Skip to main content

Ultrasonic Synthesis and Characterisation of Polymer-Shelled Microspheres

  • Living reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Ultrasound technique provides a simple, fast, versatile, and green pathway for synthesizing functionalized polymeric nanometer- and micrometer-sized core/shell structures. The core materials include gas, liquid, and solid materials. The microspheres’ shell is composed of biopolymers such as proteins, polysaccharides, and biocompatible synthetic polymers. In this chapter, an overview of various reports available in the literature on ultrasonic synthesis and characterization of polymer-shelled microspheres is provided. Specific focus is given to how various experimental conditions could be used to fine-tune the physical and functional properties of polymeric nano- and microspheres. It has been shown that their properties could be controlled by the power and frequency of ultrasound, the type of ultrasonic horn, and post-sonication technique. The importance of thiol functional groups for enhancing the stability of shell is also highlighted. The examples and discussion provided in this chapter indicate that ultrasound technology is versatile, simple, and efficient for synthesizing stable polymeric nano- and microspheres that have potential applications in biomedical and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Webb AG, Wong M, Kolbeck KJ, Magin RL, Wilmes LJ, Suslick KS (1996) Sonochemically produced fluorocarbon microspheres: a new class of magnetic resonance imaging agent. J Magn Reson Imag 6:675–683

    Article  CAS  Google Scholar 

  2. Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ, Suslick KS, Boppart SA (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28:1546–1548

    Article  CAS  Google Scholar 

  3. Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    Article  CAS  Google Scholar 

  4. Lee TK, Sokoloski TD, Royer GP (1981) Serum albumin beads: an injectable, biodegradable system for the sustained release of drugs. Science 213:233–235

    Article  CAS  Google Scholar 

  5. Heidebach T, Forest P, Kulozik U (2009) Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int Dairy J 19:77–84

    Article  CAS  Google Scholar 

  6. Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. Proc Natl Acad Sci U S A 88:7708–7710

    Article  CAS  Google Scholar 

  7. Wong M, Suslick KS (1995) Sonochemically produced hemoglobin microbubbles. Mater Res Soc Symp Proc 372:89–94

    Article  CAS  Google Scholar 

  8. Toublan FJ, Boppart S, Suslick KS (2006) Tumor targeting by surface-modified protein microspheres. J Am Chem Soc 128:3472–3473

    Article  CAS  Google Scholar 

  9. Feinstein SB, Keller MW, Dick CD (1987) Successful transpulmonary contrast echocardiography in monkeys. J Am Coll Cardiol 9:111A

    Google Scholar 

  10. Keller MW, Feinstein SB, Briller RA, Powsner SM (1986) Automated production and analysis of echo contrast agents. J Ultrasound Med 5:493–498

    CAS  Google Scholar 

  11. Feinstein SB, Lang RM, Dick C, Neumann A, Al-Sadir J, Chua KG, Carroll J, Feldman T, Borow KM (1988) Contrast echocardiography during coronary arteriography in humans: perfusion and anatomic studies. J Am Coll Cardiol 11:59–65

    Article  CAS  Google Scholar 

  12. Suslick KS, Grinstaff MW (1990) Protein microencapsulation of nonaqueous liquids. J Am Chem Soc 112:7807–7809

    Article  CAS  Google Scholar 

  13. Suslick KS, Grinstaff MW, Kolbeck KJ, Wong M (1994) Characterization of sonochemically prepared proteinaceous microspheres. Ultrason Sonochem 1:S65–S68

    Article  CAS  Google Scholar 

  14. Cavalieri F, Ashokkumar M, Grieser F, Caruso F (2008) Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir 24:10078–10083

    Article  CAS  Google Scholar 

  15. Cavalieri F, Zhou M, Caruso F, Ashokkumar M (2011) One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chem Commun 47:4096–4098

    Article  CAS  Google Scholar 

  16. Zhou M, Leong TSH, Melino S, Cavalieri F, Kentish S, Ashokkumar M (2010) Sonochemical synthesis of liquid-encapsulated lysozyme microspheres. Ultrason Sonochem 17:333–337

    Article  CAS  Google Scholar 

  17. Skinner EK, Price GJ (2012) Encapsulation and release of aqueous components from sonochemically produced protein microspheres. Chem Commun 48:9260–9262

    Article  CAS  Google Scholar 

  18. Zhou M, Babgi B, Gupta S, Cavalieri F, Alghamdi Y, Aksu M, Ashokkumar M (2015) Ultrasonic fabrication of TiO2/chitosan hybrid nanoporous microspheres with antimicrobial properties. RSC Adv 5:20265–20269

