of plant-microbe interactions. Springer, Cham, pp 257–264

    Chapter  Google Scholar 

  • Gomez JA, Höffner K, Barton PI (2021) Production of biofuels from sunlight and lignocellulosic sugars using microbial consortia. Chem Eng Sci 239(116615):1–14

    Google Scholar 

  • Gosal SK, Kaur J (2017) Microbial inoculants: a novel approach for better plant microbiome interactions. In: Probiotics in agroecosystem. Springer, Singapore, pp 269–289

    Chapter  Google Scholar 

  • Gusain P, Bhandari BS (2019) Rhizosphere associated PGPR functioning. J Pharmacog Phytochem 8(5):1181–1191

    CAS  Google Scholar 

  • Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Altman A (2019) Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trend Biotechnol 37(11):1217–1235

    Article  CAS  Google Scholar 

  • Hart MM, Antunes PM, Chaudhary VB, Abbott LK (2018) Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol 32(1):126–135

    Article  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(1):1–17

    Article  Google Scholar 

  • Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment, vol 1. International Nature Farming Research Center, Atami, pp 1–16

    Google Scholar 

  • Jayaraj R, Megha P, Sreedev PJIT (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3-4):90

    Article  CAS  PubMed  Google Scholar 

  • Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37(2):140–151

    Article  CAS  PubMed  Google Scholar 

  • Kang D, Samuel J, Herschend J, Wei S, Nesme J, Sorensen SJ (2020) Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front Microbiol 10(3010):1–10

    Google Scholar 

  • Katiyar P, Dubey RC, Maheshwari DK (2021) ACC deaminase-producing Ensifer adhaerens KS23 enhances proximate nutrient of Pisum sativum L. cultivated in high altitude. Arch Microbiol 203(5):2689–2698

    Article  CAS  PubMed  Google Scholar 

  • Kshetri L, Nevita T, Pandey P (2015) Plant growth promoting rhizobacteria (PGPR) and their application for sustainable agriculture in north eastern region of India. ENVIS Bull Himal Ecol 23:41–47

    Google Scholar 

  • Kshetri L, Pandey P, Sharma GD (2017) Solubilization of inorganic rock phosphate by rhizobacteria of Allium hookeri Thwaites and influence of carbon and nitrogen sources amendments. J Pure Appl Microbiol 11:1899–1908

    Article  CAS  Google Scholar 

  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol 11(1216):1–41

    CAS  Google Scholar 

  • Kumar A, Singh VK, Tripathi V, Singh PP, Singh AK (2018) Plant growth-promoting rhizobacteria (PGPR): perspective in agriculture under biotic and abiotic stress. In Crop improvement through microbial biotechnology, pp. 333–342

    Google Scholar 

  • Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29(6):591–598

    Article  Google Scholar 

  • Kumar H, Dubey RC, Maheshwari DK (2017) Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 3:92–99

    Article  Google Scholar 

  • Lavazza A, Sironi VA (2019) Are we ready for a “microbiome-guided behaviour” approach? Camb Q Healthc Ethics 28(4):708–724

    Article  PubMed  Google Scholar 

  • Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25:217–228

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Show KY, Wang A (2013) Unconventional approaches to isolation and enrichment of functional microbial consortium–a review. Bioresour Technol 136:697–706

    Article  CAS  PubMed  Google Scholar 

  • Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJ (2021) Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 19(4):225–240

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Bi YH, Wang EX, Zhai BB, Dong XT, Qiao B, Yuan YJ (2019) Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-L-gulonic acid, the precursor of vitamin C. J Ind Microbiol Biotechnol 46(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Indian J Microbiol 50(4):425–431

    Article  CAS  PubMed  Google Scholar 

  • McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37(2):181–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Upadhyay RS (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5(12):1–20

    Article  Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8(8):2047–2061

    Article  Google Scholar 

  • Millard P, Singh BK (2010) Does grassland vegetation drive soil microbial diversity? Nutr Cycl Agroecosyst 88(2):147–158

