Skip to main content

Genetics and Epigenetics in Cardiac Psychology

  • Reference work entry
  • First Online:
Handbook of Psychocardiology
  • 1954 Accesses

Abstract

Precisely how regulated patterns of gene expression under the control of diverse signaling pathways underlie the homeostatic control of neuroanatomical aspects of cardiac function remains unclear. The autonomic nervous system is distinguished by the sympathetic and parasympathetic nervous systems that are under the direct control of transcription factors that function as either activators or repressors of gene expression. While several regulatory determinants are known to coordinate the actions of activators and repressors, how these factors serve to maintain genes implicated in the neurocardiac axis is the subject of review. The discovery of regulatory complexes that serve as a functional linkage between DNA-bound transcription factors and altered chromatin structures indicates that posttranslational modifications of core histones connect aspects of neurocardiac gene function. The complexity of these regulators to alter noradrenaline transporter (NET) gene function is explored here. Recent evidence of chromatin-modifying enzymes regulating NET expression might apply to genes implicated in neurocardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarian, S., & Nestler, E. J. (2013). Epigenetic mechanisms in psychiatry. Neuropsychopharmacology, 38(1), 1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarenga, M. E., Richards, J. C., Lambert, G., & Esler, M. D. (2006). Psychophysiological mechanisms in panic disorder: A correlative analysis of noradrenaline spillover, neuronal noradrenaline reuptake, power spectral analysis of heart rate variability, and psychological variables. Psychosomatic Medicine, 68(1), 8–16.

    Article  PubMed  Google Scholar 

  • Anonymous. (2004). The ENCODE (ENCyclopedia Of DNA Elements) project. Science, 306(5696):636–640.

    Google Scholar 

  • Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466–1469.

    Article  PubMed  Google Scholar 

  • Aranyi, T., et al. (2005). The tissue-specific methylation of the human tyrosine hydroxylase gene reveals new regulatory elements in the first exon. Journal of Neurochemistry, 94(1), 129–139.

    Article  PubMed  Google Scholar 

  • Banfai, B., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22(9), 1646–1657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton, D. A., et al. (2007). Sympathetic activity in major depressive disorder: Identifying those at increased cardiac risk?. Journal of Hypertension, 25(10), 2117–2124.

    Article  PubMed  Google Scholar 

  • Barton, D. A., et al. (2008). Elevated brain serotonin turnover in patients with depression: Effect of genotype and therapy. Archives of General Psychiatry, 65(1), 38–46.

    Article  PubMed  Google Scholar 

  • Bayles, R., Baker, E., Eikelis, N., El-Osta, A., & Lambert, G. (2010). Histone modifications regulate the norepinephrine transporter gene. Cell Cycle, 9(22), 4600–4601.

    Article  PubMed  Google Scholar 

  • Bayles, R., et al. (2012). Epigenetic modification of the norepinephrine transporter gene in postural tachycardia syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 1910–1916.

    Article  PubMed  Google Scholar 

  • Bayles, R., et al. (2013). Methylation of the SLC6a2 gene promoter in major depression and panic disorder. PLoS One, 8(12), e83223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonisch, H., & Bruss, M. (2006). The norepinephrine transporter in physiology and disease. Handbook of Experimental Pharmacology, 175, 485–524.

    Article  PubMed  Google Scholar 

  • Boomsma, D. I., et al. (2008). Genome-wide association of major depression: Description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. European Journal of Human Genetics: EJHG, 16(3), 335–342.

    Article  PubMed  Google Scholar 

  • Bosker, F. J., et al. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry, 16(5), 516–532.

    Article  PubMed  Google Scholar 

  • Bresee, L. C., Majumdar, S. R., Patten, S. B., & Johnson, J. A. (2010). Prevalence of cardiovascular risk factors and disease in people with schizophrenia: A population-based study. Schizophrenia Research, 117(1), 75–82.

    Article  PubMed  Google Scholar 

  • Brown, M. R., & Fisher, L. A. (1986). Glucocorticoid suppression of the sympathetic nervous system and adrenal medulla. Life Sciences, 39(11), 1003–1012.

    Article  PubMed  Google Scholar 

  • Carvalho, L. A., et al. (2014). Inflammatory activation is associated with a reduced glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic major depressive disorder. Translational Psychiatry, 4, e344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casper, R. C., et al. (1985). Somatic symptoms in primary affective disorder. Presence and relationship to the classification of depression. Archives of General Psychiatry, 42(11), 1098–1104.

