Skip to main content

Abstract

Seed is the basic unit of crop production and has greater contribution to environmental and cultural factors and is widely distributed in national and international trade. The seeds are found to be responsible for disease transmission because they carry a number of pathogens. The toxigenic fungal flora, existing in conjunction with food, largely includes genera Aspergillus, Fusarium, and Penicillium and, to a lesser extent, the genera Alternaria, Claviceps, and Stachybotrys. These economically important species of fungi produce significant mycotoxins. More than 400 mycotoxins are known to exist in nature. Contamination of foods and feeds with mycotoxins is a worldwide serious problem. The most important mycotoxins in terms of toxic effect on both humans and animals are aflatoxins (AFs), citrinin (CIT), cyclopiazonic acid (CPA), fumonisins (FBs), moniliformin (MON), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2), patulin (PAT), zearalenone (ZEA), and ustiloxins. These mycotoxins have several adverse impacts on consumers, such as loss of human and animal lives, health-care and veterinary care costs, contaminated food and feed disposal costs, and huge investment in research and management of the mycotoxin problem. The mycotoxins induce diverse biological effects, which have been characterized on animals and humans. These toxic effects of mycotoxins include cytotoxic, carcinogenic, immune suppressive, nephrotoxic neurotoxic, mutagenic and estrogenic effects, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca ML, Accensi F, Bragulat MR et al (2003) Aspergillus carbonarius as the main source of ochratoxin A contamination in dried vine fruits from the Spanish market. J Food Prot 66(3):504–506

    CAS  PubMed  Google Scholar 

  • Abbas HK, Mirocha CJ, Meronuck RA et al (1988) Mycotoxins and Fusarium spp. associated with infected ears of corn in Minnesota. Appl Environ Microbiol 54:1930–1933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas HK, Accinelli C, Zablotowicz RM et al (2008) Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. J Agric Food Chem 56:7578–7585

    CAS  PubMed  Google Scholar 

  • Abdelhamid AM (1990) Occurrence of some mycotoxins (aflatoxins, ochratoxin A, citrinin, zearalenone and vomitoxin) in various Egyptian feeds. Arch Anim Nutr 40:647–664

    CAS  Google Scholar 

  • Abel S, Gelderblom WCA (1998) Oxidative damage and fumonisin B1-induced toxicity in primary rat hepatocytes and rat liver in vitro. Toxicology 131:121–131

    CAS  PubMed  Google Scholar 

  • Agarwal VK, Sinclair JB (1987) Principles of seed pathology, vol I. CRC Press, Inc, Boca Raton, p 176

    Google Scholar 

  • Aish JL, Rippon EH, Barlow TSJ et al (2004) Ochratoxin A. In: Magan N, Olsen M (eds) Mycotoxin in food: detection and control. CRC Press, Washington, DC, pp 307–338

    Google Scholar 

  • Annaisie EJ, Stratton SL, Dignani MC et al (2002) Pathogenic Aspergillus species recovered from a hospital water system: a 3 year prospective study. Clin Infect Dis 34(6):780–789

    Google Scholar 

  • Anonymous (2012) Scientific opinion on ergot alkaloids in food and feed. EFSA J 10(7):2798

    Google Scholar 

  • Ansari RA, Thakran RS, Berndt WO (1991) The effects of potassium chromate and citrinin on rat renal membrane transport. Fundam Appl Toxicol 16:701–703

    CAS  PubMed  Google Scholar 

  • Atanda SA, Pessu PO, Agoda S et al (2011) Fungi and mycotoxins in stored foods. Afr J Microbiol Res 5(25):4373–4382. https://doi.org/10.5897/AJMR11.487

    Article  CAS  Google Scholar 

  • Barnes SE, Dola TP, Bennett JW et al (1994) Synthesis of sterigmatocystin on a chemically defined medium by species of Aspergillus and Chaetomium. Mycopathologia 125:173–178

    CAS  PubMed  Google Scholar 

  • Beasley VE (1989) Trichothecene mycotoxicosis: pathophysiologic effects, vol I. CRC Press, Boca Raton

    Google Scholar 

  • Bellettini NMT, Endo RM, Miglioranza E et al (2005) Patogenicidade de fungos associados às sementes e plântulas de amendoim cv Tatu. Semina: Ciênc Agrár 26:167–172. https://doi.org/10.5433/1679-0359.2005v26n2p167

    Article  Google Scholar 

  • Bennett JW, Bentley R (1999) Pride and prejudice: the story of ergot. Perspect Biol Med 42:333–355

    CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett GA, Shotwell OL (1979) Zearalenone in cereal grains. J Am Oil Chem Soc 56:812–819

    CAS  Google Scholar 

  • Bennett GA, Richard JL, Eckhoff SR (1996) Distribution of fumonisins in food and feed products prepared from contaminated corn. In: Jackson LA (ed) Fumonisins in foods. Plenum Publishing, New York, pp 27–38

    Google Scholar 

  • Berndt WO (1990) Ochratoxin–citrinin as nephrotoxins. In: Llewellyn GC, Rear PCO (eds) Biodeterioration research 3. Plenum Press, New York, pp 55–56

    Google Scholar 

  • Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP et al (1988) Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun 0:743–745

    CAS  Google Scholar 

  • Bhat RV, Beedu SR, Ramakrishna Y et al (1989) Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley India. Lancet 1(8628):35–37

    CAS  PubMed  Google Scholar 

  • Bhat RV, Shetty HK, Amruth RP et al (1997) A food borne disease outbreak due to the consumption of moldy sorghum and maize containing fumonisin mycotoxins. J Toxicol Clin Toxicol 35(3):249–255

    CAS  PubMed  Google Scholar 

  • Bhat AR, Bhat GV, Shenoy GG (2010) Synthesis and in vitro antimicrobial activity of new 1, 2, 4-triazoles. J Pharm Pharmacol 53(2):267–272

    Google Scholar 

  • Bhatnagar D, Yu J, Ehrlich KC (2002) Toxins of filamentous fungi. Chem Immunol 81:167–206