    Article  Google Scholar 

  • Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15(9):591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Romero D, Juárez-Sánchez S, Venegas B, Ortíz-González CS, Baez A, Morales-García YE, Muñoz-Rojas J (2021) A bacterial consortium interacts with different varieties of maize, promotes the plant growth, and reduces the application of chemical fertilizer under field conditions. Front Sustain Food Syst 4(616757):1–14

    Google Scholar 

  • Mueller UG, Linksvayer TA (2022) Microbiome breeding: conceptual and practical issues. Trends Microbiol 30(10):997–1011

    Article  CAS  PubMed  Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci 114(12):2450–2459

    Article  Google Scholar 

  • Nuti M, Giovannetti G (2015) Borderline products between bio-fertilizers/bio-effectors and plant protectants: the role of microbial consortia. J Agric Sci Technol 5:305–315

    Google Scholar 

  • Overbeek W, Jeanne T, Hogue R, Smith DL (2021) Effects of microbial consortia, applied as fertilizer coating, on soil and rhizosphere microbial communities and potato yield. Front Agron 3(717400):1–13

    Google Scholar 

  • Pandey P, Aeron A, Maheshwari DK (2010) Sustainable approaches for biological control of fusarium wilt in pigeon pea (Cajanus cajan L. Millspaugh). Plant Growth Health Promoting Bacteria 18:231–249

    Article  CAS  Google Scholar 

  • Pandey P, Bisht S, Sood A, Aeron A, Sharma GD, Maheshwari DK (2012) Consortium of plant-growth-promoting bacteria: future perspective in agriculture. Bacteria Agrobiol 9:185–200

    Google Scholar 

  • Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr Microbiol 51(5):303–309

    Article  CAS  PubMed  Google Scholar 

  • Pandit A, Adholeya A, Cahill D, Brau L, Kochar M (2020) Microbial biofilms in nature: unlocking their potential for agricultural applications. J Appl Microbiol 129(2):199–211

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Lee S, Kao-Kniffin J (2017) Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb Ecol 73(2):394–403

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9(4):980–989

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6(1):1–6

    Article  Google Scholar 

  • Pierson EA, Weller DM (1994) To suppress take-all and improve the growth of wheat. Phytopathology 84(1):940–947

    Article  Google Scholar 

  • Puentes-Téllez PE, Salles JE (2018) Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb Ecol 76:419–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana SS, Rana MC (2011) Cropping system. Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, p 80

    Google Scholar 

  • Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ (2019) Engineering microbial consortia by division of labor. Microb Cell Factories 18:1–11

    Article  Google Scholar 

  • Rosier A, Medeiros FH, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428(1):35–55

    Article  CAS  Google Scholar 

  • Sanchez-Gorostiaga A, Bajić D, Osborne ML, Poyatos JF, Sanchez A (2019) High-order interactions distort the functional landscape of microbial consortia. PLoS Biol 17(12):1–34

    Article  Google Scholar 

  • Santoyo G, Guzmán-Guzmán P, Parra-Cota F, Santos-Villalobos SDL, Orozco-Mosqueda MDC, Glick BR (2021) Plant growth stimulation by microbial consortia. Agronomy 11(219):1–24

    Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth promoting Actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3Biotech 7:102–102

    Google Scholar 

  • Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90:605–612

    Article  CAS  PubMed  Google Scholar 

  • Schultenkämper K, Brito LF, Wendisch VF (2020) Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 67(1):7–21

    Article  PubMed  Google Scholar 

  • Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34

    Article  CAS  Google Scholar 

  • Shanmugam V, Senthil N, Raguchander T, Ramanathan A, Samiyappan R (2002) Interaction of Pseudomonas fluorescens with Rhizobium for their effect on the management of peanut root rot. Phytoparasitica 30:169–176