    Article  CAS  Google Scholar 

  19. Cavalieri F, Zhou M, Tortora M, Ashokkumar M (2014) Ultrasound-assisted preparation of nanopolymeric and micropolymeric materials for the encapsulation of bioactive agents. In: Manickam S, Ashokkumar M (eds) Cavitation: a novel energy-efficient technique for the generation of nanomaterials. Pan Stanford Publishing Pte Ltd, Singapore, pp 227–261

    Google Scholar 

  20. Cavalieri F, Micheli L, Kaliappan S, Teo BM, Zhou M, Palleschi G, Ashokkumar M (2013) Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS Appl Mater Interfaces 5:464–471

    Article  CAS  Google Scholar 

  21. Cavalieri F, Micheli L, Zhou M, Tortora M, Palleschi G, Ashokkumar M (2013) Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C. Anal Bioanal Chem 405:5531–5538

    Article  CAS  Google Scholar 

  22. Weissler A (1959) Formation of hydrogen peroxide by ultrasonic waves: free radicals. J Am Chem Soc 81:1077–1081

    Article  CAS  Google Scholar 

  23. Del Duca M, Jeager E, Davis MO, Hovarka F (1958) Isotopic technique in the study of the sonochemical formation of hydrogen peroxide. J Acoust Soc Am 30:301–307

    Article  Google Scholar 

  24. Lippitt B, McCord JM, Fridovich I (1972) The sonochemical reduction of cytochrome c and its inhibition by superoxide dismutase. J Biol Chem 247:4688–4690

    CAS  Google Scholar 

  25. Asada K, Kanematsu S (1976) Reactivity of thiols with superoxide radicals. Agri Biol Chem 40:1891–1892

    Article  CAS  Google Scholar 

  26. Touch V, Hayakawa S, Saitoh K (2004) Relationships between conformational changes and antimicrobial activity of lysozyme upon reduction of its disulfide bonds. Food Chem 84:421–428

    Article  CAS  Google Scholar 

  27. Price AD, Zelikin AN, Wang Y, Caruso F (2009) Triggered enzymatic degradation of DNA within selectively permeable polymer capsule microreactors. Angew Chem Int Ed 48:329–332

    Article  CAS  Google Scholar 

  28. De Rose R, Zelikin AN, Johnston APR, Sexton A, Chong S-F, Cortez C, Mulholland W, Caruso F, Kent SJ (2008) Binding, internalization, and antigen presentation of vaccine-loaded nanoengineered capsules in blood. Adv Mater 20:4698–4703

    Article  Google Scholar 

  29. Sivakumar S, Bansal V, Cortez C, Chong S-F, Zelikin AN, Caruso F (2009) Degradable, surfactant-free, monodisperse polymer-encapsulated emulsions as anticancer drug carriers. Adv Mater 21:1820–1824

    Article  CAS  Google Scholar 

  30. Zelikin AN, Li Q, Caruso F (2008) Disulfide-stabilized poly(methacrylic acid) capsules: formation, cross-linking, and degradation behavior. Chem Mater 20:2655–2661

    Article  CAS  Google Scholar 

  31. Avivi S, Gedanken A (2002) S-S bonds are not required for the sonochemical formation of proteinaceous microspheres: the case of streptavidin. Biochem J 366:705–707

    Article  CAS  Google Scholar 

  32. Skirtenko N, Tzanov T, Gedanken A, Rahimipour S (2010) One-step preparation of multifunctional chitosan microspheres by a simple sonochemical method. Chem Eur J 16:562–567

    Article  CAS  Google Scholar 

  33. Shimanovich U, Eliaz D, Aizer A, Vayman I, Michaeli S, Shav-Tal Y, Gedanken A (2011) Sonochemical synthesis of DNA nanospheres. Chem Bio Chem 12:1678–1681

    Article  CAS  Google Scholar 

  34. Silva R, Ferreira H, Azoia NG, Shimanovich U, Freddi G, Gedanken A, Cavaco-Paulo A (2012) Insights on the mechanism of formation of protein microspheres in a biphasic system. Mol Pharmaceutics 9:3079–3088

    Article  CAS  Google Scholar 

  35. Dindyal S, Kyriakides C (2011) Ultrasound microbubble contrast and current clinical applications. Recent Pat Cardiovasc Drug Discov 6:27–41

    Article  CAS  Google Scholar 

  36. Postema M, Helge Gilja O (2011) Contrast-enhanced and targeted ultrasound. World J Gastroenterol 17:28–41

    Article  Google Scholar 

  37. Cavalieria F, Zhou M, Ashokkumar M (2010) The design of multifunctional microbubbles for ultrasound image-guided cancer therapy. Curr Top Med Chem 10:1198–1210