    CAS  PubMed  Google Scholar 

  • Bilgrami KS, Sinha SP, Jeswal P (1988) Loss of toxigenicity of Aspergillus flavus strains during subculturing—a genetic interpretation. Curr Sci 57:551–552

    Google Scholar 

  • Bissessur J, Permaul K, Odhav B (2001) Reduction of patulin during apple juice clarification. J Food Prot 64:1216–1219

    CAS  PubMed  Google Scholar 

  • Blackwell PA, Kay P, Ashauer R et al (2009) Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere 75(1):13–19

    CAS  PubMed  Google Scholar 

  • Borém FM, Resende O, Machado JC et al (2006) Controle de fungos presentes no ar e em sementes de feijão durante armazenamento. Revista Brasileira de Engenharia Agrícola e Ambiental 10:651–659. https://doi.org/10.1590/S1415-43662006000300017

    Article  Google Scholar 

  • Bove FJ (1970) The story of ergot. S Karger, AG, Basel

    Google Scholar 

  • Bragulat MR, Martinez E, Castella G et al (2008) Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. Int J Food Microbiol 126:43–48

    CAS  PubMed  Google Scholar 

  • Brock TD (1986) Thermophiles: general, molecular and applied microbiology. Wiley, New York, p 316

    Google Scholar 

  • Brown ES, McCormick SP, Alexander NJ et al (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32:121–133

    CAS  PubMed  Google Scholar 

  • Buchanan RL, Ayres JG (1979) Effect of sodium acetate on growth and aflatoxin production by Aspergillus parasiticus NRRL 2999. J Food Sci 41:128–132

    Google Scholar 

  • Bunge I, Heller K, Roschenthaler R (1979) Isolation and purification of ochratoxin A. Z Lebensm Unters Forsch 168(6):457–458

    CAS  Google Scholar 

  • Burdock GA, Flamm WG (2000) Review article: safety assessment of the mycotoxin cyclopiazonic acid. Int J Toxicol 19:195–218

    CAS  Google Scholar 

  • Burka LT, Doran J, Wilson BJ (1982) Enzyme inhibition and the toxic action of moniliformin and other vinylogous alpha-ketoacids. Biochem Pharmacol 31:79–84

    CAS  PubMed  Google Scholar 

  • CAC (2003) Code of practice for the prevention and reduction of mycotoxin contamination in cereals, including annexes on ochratoxin A, zearalenone, fumonisins and tricothecenes. Codex Alimentarius Commission. CAC/RCP 51–2003. Available from: http://www.codexalimentarius.net/web/standard_list.do?lang=en

  • Camoou-Arriola JP, Price RL (1989) Destruction of aflatoxin and reduction of mutagenicity of naturally-contaminated corn during the production of a corn snack. J Food Prot 52:814–817

    Google Scholar 

  • Cao JL, Zheng B, Zhang SY et al (1995) The experimental study of moniliformin effects on the chondrocytes. Endemic Dis Bull 10(4):5–7

    Google Scholar 

  • Cao JL, Zhang A, Yang B et al (2007) The effect of fungal moniliformin toxin and selenium supplementation on cartilage metabolism in vitro. Osteoarthr Cartil 15(Suppl. 3):C108

    Google Scholar 

  • Cao JL, Li S, Shi Z et al (2008) Articular cartilage metabolism in patients with Kashin-Beck disease: an endemic osteoarthropathy in China. Osteoarthr Cartil 16(6):680–688

    CAS  PubMed  Google Scholar 

  • CAST (2003) Mycotoxins: risks in plant, animal, and human systems, Task force report no. 139. Ames Council for Agricultural Science and Technology, Ames

    Google Scholar 

  • Chen LY, Tian XL, Yang B (1990) A study on the inhibition of rat myocardium glutathione peroxidase and glutathione reductase by moniliformin. Mycopathologia 110(2):119–124

    CAS  PubMed  Google Scholar 

  • Chen J, Mirocha CJ, Xie W et al (1992) Production of the mycotoxin fumonisin B1 by Alternaria alternata f. sp. lycopersici. Appl Environ Microbiol 58:3928–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chipley JR, Uraih N (1980) Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Appl Environ Microbiol 40(2):352–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhary A, Agarwal K, Kathuria S et al (2014) Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 40(1):30–48

    CAS  PubMed  Google Scholar 

  • Christensen CM (1978) Storage fungi. In: Beuchat LR (ed) Food and beverage mycology. Avi Publishing Company, Westport, pp 173–190

    Google Scholar 

  • Christensen CM, Kaufmann HH (1965) Deterioration of stored grains by fungi. Annu Rev Phytopathol 3:69–84. https://doi.org/10.1146/annurev.py.03.090165.000441

    Article  Google Scholar 

  • Chu FS (1974) Studies on ochratoxins. CRC Crit Rev Toxicol 2(4):499–524

    CAS  PubMed  Google Scholar 

  • Chu FS (2002) Mycotoxins. In: Cliver DO, Riemann HP (eds) Foodborne diseases, 2nd edn. Academic, London, pp 271–303

    Google Scholar 

  • Chu FS (2006) Mycotoxins and alimentary mycotoxicoses. In: Rieman HP, Cliver DO (eds) Foodborne infections and intoxications, 3rd edn. Academic/Elsevier, London/Amsterdam, pp 583–661

    Google Scholar 

  • Chulze SN (2010) Strategies to reduce mycotoxin levels in maize during storage: a review. Food Addit Contam 27(5):651–657. https://doi.org/10.1080/19440040903573032

    Article  CAS  Google Scholar 

  • Chung CC, Huang TC, Chen HH (2009) The optimization of Monascus fermentation process for pigments increment and Citrinin reduction. In: Ninth IEEE international conference on bioinformatics and bioengineering, June, 22–24, 2009, Taichung, Taiwan, pp 77–83

    Google Scholar 

  • Ciegler A, Vesonder RF, Jackson LK (1977) Production and biological activity of patulin and citrinin from Penicillium expansum. Appl Environ Microbiol 33:1004–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JH, Niles EV, Hill ST (1967) Ecology of the microflora of moist barley. Pest Infest Res:14–16

    Google Scholar 

  • Cole GT (2012) Biology of conidial fungi. Elsevier, Burlington, p 680

    Google Scholar 

  • Cole RJ, Cox RH (1981) Handbook of toxic and fungal metabolites. Academic, New York

    Google Scholar 

  • Cole RJ, Kirksey JW, Cutler HG et al (1973) Toxin from Fusarium moniliforme-effects on plants and animals. Science 179:1324–1326

    CAS  PubMed  Google Scholar 

  • Coulombe RA Jr (1993) Biological action of mycotoxins. J Dairy Sci 76(3):880–891

    CAS  PubMed  Google Scholar 

  • Creppy EE, Kern D, Steyn PS et al (1983) Comparative study of the effect of ochratoxin a analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol Lett 19:217–224

    CAS  PubMed  Google Scholar 

  • Crespi CL, Penman BW, Steimel DT et al (1991) The development of a human cell line stably expressing human CYP3A3: role in the metabolic activation of aflatoxin B1 and comparison to CYP1A2 and CYP2A3. Carcinogenesis 12:255–259

    Google Scholar 

  • D’Mello JPF (2003) Mycotoxins in cereal grains, nuts and other plant products. In: D’Mello JPF (ed) Food safety contaminants and toxins. Cromwell Press, Trowbridge, pp 65–90

    Google Scholar 

  • Da Lozzo EJ, Oliveira MB, Carnieri EG (1998) Citrinin-induced mitochondrial permeability transition. J Biochem Mol Toxicol 12:291–297

    PubMed  Google Scholar 

  • Dai S, Duan J, Lu Y et al (2004) Phytoestrogen α-zearalenol inhibits atherogenesis and improves lipid profile in ovariectomized cholesterol-fed rabbits. Endocrine 25:121–129

    CAS  PubMed  Google Scholar 

  • Davis ND, Diener UL (1967) Inhibition aflatoxin synthesis by paminobenzoic acid, potassium sulfite and potassium fluoride. Appl Microbiol 15:15–17

    Google Scholar 

  • Demeke (2005) Species-specific PCR-based assays for the detection of Fusarium spp. and a comparison with the whole seed agar plate method and trichothecene analysis. Int J Food Microbiol 103:271–284

    CAS  PubMed  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance. Microbiol Rev 57:595–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devegowda G, Radu MVL, Nazar A et al (1998) Mycotoxin picture worldwide: novel solutions for their counteraction. In: Proceedings of Alltech’s 14th annual symposium, biotechnology in feed industry. Passport of the year 2000. Nottingham University Press, pp 241–255

    Google Scholar 

  • Dirheimer G (1998) Recent advances in the genotoxicity of mycotoxins. Rev Méd Vét 149:605–616

    CAS  Google Scholar 

  • Domijan A, Zeljezic D, Kopjar N et al (2006) Standard and Fpg-modified comet assay in kidney cells of 14 S.D. ochratoxin-A and fumonisin B1-treated rats. Toxicology 222(1–2):53–59

    CAS  PubMed  Google Scholar 

  • Drusch S, Ragab W (2003) Mycotoxins in fruits, fruit juices, and dried fruits. J Food Prot 66(8):1514–1527

    CAS  PubMed  Google Scholar 

  • Eadie MJ (2003) Convulsive ergotism: epidemics of the serotonin syndrome? Lancet Neurol 2(7):429–434

    CAS  PubMed  Google Scholar 

  • Eaton DL, Gallagher EP (2004) Mechanisms of aflatoxins carcinogenesis. Annu Rev Pharmacol Toxicol 34:135–172

    Google Scholar 

  • Ehrlich KC, Daigle KW (1987) Protein synthesis inhibition by 8-oxo-12, 13-epoxytrichothecenes. Biochem Biophys Acta 923:206–213

    CAS  PubMed  Google Scholar 

  • Ehrlich V, Darroudi F, Uhl M (2002) Fumonisin B1 is genotoxic in human derived hepatoma (HepG2) cells. Mutagenesis 17(3):257–260

    CAS  PubMed  Google Scholar 

  • Elling F, Moller T (1973) Mycotoxin nephropathy in pigs. Bull World Health Organ 49(4):411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen GS, Alexander J (1998) Fusarium toxins in cereals: a risk assessment. Nordic Council of Ministers, Tema Nord, Copenhagen. 502:7–27 and 45–58

    Google Scholar 

  • Fajardo JE, Dexter JE, Roscoe MM et al (1995) Retention of ergot alkaloids in wheat during processing. Cereal Chem 72:291–298

    CAS  Google Scholar 

  • FAO (1979) Recommended practice for prevention of mycotoxins in food, feed and their products. FAO, Rome, pp 4–36

    Google Scholar 

  • FAO (2013) FAOSTAT-food and agriculture organization of the United Nations. http://faostat.fao.org/site/567/DesktopDefault.aspx#ancor

  • Fodor J, Kametler L, Kovacs M (2006) Practical aspects of fumonisin production under laboratory conditions. Mycotoxin Res 22(4):211–216

    CAS  PubMed  Google Scholar 

  • Friend DW, Thompson BK, Trenholm HL et al (1992) Toxicity of T-2 toxin and its interaction with deoxynivalenol when fed to young pigs. Can J Anim Sci 72:703–711

    CAS  Google Scholar 

  • Frisvad JC (1989) The connection between the Penicillia and Aspergilli and mycotoxins with special emphasis on misidentified isolates. Arch Environ Contam Toxicol 18:452–467

    CAS  PubMed  Google Scholar 

  • Gelderblom WCA, Jaskiewicz K, Marasas WFO et al (1998) Fumonisins-novel mycotoxins with cancer promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    Google Scholar 

  • Gelineau-van Waes J, Starr L, Maddox J et al (2005) Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res A Clin Mol Teratol 73(7):487–497

    CAS  PubMed  Google Scholar 

  • Ghosh J, Haggblom P (1985) Effect of sublethal concentration of propionic or butyric acid on growth and aflatoxin production by Aspergillus flavus. Int J Food Microbiol 2:323–330