    Article  Google Scholar 

  • Sharma CK, Bishnoi VK, Dubey RC, Maheshwari DK (2018) A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5:71–75

    Article  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29(1):62–68

    Article  CAS  Google Scholar 

  • Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M (2020) Crop microbiome and sustainable agriculture. Nat Rev Microbiol 18(11):601–602

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Singh N, Marwaha TS (2009) Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria. Physiol Mol Biol Plants 15(1):87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ryu J, Kim SW (2019) Microbial consortia including methanotrophs: some benefits of living together. J Microbiol 57:939–952

    Article  PubMed  Google Scholar 

  • Singha KM, Singh B, Pandey P (2021) Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage. Sci Rep 11(1):1–17

    Article  Google Scholar 

  • Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68

    Article  CAS  Google Scholar 

  • Skariyachan S, Setlur AS, Naik SY, Naik AA, Usharani M, Vasist KS (2017) Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environ Sci Pollut Res 24:8443–8457

    Article  CAS  Google Scholar 

  • Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ (2014) Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 43(20):6954–6981

    Article  CAS  PubMed  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–112

    Article  CAS  PubMed  Google Scholar 

  • Stringlis IA, Zhang H, Pieterse CM, Bolton MD, de Jonge R (2018) Microbial small molecules–weapons of plant subversion. Nat Prod Rep 35(5):410–433

    Article  CAS  PubMed  Google Scholar 

  • Subhashchandrabose SR, Ramakrishan B, Megharaj M, Venkatesawrlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907

    Article  Google Scholar 

  • Tabacchioni S, Passato S, Ambrosino P, Huang L, Caldara M, Cantale C, Schlüter A (2021) Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms 9(2):426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tshikantwa TS, Ullah MW, He F, Yang G (2018) Current trends and potential applications of microbial interactions for human welfare. Front Microbiol 9:1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z (2013) Yield gap analysis with local to global relevance—a review. Field Crops Res 1(143):4–17

    Article  Google Scholar 

  • Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Pandey P (2021) The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 10(2):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109

    Article  PubMed  Google Scholar 

  • Voges M (2019) Molecular principles to engineer plant microbiomes. Stanford University, Stanford, CA, pp 1–24

    Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22(2):142–155

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):1–10

    Article  Google Scholar 

  • Wicaksono WA, Jones EE, Casonato S, Monk J, Ridgway HJ (2018) Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Control 116:103–112

    Article  Google Scholar 

  • Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci 9(1801):1–13

    Google Scholar 

  • Xia Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, Chaudhary HJ (2020) Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem 151:640–649

    Article  PubMed  Google Scholar 

  • Xue D, Christenson R, Genger R, Gevens A, Lankau RA (2018) Soil microbial communities reflect both inherent soil properties and management practices in Wisconsin potato fields. Am J Potato Res 95:696–708

    Article  Google Scholar 

  • York A (2018) Pick of the crop microbiome. Nat Rev Microbiol 16(10):583–583

    PubMed  Google Scholar 

  • Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Guo X (2019a) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37(6):676–684

    Article  CAS  PubMed  Google Scholar 

  • Zhang LN, Wang DC, Hu Q, Dai XQ, Xie YS, Li Q, Liu HM, Guo JH (2019b) Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10(1668):1–10

    Google Scholar 

Download references

Acknowledgments

PP acknowledges DBT, Govt of India; and AD acknowledges DST-INSPIRE, Govt of India for financial assistances.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maheshwari, D.K., Das, A., Dheeman, S., Pandey, P. (2023). An Overall Insight Into the Attributes, Interactions, and Future Applications of “Microbial Consortium” for Plant Growth Promotion with Contemporary Approaches. In: Maheshwari, D.K., Dheeman, S. (eds) Sustainable Agrobiology. Microorganisms for Sustainability, vol 43. Springer, Singapore. https://doi.org/10.1007/978-981-19-9570-5_1

Download citation

Publish with us

Policies and ethics