    Article  PubMed  Google Scholar 

  • Chang, C. C., et al. (2007). Lack of association between the norepinephrine transporter gene and major depression in a Han Chinese population. Journal of Psychiatry and Neuroscience, 32(2), 121–128.

    PubMed  PubMed Central  Google Scholar 

  • Chien, I. C., et al. (2009). Prevalence of diabetes in patients with schizophrenia in Taiwan: A population-based National Health Insurance study. Schizophrenia Research, 111(1-3), 17–22.

    Article  PubMed  Google Scholar 

  • Clark, C. G., Hasser, E. M., Kunze, D. L., Katz, D. M., & Kline, D. D. (2011). Endogenous brain-derived neurotrophic factor in the nucleus tractus solitarius tonically regulates synaptic and autonomic function.. The Journal of Neuroscience, 31(34), 12318–12329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Covington, H. E., 3rd, et al. (2011). A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron, 71(4), 656–670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawood, T., et al. (2007). Reduced overflow of BDNF from the brain is linked with suicide risk in depressive illness. Molecular Psychiatry, 12(11), 981–983.

    Article  PubMed  Google Scholar 

  • Djebali, S., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duman, R. S., & Li, N. (2012). A neurotrophic hypothesis of depression: Role of synaptogenesis in the actions of NMDA receptor antagonists. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 367(1601), 2475–2484.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan, L. E., Hutchison, K. E., Carey, G., & Craighead, W. E. (2009). Variation in brain-derived neurotrophic factor (BDNF) gene is associated with symptoms of depression. Journal of Affective Disorders, 115(1–2), 215–219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eikelis, N., & Esler, M. (2005). The neurobiology of human obesity. Experimental Physiology, 90(5), 673–682.

    Article  PubMed  Google Scholar 

  • Eisenhofer, G., et al. (1996). Cardiac sympathetic nerve function in congestive heart failure. Circulation, 93(9), 1667–1676.

    Article  PubMed  Google Scholar 

  • Esler, M. (1993). Clinical application of noradrenaline spillover methodology: Delineation of regional human sympathetic nervous responses. Pharmacology & Toxicology, 73(5), 243–253.

    Article  Google Scholar 

  • Esler, M., et al. (1980). Determination of noradrenaline uptake, spillover to plasma and plasma concentration in patients with essential hypertension. Clinical Science (London), 59(Suppl 6), 311s–313s. in eng.

    Article  Google Scholar 

  • Esler, M. D., et al. (1991). Effects of desipramine on sympathetic nerve firing and norepinephrine spillover to plasma in humans. The American Journal of Physiology, 260(4 Pt 2), R817–R823.

    PubMed  Google Scholar 

  • Esler, M. D., et al. (1995). Aging effects on human sympathetic neuronal function. The American Journal of Physiology, 268(1 Pt 2), R278–R285.

    PubMed  Google Scholar 

  • Esler, M., et al. (2002a). Influence of ageing on the sympathetic nervous system and adrenal medulla at rest and during stress. Biogerontology, 3(1–2), 45–49.

    Article  PubMed  Google Scholar 

  • Esler, M., et al. (2002b). The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 282(3), R909–R916.

    Article  PubMed  Google Scholar 

  • Esler, M., et al. (2006). The neuronal noradrenaline transporter, anxiety and cardiovascular disease. Journal of Psychopharmacology, 20(4 Suppl), 60–66.

    Article  PubMed  Google Scholar 

  • Esler, M., et al. (2008). Human sympathetic nerve biology: Parallel influences of stress and epigenetics in essential hypertension and panic disorder. Annals of the New York Academy of Sciences, 1148, 338–348.

    Article  PubMed  Google Scholar 

  • Fuchikami, M., Morinobu, S., Kurata, A., Yamamoto, S., & Yamawaki, S. (2009). Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. International Journal of Neuropsychopharmacology, 12(1), 73–82.

    Article  PubMed  Google Scholar 

  • Gerson, M. C., et al. (2002). Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. Journal of Nuclear Cardiology, 9(6), 608–615.