    Article  Google Scholar 

  38. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366

    Article  CAS  Google Scholar 

  39. Powsner SM, Keller MW, Sanfle J, Feinstein SB (1986) Quantitation of echo contrast effects. Am J Physiol Imag 1:124–128

    CAS  Google Scholar 

  40. Cavalieri F, Zhou M, Tortora M, Lucilla B, Ashokkumar M (2012) Methods of preparation of multifunctional microbubbles and their in vitro / in vivo assessment of stability, functional and structural properties. Curr Pharm Des 18:2135–2151

    Article  CAS  Google Scholar 

  41. Vong F, Son Y, Bhuiyan S, Zhou M, Cavalieri F, Ashokkumar M (2014) A comparison of the physical properties of ultrasonically synthesized lysozyme- and BSA-shelled microbubbles. Ultrason Sonochem 21:23–28

    Article  CAS  Google Scholar 

  42. Zhou M, Cavalieri F, Ashokkumar M (2011) Tailoring the properties of ultrasonically synthesised microbubbles. Soft Matter 7:623–630

    Article  CAS  Google Scholar 

  43. Tzhayik O, Cavaco-Paulo A, Gedanken A (2012) Fragrance release profile from sonochemically prepared protein microsphere containers. Ultrason Sonochem 19:858–863

    Article  CAS  Google Scholar 

  44. Grinberg O, Gedanken A (2010) The development and characterization of starch microspheres prepared by a sonochemical method for the potential drug delivery of insulin. Macromol Chem Phys 211:924–931

    Article  CAS  Google Scholar 

  45. Avivi S, Gedanken A (2005) The preparation of avidin microspheres using the sonochemical method and the interaction of the microspheres with biotin. Ultrason Sonochem 12:405–409

    Article  CAS  Google Scholar 

  46. Avivi S, Gedanken A (2007) Are sonochemically prepared a-amylase protein microspheres biologically active? Ultrason Sonochem 14:1–5

    Article  CAS  Google Scholar 

  47. Shimanovich U, Volkov V, Eliaz D, Aizer A, Michaeli S, Gedanken A (2011) Stabilizing RNA by the sonochemical formation of RNA nanospheres. Small 7:1068–1074

    Article  CAS  Google Scholar 

  48. Zhou M, Cavalieri F, Caruso F, Ashokkumar M (2012) Confinement of acoustic cavitation for the synthesis of protein-shelled nanobubbles for diagnostics and nucleic acid delivery. ACS Macro Lett 1:853–856

    Article  CAS  Google Scholar 

  49. Zhou M, Cavalieri F, Ashokkumar M (2012) Modification of the size distribution of lysozyme microbubbles using a post sonication technique. Instrument Sci Technol 40:51–60

    Article  Google Scholar 

  50. Lee J, Kentish SE, Ashokkumar M (2005) The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. J Phys Chem B 109:5095–5099

    Article  CAS  Google Scholar 

  51. Ashokkumar M, Lee J, Kentish SE, Grieser F (2007) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475

    Article  CAS  Google Scholar 

  52. Sunartio D, Ashokkumar M, Grieser F (2007) Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. J Am Chem Soc 129:6031–6036

    Article  CAS  Google Scholar 

  53. Brotchie A, Grieser F, Ashokkumar M (2009) The effect of power and frequency on acoustic cavitation bubble size distributions. Phys Rev Lett 102:084302-1-4

    Google Scholar 

  54. Khismatullin DB (2004) Resonance frequency of microbubbles: effect of viscosity. J Acoust Soc Am 116:1463–1473

    Article  CAS  Google Scholar 

  55. Ashokkumar M, Hall R, Mulvaney P, Grieser F (1997) Sonoluminescence from aqueous alcohol and surfactant solutions. J Phys Chem B 101:10845–10850

    Article  CAS  Google Scholar 

  56. Lee J, Ashokkumar M, Kentish SE, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811

    Article  CAS  Google Scholar 

  57. Cavalieri F, Colone M, Stringaro A, Tortora M, Calcabrini A, Zhou M, Ashokkumar M (2013) Influence of the morphology of lysozyme-shelled microparticles on the cellular association, uptake, and degradation in human breast adenocarcinoma cells. Part Part Syst Charact 30:695–705

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meifang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Her Majesty the Queen in Right of Australia

About this entry

Cite this entry

Zhou, M., Cavalieri, F., Ashokkumar, M. (2015). Ultrasonic Synthesis and Characterisation of Polymer-Shelled Microspheres. In: Ashokkumar, M. (eds) Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-470-2_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-470-2_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-287-470-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics