Skip to main content

New Reaction Schemes for the Production of Biomass-Based Chemicals Created by Selective Catalytic Hydrogenolysis: Catalysts with Noble Metal and Tungsten

  • Chapter
Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I

Abstract

Bimetallic catalysts containing noble metal and tungsten are effective in C-O hydrogenolysis reactions. Three types of C-O hydrogenolysis reactions have been reported: one is the direct hydrogenolysis of C-O bond neighboring a terminal OH group such as tetrahydrofurfuryl alcohol to 1,5-pentanediol. This catalysis is common for Rh-MOx (M = Mo, Re, and W) catalysts. Water solvent and low reaction temperature (~393 K) are applied. Another is deoxydehydration + hydration of vicinal cis-diols to mono-alcohols such as 1,4-anhydroerythritol to 3-hydroxytetrahydrofuran. The combination of WO3 and noble metal, especially Pd, is effective in this reaction. The reaction proceeds in non-water solvent (1,4-dioxane) and at high temperature (453–473 K). The other is selective production of 1,3-propanediol from glycerol over Pt-W catalysts. The combination of Pt and W is specifically effective. The reaction is operated in the presence of water at high temperature (~453 K). The proposed mechanism is a variant of dehydration + hydrogenation, and the intermediate of 1,3-propanediol formation is stabilized by W species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2564–2601

    Article  CAS  Google Scholar 

  2. Besson R, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  CAS  Google Scholar 

  3. Schlaf M (2006) Selective deoxygenation of sugar polyols to α,ξ-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. Dalton Trans :4645–4653

    Google Scholar 

  4. Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1:179–190

    Article  CAS  Google Scholar 

  5. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl Catal A 318:244–251

    Article  CAS  Google Scholar 

  6. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl Catal A 329:30–35

    Article  CAS  Google Scholar 

  7. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism. J Catal 240:213–221

    Article  CAS  Google Scholar 

  8. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  CAS  Google Scholar 

  9. Nakagawa Y, Tomishige K (2011) Catalyst development for the hydrogenolysis of biomass-derived chemicals to value-added ones. Catal Surv Asia 15:111–116

    Article  CAS  Google Scholar 

  10. Tomishige K, Tamura M, Nakagawa Y (2014) Role of Re species and acid cocatalyst on Ir-ReOx/SiO2 in the C-O hydrogenolysis of biomass-derived substrates. Chem Rec 14:1041–1054

    Article  CAS  Google Scholar 

  11. Tomishige K, Nakagawa Y, Tamura M (2014) Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and OH groups. Top Curr Chem 353:127–162

    Article  Google Scholar 

  12. Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K (2007) Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen. Green Chem 9:582–588

    Article  CAS  Google Scholar 

  13. Shimao A, Koso S, Ueda N, Shinmi Y, Furikado I, Tomishige K (2009) Promoting effect of Re addition to Rh/SiO2 on glycerol hydrogenolysis. Chem Lett 38:540–541

    Article  CAS  Google Scholar 

  14. Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K (2009) Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem Commun :2035–2037

    Google Scholar 

  15. Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T, Tomishige K (2009) Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J Catal 267:89–92

    Article  CAS  Google Scholar 

  16. Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2010) Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl Catal B 94:318–326

    Article  CAS  Google Scholar 

  17. Chen K, Koso S, Kubota T, Nakagawa Y, Tomishige K (2010) Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1,6-hexanediol over rhenium-modified carbon-supported rhodium catalysts. ChemCatChem 2:547–555

    Article  Google Scholar 

  18. Amada Y, Koso S, Nakagawa Y, Tomishige K (2010) Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol. ChemSusChem 3:728–736

    Article  CAS  Google Scholar 

  19. Koso S, Nakagawa Y, Tomishige K (2011) Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. J Catal 280:221–229

    Article  CAS  Google Scholar 

  20. Koso S, Watanabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Comparative study of Rh-MoOx and Rh-ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Appl Catal B 111–112:27–37

    Article  Google Scholar 

  21. Chia M, Pagán-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. J Am Chem Soc 133:1275–12689

    Article  Google Scholar 

  22. Chia M, O’Neill BJ, Alamillo R, Dietrich PJ, Ribeiro FH, Miller JT, Dumesic JA (2013) Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. J Catal 308:226–236

    Article  CAS  Google Scholar 

  23. Hibbitts D, Tan Q, Neurock M (2014) Acid strength and bifunctional catalytic behavior of alloys comprised of noble metals and oxophilic metal promoters. J Catal 315:48–58

    Article  CAS  Google Scholar 

  24. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2012) From 5-hydroxymethylfurfural (HMF) to polymer precursors: catalyst screening studies on the conversion of 1,2,6-hexanetriol to 1,6-hexanediol. Top Catal 55:612–619

    Article  CAS  Google Scholar 

  25. Buntara T, Melián-Cabrera I, Tan Q, Fierro JLG, Neurock M, de Vries JG, Heeres HJ (2013) Catalyst studies on the ring opening of tetrahydrofuran-dimethanol to 1,2,6-hexanetriol. Catal Today 210:106–116