    Article  PubMed  Google Scholar 

  • Grunau, C., Hindermann, W., & Rosenthal, A. (2000). Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Human Molecular Genetics, 9(18), 2651–2663.

    Article  PubMed  Google Scholar 

  • Habecker, B. A., Willison, B. D., Shi, X., & Woodward, W. R. (2006). Chronic depolarization stimulates norepinephrine transporter expression via catecholamines. Journal of Neurochemistry, 97(4), 1044–1051.

    Article  PubMed  Google Scholar 

  • Halushka, M. K., et al. (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genetics, 22(3), 239–247.

    Article  PubMed  Google Scholar 

  • Harikrishnan, K. N., et al. (2010). Alleviating transcriptional inhibition of the norepinephrine slc6a2 transporter gene in depolarized neurons. The Journal of Neuroscience, 30(4), 1494–1501.

    Article  PubMed  Google Scholar 

  • Harrow, J., et al. (2012). GENCODE: The reference human genome annotation for the ENCODE project. Genome Research, 22(9), 1760–1774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hejjas, K., et al. (2009). Association between depression and the Gln460Arg polymorphism of P2RX7 gene: A dimensional approach. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B(2), 295–299.

    Article  Google Scholar 

  • Henikoff, S., & Matzke, M. A. (1997). Exploring and explaining epigenetic effects. Trends in Genetics, 13(8), 293–295.

    Article  PubMed  Google Scholar 

  • Hennekens, C. H., Hennekens, A. R., Hollar, D., & Casey, D. E. (2005). Schizophrenia and increased risks of cardiovascular disease. American Heart Journal, 150(6), 1115–1121.

    Article  PubMed  Google Scholar 

  • Inoue, K., Itoh, K., Yoshida, K., Shimizu, T., & Suzuki, T. (2004). Positive association between T-182C polymorphism in the norepinephrine transporter gene and susceptibility to major depressive disorder in a japanese population. Neuropsychobiology, 50(4), 301–304.

    Article  PubMed  Google Scholar 

  • Inoue, K., et al. (2007). No association of the G1287A polymorphism in the norepinephrine transporter gene and susceptibility to major depressive disorder in a japanese population. Biological and Pharmaceutical Bulletin, 30(10), 1996–1998.

    Article  PubMed  Google Scholar 

  • Jia, Z. Y., et al. (2011). In vitro and in vivo studies of adenovirus-mediated human norepinephrine transporter gene transduction to hepatocellular carcinoma. Cancer Gene Therapy, 18(3), 196–205.

    Article  PubMed  Google Scholar 

  • Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68(5), 444–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaye, D. M., et al. (1994). Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. Journal of the American College of Cardiology, 23(3), 570–578.

    Article  PubMed  Google Scholar 

  • Keller, J., et al. (2000). Neuropsychological differentiation of depression and anxiety. Journal of Abnormal Psychology, 109(1), 3–10.

    Article  PubMed  Google Scholar 

  • Keller, S., et al. (2010). Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Archives of General Psychiatry, 67(3), 258–267.

    Article  PubMed  Google Scholar 

  • Kilpinen, H., et al. (2008). Association of DISC1 with autism and Asperger syndrome. Molecular Psychiatry, 13(2), 187–196.

    Article  PubMed  Google Scholar 

  • Ksiazek, P., Buraczynska, K., & Buraczynska, M. (2006). Norepinephrine transporter gene (NET) polymorphism in patients with type 2 diabetes. Kidney and Blood Pressure Research, 29(6), 338–343.

    Article  PubMed  Google Scholar 

  • Labonte, B., Azoulay, N., Yerko, V., Turecki, G., & Brunet, A. (2014). Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Translational Psychiatry, 4, e368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert, G., & Grassi, G. (2010). Indices of sympathetic activity and the paradox of chromogranin A. Journal of Hypertension, 28(4), 676–678.

    Article  PubMed  Google Scholar 

  • Lambert, E., et al. (2006). Single-unit analysis of sympathetic nervous discharges in patients with panic disorder. The Journal of Physiology, 570(Pt 3), 637–643.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert, E., et al. (2007a). Gender differences in sympathetic nervous activity: Influence of body mass and blood pressure. Journal of Hypertension, 25(7), 1411–1419.

    Article  PubMed  Google Scholar 

  • Lambert, E., et al. (2007b). Psychological stress and the development of heart disease. Current Psychiatry Reviews, 3(4), 252–258.

