Skip to main content

The Growth of Bubbles in an Acoustic Field by Rectified Diffusion

  • Reference work entry
  • First Online:

Abstract

Rectified diffusion is a bubble growth phenomenon that occurs in acoustic fields. When subjected to a sound field (i.e., an oscillating pressure wave), a bubble of a suitable size range undergoes expansion and compression. During this bubble oscillation, the pressure within the bubble decreases as it expands and increases as it compresses. Consequently, gas and/or vapor diffuses in and out of the bubble due to the differences in pressure between the interior and exterior of the bubble. Several effects contribute to an unequal diffusion in and out of the bubble. The “area effect” refers to the influence of surface area on the mass diffusion. More gas tends to enter the bubble during bubble expansion when the surface area is larger, than out during bubble compression when surface area is smaller. The “shell effect” refers to the thickness of the liquid-air mass transfer boundary. During compression, this boundary layer increases in thickness, and vice versa during expansion. This difference in boundary layer thickness again tends to promote more gas to enter the bubble during expansion than out during compression. In simple air-water systems, these two effects are the primary contributors to rectified diffusion growth. In more complex fluid systems, the presence of surface-active molecules at the air-water interface can alter the surface tension, surface viscoelasticity, and resistance to mass transfer and increase fluid streaming effects around the oscillating bubble. All these effects can result in further enhancement to the accumulation of gas and hence faster bubble growth with time. This chapter provides an overview of the rectified diffusion process, detailing the basic physics of the event in both simple and complex fluid systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liao Y, Lucas D (2010) A literature review on mechanisms and models for the coalescence process of fluid particles. Chem Eng Sci 65:2851–2864

    Article  CAS  Google Scholar 

  2. Firouzi M, Howes T, Nguyen AV (2015) A quantitative review of the transition salt concentration for inhibiting bubble coalescence. Adv Col Int Sci 222:305–318

    Google Scholar 

  3. Lee J, Tuziuti T, Yasui K, Kentish S, Grieser F, Ashokkumar M, Iida Y (2007) Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. J Phys Chem C 111:19015–19023

    Article  CAS  Google Scholar 

  4. Sunartio D, Ashokkumar M, Grieser F (2007) Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. J Am Chem Soc 129:6031–6036

    Article  CAS  Google Scholar 

  5. Leighton TG (1994) The acoustic bubble. Academic, San Diego

    Google Scholar 

  6. Ashokkumar M, Grieser F (2007) The effect of surface active solutes on bubbles in an acoustic field. Phys Chem Chem Phys 9:5631–5643

    Article  CAS  Google Scholar 

  7. Ashokkumar M (2011) The characterization of acoustic cavitation bubbles–an overview. Ultrason Sonochem 18:864–872

    Article  CAS  Google Scholar 

  8. Gaitan DF, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183

    Article  Google Scholar 

  9. Crum LA (1980) Measurements of the growth of air bubbles by rectified diffusion. J Acoust Soc Am 68:203–211

    Article  Google Scholar 

  10. Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37:493–503

    Article  Google Scholar 

  11. Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscilalting bubbles. J Fluid Mech 277:381–407

    Article  Google Scholar 

  12. Fyrillas MM, Szeri AJ (1995) Dissolution or growth of soluble spherical oscillating bubbles – the effect of surfactants. J Fluid Mech 289:295–314

    Article  CAS  Google Scholar 

  13. Gould RK (1974) Rectified diffusion in presence of, and absence of, acoustic streaming. J Acoust Soc Am 56:1740–1746

    Article  Google Scholar 

  14. Kloek W, van Vliet T, Meinders M (2001) Effect of bulk and interfacial rheological properties on bubble dissolution. J Colloid Interface Sci 237:158–166

    Article  CAS  Google Scholar 

  15. Goldberg BB, Liu J-B, Forsberg F (1994) Ultrasound contrast agents: a review. Ultrasound Med Biol 20:319–333

    Article  CAS  Google Scholar 

  16. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Ann Rev Biomed Eng 9:415–447

    Article  CAS  Google Scholar 

  17. Blake FG (1949) Technical Memo. Harvard University

    Google Scholar 

  18. Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413

    Article  CAS  Google Scholar 

  19. Safar MH (1968) Comment on papers concerning rectified diffusion of cavitation bubbles. J Acoust Soc Am 43:1188–1189

    Article  Google Scholar 

  20. Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16:721–727

    Article  CAS  Google Scholar 

  21. Singla R, Ashokkumar M, Grieser F (2004) The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions. Res Chem Intermed 30:723–733

    Article  CAS  Google Scholar 

  22. Young FR (1989) Cavitation. McGraw-Hill, London

    Google Scholar 

  23. Apfel RE, Peter DE (1981) Methods in experimental physics. Academic, London, pp 355–411

    Google Scholar 

  24. Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69:1624–1633

    Article  Google Scholar 

  25. Neppiras EA (1980) Acoustic cavitation thresholds and cyclic processes. Ultrasonics 18:201–209

    Article  Google Scholar 

  26. Leong T, Ashokkumar M, Kentish S (2011) The fundamentals of power ultrasound–a review. Acoust Aust 39:54–63

    Google Scholar 

  27. Besant WH (1859) Hydrostatics and hydrodynamics. Deighton Bell, Cambridge

    Google Scholar 

  28. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc B 63:674

    Article  Google Scholar 

  29. Neppiras EA, Noltingk BE (1951) Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proc Phys Soc B 64:1032

    Article  Google Scholar 

  30. Poritsky P (1952) Proceedings of the 1st US National Congress in applied mechanics (ASME). The American Society of Mechanical Engineers, New York, p 813

    Google Scholar 

  31. Plesset MS, Hsieh DY (1961) Comments on the theory of rectified diffusion. J Acoust Soc Am 33:359–360

    Article  Google Scholar 

  32. Hsieh DY, Plesset MS (1961) Theory of rectified diffusion of mass into gas bubbles. J Acoust Soc Am 33:206–215

    Article  Google Scholar 

  33. Fyrillas MM, Szeri AJ (1996) Surfactant dynamics and rectified diffusion of microbubbles. J Fluid Mech 311:361–378

    Article  CAS  Google Scholar 

  34. Lee J, Kentish S, Ashokkumar M (2005) Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. J Phys Chem B 109:14595–14598

    Article  CAS  Google Scholar 

  35. Leong T, Wu S, Kentish S, Ashokkumar M (2010) Growth of bubbles by rectified diffusion in aqueous surfactant solutions. J Phys Chem C 114:20141–20145

    Article  CAS  Google Scholar 

  36. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, New York

    Book  Google Scholar 

  37. Suzuki H, Lee I-YS, Okuno Y (2010) Stability and dancing dynamics of acoustic single bubbles in aqueous surfactant solution. Int J Phys Sci 5:176–181

    CAS  Google Scholar 

  38. Lee J, Kentish S, Matula TJ, Ashokkumar M (2005) Effect of surfactants on inertial cavitation activity in a pulsed acoustic field. J Phys Chem B 109:16860–16865

    Article  CAS  Google Scholar 

  39. Lee J, Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2008) Spatial distribution enhancement of sonoluminescence activity by altering sonication and solution conditions. J Phys Chem B 112:15333–15341

    Article  CAS  Google Scholar 

  40. Lee JY (2005) The behaviour of ultrasound generated bubbles in the presence of surface active solutes. PhD thesis, The University of Melbourne

    Google Scholar 

  41. Leong T, Collis J, Manasseh R, Ooi A, Novell A, Bouakaz A, Ashokkumar M, Kentish S (2011) The role of surfactant headgroup, chain length, and cavitation microstreaming on the growth of bubbles by rectified diffusion. J Phys Chem C 115:24310–24316

    Article  CAS  Google Scholar 

  42. Mansfield WW (1955) Influence of monolayers on the natural rate of evaporation of water. Nature 175:247–249

    Article  Google Scholar 

  43. Caskey JA, Barlage WB (1972) Study of effects of soluble surfactants on gas absorption using liquid laminar jets. J Colloid Interface Sci 41:52–62

    Article  CAS  Google Scholar 

  44. Jayalakshmi Y, Ozanne L, Langevin D (1995) Viscoelasticity of surfactant monolayers. J Colloid Interface Sci 170:358–366

    Article  CAS  Google Scholar 

  45. La Mer VK, Healy TW, Aylmore LAG (1964) The transport of water through monolayers of long-chain n-paraffinic alcohols. J Colloid Sci 19:673–684

    Article  Google Scholar 

  46. Caskey JA, Michelsen DL, To YP (1973) The effect of surfactant hydrophilic group on gas absorption rates. J Colloid Interface Sci 42:62–69

    Article  CAS  Google Scholar 

  47. Lucassen J, Van Den Tempel M (1972) Dynamic measurements of dilational properties of a liquid interface. Chem Eng Sci 27:1283–1291

    Article  CAS  Google Scholar 

  48. Lucassen-Reynders EH (1981) Anionic surfactants: physical chemistry of surfactant action. M. Dekker

    Google Scholar 

  49. Stride E (2008) The influence of surface adsorption on microbubble dynamics. Philos Trans R Soc Lond A Math Phys Eng Sci 366:2103–2115

    Article  CAS  Google Scholar 

  50. Church CC (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 97:1510–1521

    Article  Google Scholar 

  51. Tho P, Manasseh R, Ooi A (2007) Cavitation microstreaming patterns in single and multiple bubble systems. J Fluid Mech 576:191–233

    Article  Google Scholar 

  52. Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31:54–64

    Article  Google Scholar 

  53. Church CC (1988) A method to account for acoustic microstreaming when predicting bubble growth rates produced by rectified diffusion. J Acoust Soc Am 84:1758–1764

    Article  CAS  Google Scholar 

  54. Collis J, Manasseh R, Liovic P, Tho P, Ooi A, Petkovic-Duran K, Zhu Y (2010) Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 50:273–279

    Article  CAS  Google Scholar 

  55. Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Acoust Soc Am 15:495–506

    CAS  Google Scholar 

  56. Neppiras EA (1984) Acoustic cavitation series: part one: acoustic cavitation: an introduction. Ultra 22:25–28

    Article  Google Scholar 

  57. Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71–97

    Article  Google Scholar 

  58. Lamb H (1924) Hydrodynamics. Cambridge University Press, London

    Google Scholar 

  59. Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25:96–98

    Article  CAS  Google Scholar 

  60. Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. PhFl 8:2808–2826

    CAS  Google Scholar 

  61. Hao Y, Prosperetti A (1999) The effect of viscosity on the spherical stability of oscillating gas bubbles. PhFl 11:1309–1317

    CAS  Google Scholar 

  62. Leong T, Yasui K, Kato K, Harvie D, Ashokkumar M, Kentish S (2014) Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability. Phys Rev E 89:043007

    Article  Google Scholar 

  63. Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O (2007) Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason Sonochem 14:484–491

    Article  CAS  Google Scholar 

  64. Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811

    Article  CAS  Google Scholar 

  65. Leighton TG, Pickworth MJW, Walton AJ, Dendy PP (1989) The pulse enhancement of unstable cavitation by mechanisms of bubble migration. Proc Ins Acous 11:461–469

    Google Scholar 

  66. Lee J, Kentish SE, Ashokkumar M (2005) The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. J Phys Chem B 109:5095–5099

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leong .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Leong, T., Ashokkumar, M., Kentish, S. (2016). The Growth of Bubbles in an Acoustic Field by Rectified Diffusion. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_74

Download citation

Publish with us

Policies and ethics