    Article  CAS  Google Scholar 

  26. Checa M, Auneau F, Hidalgo-Carrillo J, Marinas A, Marinas JM, Pinel C, Urbano FJ (2012) Catalytic transformation of glycerol on several metal systems supported on ZnO. Catal Today 196:91–100

    Article  CAS  Google Scholar 

  27. Guan J, Peng G, Cao Q, Mu X (2014) Role of MoO3 on a rhodium catalyst in the selective hydrogenolysis of biomass-derived tetrahydrofurfuryl alcohol into 1,5-pentanediol. J Phys Chem C 118:25555–25566

    Article  CAS  Google Scholar 

  28. Chaminand J, Djakovitch L, Gallezot P, Marion P, Pinel P, Rosier C (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6:359–361

    Article  CAS  Google Scholar 

  29. Koso S, Watanabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Stable low-valence ReOx cluster attached on Rh metal particles formed by hydrogen reduction and its formation mechanism. J Phys Chem C 116:3079–3090

    Article  CAS  Google Scholar 

  30. Weldon MK, Friend CM (1996) Probing surface reaction mechanisms using chemical and vibrational methods: alkyl oxidation and reactivity of alcohols on transitions metal surfaces. Chem Rev 96:1391–1411

    Article  CAS  Google Scholar 

  31. Chen K, Mori K, Watanabe H, Nakagawa Y, Tomishige K (2012) C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J Catal 294:171–183

    Article  CAS  Google Scholar 

  32. Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J Catal 272:191–194

    Article  CAS  Google Scholar 

  33. Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst. Appl Catal B 105:117–127

    Article  CAS  Google Scholar 

  34. Amada Y, Watanabe H, Hirai Y, Kajikawa Y, Nakagawa Y, Tomishige K (2012) Production of biobutanediols by the hydrogenolysis of erythritol. ChemSusChem 5:1991–1999

    Article  CAS  Google Scholar 

  35. Nakagawa Y, Ning X, Amada Y, Tomishige K (2012) Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Appl Catal A 433–434:128–134

    Article  Google Scholar 

  36. Nakagawa Y, Mori K, Chen K, Amada Y, Tamura K, Tomishige K (2013) Hydrogenolysis of CO bond over Re-modified Ir catalyst in alkane solvent. Appl Catal A 468:418–425

    Article  CAS  Google Scholar 

  37. Chen K, Tamura M, Yuan Z, Nakagawa Y, Tomishige K (2013) One-pot conversion of sugar and sugar polyols to n-alkanes without C-C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem 6:613–621

    Article  CAS  Google Scholar 

  38. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir-ReOx/SiO2 bifunctional catalyst. Green Chem 16:617–626

    Article  Google Scholar 

  39. Tamura M, Amada Y, Liu S, Yuan Z, Nakagawa Y, Tomishige K (2014) Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. J Mol Catal A 388–389:177–187

    Article  Google Scholar 

  40. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) Performance and characterization of rhenium modified Rh-Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catal Sci Technol 4:2535–2549

    Article  CAS  Google Scholar 

  41. Liu S, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot conversion of cellulose into n‑hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM‑5. ACS Sustain Chem Eng 2:1819–1827

    Article  CAS  Google Scholar 

  42. Liu S, Okuyama Y, Tamura M, Nakagawa Y, Imai A, Tomishige K (2015) Production of renewable hexanols from mechanocatalytically depolymerized cellulose by using Ir-ReOx/SiO2 catalyst. ChemSusChem 8:628–635

    Article  CAS  Google Scholar 

  43. Li F, Xue F, Chen B, Huang Z, Yuan Y, Yuan G (2012) Direct catalytic conversion of glycerol to liquid-fuel classes over Ir-Re supported on W-doped mesostructured silica. Appl Catal A 449:163–171

    Article  CAS  Google Scholar 

  44. Deng C, Duan X, Zhou J, Zhou X, Yuan X, Scott SL (2015) Ir-Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1,3-propanediol. Catal Sci Technol 5:1540–1547

    Article  CAS  Google Scholar 

  45. Mascal M, Dutta S, Gandarias I (2014) Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7-C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857

    Article  CAS  Google Scholar 

  46. Wang Z, Pholjaroen B, Li M, Dong W, Li N, Wang A, Wang X, Cong Y, Zhang T (2014) Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Ir-MoOx/SiO2 catalyst. J Energy Chem 23:427–434

    Article  Google Scholar 

  47. Pholjaroen B, Li N, Huang Y, Li L, Wang A, Zhang T (2015) Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over vanadium modified Ir/SiO2 catalyst. Catal Today 245:93–99

    Article  CAS  Google Scholar 

  48. Amada Y, Watanabe H, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2012) Structure of ReOx clusters attached on the Ir metal surface in Ir-ReOx/SiO2 for the hydrogenolysis reaction. J Phys Chem C 116:23503–23514

    Article  CAS  Google Scholar 

  49. Amada Y, Ota N, Tamura M, Nakagawa Y, Tomishige K (2014) Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts. ChemSusChem 7:2185–2192

    Article  CAS  Google Scholar 

  50. Childers KG, Dreher SD, Lee J, Williams JM (2006) A practical and scaleable preparation of 1,4-anhydroerythritol. Org Process Res Dev 10:934–936