    Article  Google Scholar 

  • Lambert, E., et al. (2008a). Single-unit sympathetic discharge pattern in pathological conditions associated with elevated cardiovascular risk. Clinical and Experimental Pharmacology and Physiology, 35(4), 503–507.

    Article  PubMed  Google Scholar 

  • Lambert, E., et al. (2008b). Altered sympathetic nervous reactivity and norepinephrine transporter expression in patients with postural tachycardia syndrome. Circulation. Arrhythmia and Electrophysiology, 1(2), 103–109.

    Article  PubMed  Google Scholar 

  • Lambert, E., et al. (2010). Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure. Journal of Hypertension, 28(3), 543–550.

    Article  PubMed  Google Scholar 

  • Lin, P. I., & Shuldiner, A. R. (2010). Rethinking the genetic basis for comorbidity of schizophrenia and type 2 diabetes. Schizophrenia Research, 123(2–3), 234–243.

    Article  PubMed  Google Scholar 

  • McGowan, P. O., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meredith, I. T., et al. (1991). Biochemical evidence of sympathetic denervation of the heart in pure autonomic failure. Clinical Autonomic Research, 1(3), 187–194.

    Article  PubMed  Google Scholar 

  • Mill, J., & Petronis, A. (2007). Molecular studies of major depressive disorder: The epigenetic perspective. Molecular Psychiatry, 12(9), 799–814.

    Article  PubMed  Google Scholar 

  • Montag, C., Basten, U., Stelzel, C., Fiebach, C. J., & Reuter, M. (2010). The BDNF Val66Met polymorphism and anxiety: Support for animal knock-in studies from a genetic association study in humans. Psychiatry Research, 179(1), 86–90.

    Article  PubMed  Google Scholar 

  • More, S. S., et al. (2011). Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems. Clinical Cancer Research, 17(8), 2339–2349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neph, S., et al. (2012). An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489(7414), 83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niwa, M., et al. (2010). Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron, 65(4), 480–489.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niwa, M., et al. (2013). Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science, 339(6117), 335–339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada, S., et al. (2012). Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(8), 1902–1909.

    Article  PubMed  Google Scholar 

  • Ono, K., et al. (2003). Epidemiological evidence of an association between SLC6A2 gene polymorphism and hypertension. Hypertension Research, 26(9), 685–689.

    Article  PubMed  Google Scholar 

  • Petersson, M. J., et al. (2002). Increased cardiac sympathetic drive in renovascular hypertension. Journal of Hypertension, 20(6), 1181–1187.

    Article  PubMed  Google Scholar 

  • Pirola, L., Balcerczyk, A., Okabe, J., & El-Osta, A. (2010). Epigenetic phenomena linked to diabetic complications. Nature Reviews Endrocrinology, 6(12), 665–675.

    Article  Google Scholar 

  • Pirola, L., et al. (2011). Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Research, 21(10), 1601–1615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prokunina, L., & Alarcn-Riquelme, M. E. (2004). Regulatory SNPs in complex diseases: Their identification and functional validation. Expert Reviews in Molecular Medicine, 2004, 1–15.

    Google Scholar 

  • Rafehi, H., et al. (2014). Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Research, 24(8), 1271–1284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu, S. H., et al. (2004). Association between norepinephrine transporter gene polymorphism and major depression. Neuropsychobiology, 49(4), 174–177.

    Article  PubMed  Google Scholar 

  • Schlaich, M. P., et al. (2004). Sympathetic augmentation in hypertension: Role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension, 43(2), 169–175.

    Article  PubMed  Google Scholar 

  • Schroeder, C., et al. (2004). Phenotypical evidence for a gender difference in cardiac norepinephrine transporter function. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 286(5), R851–R856.

    Article  PubMed  Google Scholar 

  • Sevoz-Couche, C., et al. (2013). Involvement of the dorsomedial hypothalamus and the nucleus tractus solitarii in chronic cardiovascular changes associated with anxiety in rats. Journal of Physiology, 591(Pt 7), 1871–1887.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, Y., et al. (2014). Altered DNA methylation status of human brain derived neurotrophic factor gene could be useful as biomarker of depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 165(4), 357–364.

    Article  PubMed Central  Google Scholar 

  • St Clair, D., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336(8706), 13–16.

    Article  PubMed  Google Scholar 

  • Stachowiak, M. K., Rigual, R. J., Lee, P. H., Viveros, O. H., & Hong, J. S. (1988). Regulation of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA levels in the sympathoadrenal system by the pituitary-adrenocortical axis. Brain Research, 427(3), 275–286.

    Article  PubMed  Google Scholar 

  • Sugawara, H., et al. (2011). Hypermethylation of serotonin transporter gene in bipolar disorder detected by epigenome analysis of discordant monozygotic twins. Translational Psychiatry, 1, e24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson, P. A., et al. (2005). Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Molecular Psychiatry, 10(7), 657–668, 616.

    Article  PubMed  Google Scholar 

  • Thurman, R. E., et al. (2012). The accessible chromatin landscape of the human genome. Nature, 489(7414), 75–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsankova, N. M., Kumar, A., & Nestler, E. J. (2004). Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. The Journal of Neuroscience, 24(24), 5603–5610.

    Article  PubMed  Google Scholar 

  • Tsankova, N. M., et al. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9(4), 519–525.

    Article  PubMed  Google Scholar 

  • Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. J. (2007). Epigenetic regulation in psychiatric disorders. Nature Review Neuroscience, 8(5), 355–367.

    Article  Google Scholar 

  • Turner, A. M., & Morris, K. V. (2010). Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques, 48(6), ix–xvi.

    Article  PubMed  Google Scholar 

  • Vucetic, Z., Carlin, J. L., Totoki, K., & Reyes, T. M. (2012). Epigenetic dysregulation of the dopamine system in diet-induced obesity. Journal of Neurochemistry, 120(6), 891–898.

    PubMed  PubMed Central  Google Scholar 

  • Walker, M. P., LaFerla, F. M., Oddo, S. S., & Brewer, G. J. (2013). Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer’s disease. Age (Dordrecht, Netherlands), 35(3), 519–531.

    Article  Google Scholar 

  • Wang, J., et al. (2012a). Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Research, 22(9), 1798–1812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, H., et al. (2012b). Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Research, 22(9), 1680–1688.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wankerl, M., et al. (2014). Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Translational Psychiatry, 4, e402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver, I. C., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.

    Article  PubMed  Google Scholar 

  • Wilkinson, D. J., et al. (1998). Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Archives of General Psychiatry, 55(6), 511–520.

    Article  PubMed  Google Scholar 

  • Wray, N. R., et al. (2012). Genome-wide association study of major depressive disorder: New results, meta-analysis, and lessons learned. Molecular Psychiatry, 17(1), 36–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, A. C., et al. (2010). BDNF Val66Met polymorphism alters sympathovagal balance in healthy subjects. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B(5), 1024–1030.

    Google Scholar 

  • Yano, T., Yamabe, H., & Yokoyama, M. (1999). Washout rate of 123I-metaiodobenzylguanidine increased by posture change or exercise in normal volunteers. Annals of Nuclear Medicine, 13(2), 89–93.

    Article  PubMed  Google Scholar 

  • Yip, K. Y., et al. (2012). Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biology, 13(9), R48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoh, M., et al. (2009). Resting muscle sympathetic nerve activity, cardiac metaiodobenzylguanidine uptake, and exercise tolerance in patients with left ventricular dysfunction. Journal of Nuclear Cardiology, 16(2), 244–250.

    Article  PubMed  Google Scholar 

  • Zill, P., et al. (2002). Identification of a naturally occurring polymorphism in the promoter region of the norepinephrine transporter and analysis in major depression. Neuropsychopharmacology, 26(4), 489–493.

    Article  PubMed  Google Scholar 

  • Zolk, O., Ott, C., Fromm, M. F., & Schmieder, R. E. (2012). Effect of the rs168924 single-nucleotide polymorphism in the SLC6A2 catecholamine transporter gene on blood pressure in caucasians. Journal of Clinical Hypertension (Greenwich, Conn.), 14(5), 293–298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bayles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Bayles, R., El-Osta, A. (2016). Genetics and Epigenetics in Cardiac Psychology. In: Alvarenga, M., Byrne, D. (eds) Handbook of Psychocardiology. Springer, Singapore. https://doi.org/10.1007/978-981-287-206-7_40

Download citation

Publish with us

Policies and ethics