    Article  CAS  Google Scholar 

  51. Shiramizu M, Toste FD (2012) Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. Angew Chem Int Ed 51:8082–8086

    Article  CAS  Google Scholar 

  52. Dethlefsen JR, Fristrup P (2015) Rhenium-catalyzed deoxydehydration of diols and polyols. ChemSusChem 8:767–775

    Article  CAS  Google Scholar 

  53. Raju S, Moret M, Gebbink RJMK (2015) Rhenium-catalyzed dehydration and deoxydehydration of alcohols and polyols: opportunities for the formation of olefins from biomass. ACS Catal 5:281–300

    Article  CAS  Google Scholar 

  54. Ota N, Tamura M, Nakagawa Y, Okumura K, Tomishige K (2015) Hydrodeoxygenation of vicinal OH groups over heterogeneous rhenium catalyst promoted by palladium and ceria support. Angew Chem Int Ed 54:1897–1900

    Article  CAS  Google Scholar 

  55. Suzuki N, Yoshikawa Y, Takahashi M, Tamura M (2007) Process for producing product of hydrogenolysis of polyhydric alcohol using heterogeneous-system catalysts with high selectivity. WO Patent 2,007,129,560 15 Nov 2007

    Google Scholar 

  56. Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catal Commun 9:1360–1363

    Article  CAS  Google Scholar 

  57. Gong L, Lü Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2009) Solvent effect on selective dehydroxylation of glycerol to 1,3-propanediol over a Pt/WO3/ZrO2 catalyst. Chin J Catal 30:1189–1191

    Article  CAS  Google Scholar 

  58. Qin L, Song M, Chen C (2012) Aqueous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor. Green Chem 12:1466–1472

    Article  Google Scholar 

  59. Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2010) Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Appl Catal A 390:119–126

    Article  CAS  Google Scholar 

  60. Zhu S, Zhu Y, Hao S, Chen L, Zhang B, Li Y (2012) Aqueous-phase hydrogenolysis of glycerol to 1,3-propanediol over Pt-H4SiW12O40/SiO2. Catal Lett 142:267–274

    Article  CAS  Google Scholar 

  61. Zhu S, Zhu Y, Hao S, Zheng H, Mo T, Li Y (2012) One-step hydrogenolysis of glycerol to biopropanols over Pt-H4SiW12O40/ZrO2 catalysts. Green Chem 14:2607–2616

    Article  CAS  Google Scholar 

  62. Liu L, Zhang Y, Wang A, Zhang T (2012) Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1,3-propanediol. Chin J Catal 33:1257–1261

    Article  CAS  Google Scholar 

  63. ten Dam J, Djanashvili K, Kapteijn F, Hanefeld U (2013) Pt/Al2O3 catalyzed 1,3-propanediol formation from glycerol using tungsten additives. ChemCatChem 5:497–505

    Article  Google Scholar 

  64. Zhu S, Gao X, Zhu Y, Zhu Y, Xiang X, Hu C, Li Y (2013) Alkaline metals modified Pt-H4SiW12O40/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl Catal B 140–141:60–67

    Article  Google Scholar 

  65. Zhang Y, Zho X, Wang Y, Zhou L, Zhang J, Wang J, Wang A, Zhang T (2013) Mesoporous Ti-W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol. J Mater Chem A 1:3724–3732

    Article  CAS  Google Scholar 

  66. Mizugaki T, Yamakawa T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2012) Selective hydrogenolysis of glycerol to 1,3-propanediol catalyzed by Pt nanoparticles AlOx/WO3. Chem Lett 41:1720–1722

    Article  Google Scholar 

  67. Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) Highly selective hydrogenolysis of glycerol to 1,3-propanediol over a boehmite-supported platinum/tungsten catalyst. ChemSusChem 6:1345–1347

    Article  CAS  Google Scholar 

  68. Zhu S, Gao X, Zhu Y, Cui J, Zheng H, Li Y (2014) SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl Catal B 158–159:391–399

    Article  Google Scholar 

  69. Nakagawa Y, Tamura M, Tomishige K (2014) Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J Mater Chem A 2:6688–6702

    Article  CAS  Google Scholar 

  70. Daniel OM, DeLaRiva A, Kunkes EL, Datye AK, Dumesic JA, Davis RJ (2010) X-ray absorption spectroscopy of bimetallic Pt-Re catalysts for hydrogenolysis of glycerol to propanediols. ChemCatChem 2:1107–1114

    Article  CAS  Google Scholar 

  71. Delgado SN, Yap D, Vivier L, Especel C (2013) Influence of the nature of the support on the catalytic properties of Pt-based catalysts for hydrogenolysis of glycerol. J Mol Catal A 367:89–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshinao Nakagawa or Keiichi Tomishige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nakagawa, Y., Tamura, M., Tomishige, K. (2016). New Reaction Schemes for the Production of Biomass-Based Chemicals Created by Selective Catalytic Hydrogenolysis: Catalysts with Noble Metal and Tungsten. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-688-1_8

Download citation

Publish with us

Policies and ethics