    CAS  Google Scholar 

  • Glavitis R, Vanyi A (1995) More important mycotoxicosis in pigs. Magyar Allatorvosak Lapja 50:407–420

    Google Scholar 

  • Goeger DE, Riley RT, Dorner JW et al (1988) Cyclopiazonic acid inhibition of the Ca2+-transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37:978–981

    CAS  PubMed  Google Scholar 

  • Gökmen V, Acar J, Sarioglu K (2005) Liquid chromatographic method for the determination of patulin in apple juice using solid-phase extraction. Anal Chim Acta 543:64–69

    Google Scholar 

  • Golding NS (1940a) The gas requirements of molds-II. The oxygen requirements of Penicillium roqueforti (three strains originally isolated from blue veined cheese) in the presence of nitrogen as diluent and the absence of carbon dioxide. J Dairy Sci 23:879–889

    CAS  Google Scholar 

  • Golding NS (1940b) The gas requirements of molds-III. The effect of various concentrations of carbon dioxide on the growth of Penicillium roqueforti (three strains originally isolated from blue veined cheese) in air. J Dairy Sci 23:891–898

    CAS  Google Scholar 

  • Golding NS (1945) The gas requirements of molds-IV. A preliminary interpretation of the growth of four common mold cultures on the basis of absorbed gases. J Dairy Sci 28:737–750

    CAS  Google Scholar 

  • Gong YY, Egal S, Hounsa A et al (2003) Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: the critical role of weaning. Food Res Int 37:985–1000

    Google Scholar 

  • Gong YY, Hounsa A, Egal S et al (2004) Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ Health Perspect 112:1334–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoryan KM, Hakobyan LL (2015) Effect of water activity, pH and temperature on contamination level of dried vine fruit by filamentous fungi during storage. Chem Biol 3:23–28

    Google Scholar 

  • Guerre P, Eeckhoutte C, Burgat V et al (2000) The effects of T-2 toxin exposure on liver drug metabolizing enzymes in rabbit. Food Addit Contam 17:1019–1026

    CAS  PubMed  Google Scholar 

  • Hagler WM Jr, Towers NR, Mirocha CJ et al (2001) Zearalenone: mycotoxin or mycoestrogen? In: Summerell BA, Leslie JF, Backhouse D et al (eds) Fusarium. Paul E. Nelson memorial symposium. APS Press, St. Paul, pp 321–331

    Google Scholar 

  • Halasz A, Latsztity R, Abonyi T et al (2009) Decontamination of mycotoxin containing food and feed by biodegradation. Food Res Int 25:284–298

    CAS  Google Scholar 

  • Hamasaki T, Hatsuda Y (1977) Sterigmatocystin and related compounds. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Inc, Park Forest South, pp 597–607

    Google Scholar 

  • Harrison LR, Colvin BM, Greene JT et al (1990) Pulmonary oedema and hydrothorax in swine produced by Fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Investig 2:217–221

    CAS  Google Scholar 

  • Hart C (1999) Forged in St. Anthony’s fire: drugs for migraine. Mod Drug Discovery 2(2):20–21, 23–24, 28, 31

    Google Scholar 

  • Hayes MA, Wobeser GA (1983) Subacute toxic effects of dietary T-2 toxin in young mallard ducks. Can J Comp Med 47(2):180–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrickse RG (1985) Kwashiorkor: 50 years of myth and misery. Do aflatoxins play a role? Acta Leiden 53:11–30

    CAS  PubMed  Google Scholar 

  • Hermansen K, Frisvad JC, Emborg C et al (1984) Cyclopiazonic acid production by submerged cultures of Penicillium and Aspergillus strains. FEMS Microbiol Lett 21:253–261

    CAS  Google Scholar 

  • Hetherington AC, Raistrick H (1931) Studies on biochemistry of microorganisms. Part XIV. On the production and chemical constitution of a new yellow coloring matter, citrinin produced from glucose by Penicillium citrinum Thom. Philos Trans R Soc Lond Ser B 220:269–296

    Google Scholar 

  • Hocking AD, Banks JH (1991) Effects of phosphine fumigation on survival and growth of storage fungi in wheat. J Stored Prod Res 27:115–120. https://doi.org/10.1016/0022-474X(91)90021-4

    Article  Google Scholar 

  • Hofmann A (1972) Ergot-a rich source of pharmacologically active substances. In: Swain T (ed) Plants in the development of modern medicine. Harvard University Press, Cambridge, pp 236–260

    Google Scholar 

  • Holzapfel CW (1968) The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. Tetrahedron 24:2101–2119

    CAS  PubMed  Google Scholar 

  • Hopkins J (1993) The toxicological hazards of patulin. Food Chem Toxicol 31:455–456

    CAS  PubMed  Google Scholar 

  • Huff WE, Kubena LF, Harvey RB et al (1992) Efficacy of hydrated sodium calcium aluminosilicate to reduce the individual and combined toxicity of aflatoxin and ochratoxin A. Poult Sci 71:64–69

    CAS  PubMed  Google Scholar 

  • Humpf HU, Schmelz EM, Filmore FI et al (1998) Acylation of naturally occurring and synthetic 1- eoxysphinganines by ceramide synthase. J Biol Chem 273:19060–19064

    CAS  PubMed  Google Scholar 

  • Hundley BR (2001) Mycotoxins and the feed industry. In: Proceedings of the AFMA student symposium, University of Natal, Pietermaritzburg, South Africa, pp 1–9

    Google Scholar 

  • Hussein SH, Brasel MJ (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 67:101–134

    Google Scholar 

  • IARC (1993a) IARC monographs on evaluation of carcinogenic risks to humans. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Int Agency Res Cancer 56:489–521

    Google Scholar 

  • IARC (1993b) Aflatoxins: naturally occurring aflatoxins (Group 1), aflatoxins M1 (Group 2B). Int Agency Res Cancer 56:245

    Google Scholar 

  • IARC (1993c) Toxins derived from Fusarium moniliforme: Fumonisins B1, B2 and Fusarin C: monograph on the evaluation of carcinogenic risk to humans. Int Agency Res Cancer 56:445–466

    Google Scholar 

  • IARC (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Monograph Vol. 82/IARC working group on the evaluation of carcinogenic risks to humans, February 12–19, 2002, Lyon, France, p 590

    Google Scholar 

  • ICMSF (1996) Toxigenic fungi: Aspergillus in ICMSF, microorganisms in foods. Characteristics of food pathogens. Blackie Academic and Professional, London, pp 347–381

    Google Scholar 

  • Jackson LS, Hlywka JJ, Senthil KR et al (1996) Effects of time, temperature, and pH on the stability of fumonisin B1 in an aqueous model system. J Agric Food Chem 44:906–912

    CAS  Google Scholar 

  • JECFA (2000) Joint FAO/WHO expert committee on food additives, 53 Rd Report. Safety evaluation of certain food additives, WHO Food Additives Series No. 44

    Google Scholar 

  • JECFA (2002) Evaluation of certain mycotoxins in food, 56th report of the joint FAO/WHO expert committee on food additives, Technical Reports Series No. 906

    Google Scholar 

  • Jelinek CF, Pohland AE, Wood GE (1989) Worldwide occurrence of mycotoxins in foods and feeds an update. J Assoc Off Anal Chem 72:223–230

    CAS  PubMed  Google Scholar 

  • Josephy PD, Mannervik B (2006) Chemical mutagenesis. In: Josephy PD, Mannervik B (eds) Molecular toxicology, 2nd edn. Oxford University Press, Oxford, p 144

    Google Scholar 

  • Kadakal C, Nas S (2003) Effect of heat treatment and evaporation on patulin and some other properties of apple juice. J Agric Food Chem 83:987–990

    CAS  Google Scholar 

  • Karow (1997) Ergot in cereal grains– Cause, hazards and control, OSU Extension Service (nd) p 2

    Google Scholar 

  • Katta SK, Cagampang AE, Jackson LS et al (1997) Distribution of Fusarium molds and fumonisins in dry milled fractions. Cereal Chem 74:858–863

    CAS  Google Scholar 

  • Keller NP, Nesbitt C, Sarr B et al (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87:643–648

    CAS  PubMed  Google Scholar 

  • Kensler TW, Egner PA, Wang JB et al (2004) Chemoprevention of hepatocellular carcinoma in aflatoxin endemic areas. Gastroenterology 127(Suppl 1):S310–S318

    CAS  PubMed  Google Scholar 

  • Kew MC (2013) Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointestin Liver Dis 22(3):305–310

    PubMed  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus spp. Ponson and Looijen, Wageningen, pp 1–107

    Google Scholar 

  • Klich MA, Mullaney EJ, Daly CB et al (2000) Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamarii and A. ochraceoroseus. Appl Microbiol Biotechnol 53:605–609

    CAS  PubMed  Google Scholar 

  • Koiso Y, Li Y, Iwasaki S et al (1994) Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J Antibiot 47(7):765–773

    CAS  PubMed  Google Scholar 

  • Krishnamachari KA, Bhat RV, Nagarajan V et al (1975) Hepatitis due to aflatoxicosis. An outbreak in Western India. Lancet 1(7915):1061–1063

    CAS  PubMed  Google Scholar 

  • Krska R, Welzig E, Boudra H (2007) Analysis of Fusarium toxins in feed. Anim Feed Sci Technol 137:241–264

    CAS  Google Scholar 

  • Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 144:150–151

    Google Scholar 

  • Kuiper-Goodman T (2004) Risk assessment and risk management of mycotoxins in food. In: Magan N, Olsen M (eds) Mycotoxins in food: detection and control. CRC Press, Boca Raton, pp 1–31

    Google Scholar 

  • Kuiper-Goodman T, Scott PM, Watanabe H (1987) Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol 7(3):253–306

    CAS  PubMed  Google Scholar 

  • Kumar M, Dwivedi P, Sharma AK et al (2007) Ochratoxin A and citrinin nephrotoxicity in New Zealand white rabbits: and ultrastructural assessment. Mycopathologia 163:21–30

    CAS  PubMed  Google Scholar 

  • Kurata H (1990) Mycotoxins and mycotoxicoses: overview. In: Pohland AE, Dowell VR, Richard JL (eds) Microbial toxins in foods and feeds. Plenum Press, New York, pp 249–259

    Google Scholar 

  • Leggott NL, Shephard GS (2001) Patulin in South African commercial apple products. Food Control 12(2):73–76

    CAS  Google Scholar 

  • Li Y, Koiso Y, Kobayashi H et al (1995) Ustiloxins, new antimitotic cyclic peptides: interaction with porcine brain tubulin. Biochem Pharmacol 49(10):1367–1372

    CAS  PubMed  Google Scholar 

  • Li SY, Cao JL, Shi ZL et al (2008) Promotion of the articular cartilage proteoglycan degradation by T-2 toxin and selenium protective effect. J Zhejiang Univ Sci B 9(1):22–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lillerberg SL, Cabonce MA, Raju NR et al (1992) Alterations in the p53 tumour suppressor gene in rat liver tumours induced by aflatoxin B1. Prog Clin Biol Res 376:203–222

    Google Scholar 

  • Lipowska TG (1990) Changes in patulin content during apple wine production and must Sulfuring. Pr Inst Lab Badaw Przem Spozyw 41:7–19

    CAS  Google Scholar 

  • Liu B, Wu T, Yu F et al (2007) Induction of oxidative stress response by the mycotoxin patulin in mammalian cells. Toxicol Sci 95:340–347

    CAS  PubMed  Google Scholar 

  • Lomax LG, Cole RJ, Dorner JW (1984) The toxicity of cyclopiazonic acid in weaned pigs. Vet Pathol 21:418–424

    CAS  PubMed  Google Scholar 

  • Lorenz K (1979) Ergot on cereal grains. Crit Rev Food Sci Nutr 11:311–354

    CAS  Google Scholar 

  • Loveless AR (1971) Ergot alkaloids. Trans Br Mycol Soc 52:381

    Google Scholar 

  • Luduena RF, Roach MC, Prasad V et al (1994) Interaction of ustiloxin A with bovine brain tubulin. Biochem Pharmacol 47(9):1593–1599

    CAS  PubMed  Google Scholar 

  • Luft P, Oostingh GJ, Gruijthuijsen Y et al (2008) Patulin influences the expression of Th1/Th2 cytokines by activated peripheral blood mononuclear cells and T cells through depletion of intracellular glutathione. Environ Toxicol 23:84–95

    CAS  PubMed  Google Scholar 

  • Magan N, Aldred D (2007) Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 119(1–2):131–139

    CAS  PubMed  Google Scholar 

  • Magan N, Lacey J (1984) Effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans Br Mycol Soc 82:83–93

    Google Scholar 

  • Mahfoud R, Maresca M, Garmy N et al (2002) The mycotoxin patulin alters the barrier function of the intestinal epithelium, mechanism of action of the toxin and protective effects of glutathione. Toxicol Appl Pharmacol 181:209–218

    CAS  PubMed  Google Scholar 

  • Mallmann CA, Santurio JM, Almeida CA et al (2001) Fumonisin B1 levels in cereals and feeds from Southern Brazil. Arq Inst Biol 68:41–45

    Google Scholar 

  • Mantle PG, Faucer-Marquis V, Manderville RA et al (2010) Structures of covalent adducts between DNA and ochratoxin A: a new factor in debate about genotoxicity and human risk assessment. Chem Res Toxicol 23:89–98

    CAS  PubMed  Google Scholar 

  • Marasas WFO, Wehner FC, Van Rensburg SJ et al (1980) Mycoflora of corn produced in human esophageal cancer areas in Transkei, Southern Africa. Phytopathology 71:792–796

    Google Scholar 

  • Marasas WFO, Thiel PG, Rabie CJ et al (1986) Moniliformin production in Fusarium section Liseola. Mycologia 78(2):242–247

    CAS  Google Scholar 

  • Marasas WFO, Riley RT, Hendricks K et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

    CAS  PubMed  Google Scholar 

  • Marín S, Ramos AJ, Cano-Sancho G et al (2012) Reduction of mycotoxins and toxigenic fungi in the Mediterranean basin maize chain. Phytopathol Mediterr 51(1):93–118

    Google Scholar 

  • Marquardt RR, Frohlich AA (1992) A review of recent advances in understanding ochratoxicosis. J Anim Sci 70:3968–3988

    CAS  PubMed  Google Scholar 

  • Marques OJ, Filho PSV, Dalpasquale VA et al (2009) Fungal incidence and mycotoxins in grains of commercial corn hybrids as a function of crop moisture content. Acta Sci Agron 31(4):667–675. https://doi.org/10.4025/actasciagron.v31i4.5690

    Article  CAS  Google Scholar 

  • Matossian MK (1981) Mold poisoning: an unrecognized English health problem, 1150–1800. Med Hist 25:73–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie KS, Sarr AB, Mayura K et al (1997) Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem Toxicol 35(8):807–820

    CAS  PubMed  Google Scholar 

  • Megalla SE, Hafez AH (1982) Detoxification of aflatoxin B1 by acidogenous yoghurt. Mycopathologia 77:89–91

    CAS  PubMed  Google Scholar 

  • Meisner H, Meisner P (1981) Ochratoxin A, an inhibitor of renal phosphoenolpyruvate carboxylase. Arch Biochem Biophys 208:146–151

    CAS  PubMed  Google Scholar 

  • Mendez-Albores A, de Jesus-Flores F, Castaneda-Roldan E et al (2004) The effect of toasting and boiling on the fats of B-aflatoxins during pinole preparation. J Food Eng 65:585–589

    Google Scholar 

  • Merrill AH Jr, Schmelz EM, Dillehay DL et al (1997) Sphingolipids: the enigmatic lipid class: biochemistry, physiology and pathophysiology. Toxicol Appl Pharmacol 142:208–225

    CAS  PubMed  Google Scholar 

  • Merrill AH Jr, Sullards MC, Wang E et al (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl. 2):283–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill AE, Liotta DC, Riley RT (1996) Fumonisins: naturally occurring inhibitors of ceramide synthesis. Trends Cell Biol 6:218–223

    CAS  PubMed  Google Scholar 

  • Michielsen PP, Francque SM, van Dongen JL (2005) Viral hepatitis and hepatocellular carcinoma. World J Surg Oncol 3:27–45

    PubMed  PubMed Central  Google Scholar 

  • Moncoq K, Trieber CA, Young HS (2007) The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 282:9748–9757

    CAS  PubMed  Google Scholar 

  • Moss MO (1996) Mycotoxins: centenary review. Mycotoxin Res 100:513–523

    CAS  Google Scholar 

  • Multon JL (1988) Preservation and storage of grains, seeds and their by-products: cereals, oilseeds, pulses, and animal feed. Lavoisier Publishing, Inc, New York, p 1095

    Google Scholar 

  • Munkvold GP (2003) Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol 41:99–116

    CAS  PubMed  Google Scholar 

  • Murphy PA, Hendrich S, Landgren C et al (2006) Food mycotoxins: an update. J Food Sci 71(5):51–65

    Google Scholar 

  • Nakagawa J, Rosolem CA (2011) O amendoim: tecnologia de produção. FEPAF, Botucatu, p 325

    Google Scholar 

  • Nakamura K, Izumiyama N, Ohtsubo K et al (1994) “Lupinosis”-like lesions in mice caused by ustiloxin, produced by Ustilaginoidea virens: a morphological study. Nat Toxins 2(1):8–22

    Google Scholar 

  • Narasimha Rao K, Vijaypal Reddy B, Girisham S et al (2010) Factors influencing fumonisins (B1) production by Fusarium moniliforme. Indian J Sci Technol 3:213–215

    CAS  Google Scholar 

  • Neville JD (2012) Fungal ecology. Springer, Dordrecht, p 549

    Google Scholar 

  • Ngindu A, Johnson BK, Kenya PR (1982) Outbreak of acute hepatitis by aflatoxin poisoning in Kenya. Lancet 319:1346–1348

    Google Scholar 

  • Niderkon V, Morgavi DP, Aboab B et al (2009) Cell wall component and mycotoxin moieties involved in the binding of fumonsin B1 and B2 by lactic acid bacteria. J Appl Microbiol 106:977–985

    Google Scholar 

  • Nirenberg H, Schmitz-Elsherif H, Kling CI (1994) Occurrence of Fusaria and some “blackening moulds” on durum wheat in Germany: incidence of Fusarium species. Pflanzenk und Pflanzen 101:449–459

    Google Scholar 

  • Nishie K, Cole RJ, Dorner JW (1987) Toxic effects of cyclopiazonic acid in the early phase of pregnancy in mice. Res Commun Chem Pathol Pharmacol 55:303–315

    CAS  PubMed  Google Scholar 

  • Njapau H, Muzungaile ME, Changa RC (1998) The effect of village processing techniques on the content of aflatoxins in corn and peanuts in Zambia. J Sci Food Agric 76:450–456

    CAS  Google Scholar 

  • Njobeh PB, Dutton MF, Koch SH et al (2009) Contamination with storage fungi of human food from Cameroon. Int J Food Microbiol 135:193–198

    PubMed  Google Scholar 

  • Njobeh PB, Dutton MF, Makun AH (2010) Mycotoxins and human health: significance, prevention and control. In: Mishra AK, Tiwari A, Mishra SB et al (eds) Smart biomolecules in medicine. Research Signpost/Transworld Research Network/VBRI Press, pp 132–177

    Google Scholar 

  • Nóbrega FVA, Suassuna ND (2004) Análise sanitária de sementes de amendoim (Arachis hypogaea L.) armazenadas em algumas áreas do Estado da Paraíba. Revista de Biologia e Ciências da Terra 4:1–9

    Google Scholar 

  • Northolt MD, Van Egmond HP, Paulsch WE (1979) Ochratoxin A production by some fungal species in relation to water activity and temperature. J Food Prot 42:485–490

    CAS  PubMed  Google Scholar 

  • O’Brien E, Dietrich DR (2005) Ochratoxin A: the continuing enigma. Crit Rev Toxicol 35:33–60

    PubMed  Google Scholar 

  • Ou SH (1985) Rices diseases. CAB International Mycological Institute, Kew

    Google Scholar 

  • Papp E, H-Otta K, Záray G et al (2002) Liquid chromatographic determination of aflatoxins. Microchem J 73(1–2):39–46

    CAS  Google Scholar 

  • Park JW, Choi SY, Hwang HJ et al (2005) Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int J Food Microbiol 103:305–314

    CAS  PubMed  Google Scholar 

  • Pestka JJ (2010) Deoxynivalenol-induced pro inflammatory gene expression: mechanisms and pathological sequelae. Toxins 2(6):1300–1317. https://doi.org/10.3390/toxins2061300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson A, Schlegel V, Hummel B et al (1956) Influence of oxygen and carbon dioxide concentrations on mold growth and grain deterioration. Cereal Chem 33:53–66

    CAS  Google Scholar 

  • Pfohl-Leszkowicz A (2000) Risques mycotoxicologiques pour la sante des animaux et de I’homme, Cah. In mycotoxins in feeds and their fate in animals: a review. Anim Res 51:81–99

    Google Scholar 

  • Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51:61–99

    CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowicz A, Petkova-Bocharova T, Chernozemsky IN et al (2002) Balkan endemic nephropathy and associated urinary tract tumours: a review on aetiological causes and the potential role of mycotoxins. Food Addit Contam 19:282–302

    CAS  PubMed  Google Scholar 

  • Picot A, Barreau C, Pinson-Gadais L et al (2010) Factors of the Fusarium verticillioides-maize environment modulating fumonisin production. Crit Rev Microbiol 36(3):221–231

    PubMed  Google Scholar 

  • Pirrung MC, Nauhaus SK, Singh B (1996) Cofactor-directed, time-dependent inhibition of thiamine enzymes by the fungal toxin moniliformin. J Org Chem 61:2592–2593

    CAS  PubMed  Google Scholar 

  • Pitt JI (1965) Microbiological problems in prune preservation. M Sc thesis, University of New South Wales, Kensington

    Google Scholar 

  • Pitt JI (1975) Xerophilic fungi and the spoilage of foods of plant origin. In: Duckworth RD (ed) Water relations of foods. Academic, London, pp 273–307

    Google Scholar 

  • Pitt JI, Hocking AD (1997) Fungi and mycotoxins in foods. In: Orchard AE (ed) Fungi of Australia, Introduction fungi in the environment, vol 1B. Australian Biological Resources Study, Canberra, pp 315–342

    Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, Boston, p 519

    Google Scholar 

  • Powell RG, Plattner RD (1994) Fumonisins. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon, Tarrytown, pp 247–278

    Google Scholar 

  • Purchase IF (1971) The acute toxicity of the mycotoxin cyclopiazonic acid to rats. Toxicol Appl Pharmacol 18:114–123

    CAS  PubMed  Google Scholar 

  • Quillien JF (2002) Mycotoxins. Institut National de la Recherche Agronomique. Available from: http://www.nutrition.org.uk/upload/FF4%20mycotoxins.pdf

  • Rabie CJ, Marasas WFO, Thiel PG et al (1982) Moniliformin production and toxicity of different Fusarium species from southern Africa. Appl Environ Microbiol 43:517–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raj HG, Prasanna HR, Mage P et al (1986) Effect of purified rat and hamster hepatic glutathione S-transferases on the microsome mediated binding of aflatoxin B1 to DNA. Cancer Lett 33:1–9

    CAS  PubMed  Google Scholar 

  • Rehman A, Sultana K, Minhas N et al (2011) Study of most prevalent wheat seed-borne mycoflora and its effect on seed nutritional value. Afr J Microbiol Res 5(25):4328–4337

    Google Scholar 

  • Reiss J (1979) Prevention of the formation of mycotoxins in whole wheat bread by citric acid and lactic acid. Experientia 32:168–169

    Google Scholar 

  • Resanovic RD, Vucicevic MZ, Nedeljkovic JB et al (2013) Mycotoxins and their effect on human health. https://doi.org/10.2298/ZMSPN1324315R

  • Richard JL (2007) Some major mycotoxins and their mycotoxicoses: an overview. Int J Food Microbiol 119:3–10

    CAS  PubMed  Google Scholar 

  • Richard JL (2008) Discovery of aflatoxins and significant historical features. Toxin Rev 27:171–201

    Google Scholar 

  • Richardson MJ (1979) An annotated list of seed-borne diseases, 3rd edn. Commonwealth Agricultural Bureaux, Kew

    Google Scholar 

  • Richardson MJ (1981) Supplements to an annotated list of seed-borne diseases. Commonwealth Agricultural Bureaux, London

    Google Scholar 

  • Riley RT, Showker JL (1991) The mechanism of patulin’s cytotoxicity and the antioxidant activity of indol tetramic acids. Toxicol Appl Pharmacol 109:108–110

    CAS  PubMed  Google Scholar 

  • Riley RT, Goeger DE, Yoo H et al (1992) Comparison of three tetramic acids and their ability to alter membrane function in cultured skeletal muscle cells and sarcoplasmic reticulum vesicles. Toxicol Appl Pharmacol 114:261–267

    CAS  PubMed  Google Scholar 

  • Robert RG, Raymond ST (1994) Chlorine dioxide for reduction of postharvest pathogen inoculum during handling of tree fruits. Appl Environ Microbiol 60:2864–2868

    Google Scholar 

  • Rotter BA, Prelusky DB, Pestka JJ (1996) Toxicology of deoxynivalenol (vomotin). J Toxicol Environ Health 48:1–34

    CAS  PubMed  Google Scholar 

  • Saenz de Rodriguez CA (1984) Environmental hormone contamination in Puerto Rico. N Engl J Med 310:1741–1742

    CAS  PubMed  Google Scholar 

  • Saenz de Rodriguez CA, Bongiovanni AM, Conde de Borrego L (1985) An epidemic of precocious development in Puerto Rican children. J Pediatr 107:393–396

    CAS  PubMed  Google Scholar 

  • Sage L, Garon D, Seigle-Murandi F (2004) Fungal micro-flora and ochratoxin-A risk in French vineyards. J Agric Food Chem 52:5764–5768

    CAS  PubMed  Google Scholar 

  • Sansing GA, Lillehoj EB, Detroy RW et al (1976) Synergistic toxic effect of citrinin, ochratoxin A and penicillic acid in mice. Toxicon 14(3):213–220

    CAS  PubMed  Google Scholar 

  • Santos F, Medina PF, Lourenção AL et al (2013) Qualidade de sementes de amendoim armazenadas no estado de São Paulo. Bragantia 72:310–317. https://doi.org/10.1590/brag.2013.029

    Article  Google Scholar 

  • Santos F, Medina PF, Lourenção AL et al (2016) Damage caused by fungi and insects to stored peanut seeds before processing. Bragantia, Campinas. https://doi.org/10.1590/1678-4499.182

  • Scharf HD, Frauenrath H, Pinske W (1978) Synthesis and properties of semisquaric acid and its alkaline-salts (moniliformin). Chem Ber-Recl 111:168–182

    CAS  Google Scholar 

  • Schatzmayr G, Streit E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin J 6(3):213–222

    CAS  Google Scholar 

  • Schwinn F (1994) Seed treatment– a panacea for plant protection? In: Martin TJ (ed) Seed treatment: progress and prospects, BCPC monograph no. 57. British Crop Protection Council, Farnham, pp 3–14

    Google Scholar 

  • Scott WJ (1957) Water relations of food spoilage microorganisms. Adv Food Res 7:83–127

    CAS  Google Scholar 

  • Scott PM (1991) Possibilities of reduction or elimination of mycotoxins present in cereal grains. In: Chelkowski J (ed) Cereal grain mycotoxins, fungi and quality in drying and storage. Elsevier, Amsterdam, pp 529–572

    Google Scholar 

  • Scott PM, Lawrence GA (1996) Determination of hydrolysed fumonisin B1 in alkali processed corn foods. Food Addit Contam 13(7):823–832

    CAS  PubMed  Google Scholar 

  • Scott PM, Abbas HK, Mirocha CJ et al (1987) Formation of moniliformin by Fusarium sporotrichioides and Fusarium culmorum. Appl Environ Microbiol 53(1):196–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seefelder W, Gossmann M, Humpf HU (2002) Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 50:2778–2781

    CAS  PubMed  Google Scholar 

  • Seidler NW, Jona I, Vegh M et al (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+ATPase of sarcoplasmic reticulum. J Biol Chem 264(30):17816–17823

    CAS  PubMed  Google Scholar 

  • Seo JA, Proctor RH, Plattner MR (2001) Characterization of four clustered and co regulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol 34:155–165

    CAS  PubMed  Google Scholar 

  • Sharma RP (1993) Immunotoxicity of mycotoxins. J Dairy Sci 76:892–897

    CAS  PubMed  Google Scholar 

  • Sharma RC, Lal S (1998) Maize diseases and their management. Indian Farm 48:92–96

    Google Scholar 

  • Sharma RP, Zeeman MG (1991) Immunological alterations by environmental chemicals: relevance of studying mechanisms vs. effects. J Immunopharmacol 2:285–307

    Google Scholar 

  • Sharma D, Asrani RK, Ledoux DR et al (2008) Individual and combined effects of fumonisin b1 and moniliformin on clinicopathological and cell-mediated immune response in Japanese quail. Poult Sci 87(6):1039–1051

    CAS  PubMed  Google Scholar 

  • Shephard GS, Marasas WFO, Burger HM et al (2007) Exposure assessment for fumonisins in the former Transkei region of South Africa. Food Addit Contam 24:621–629

    CAS  PubMed  Google Scholar 

  • Shimada T, Guengerich FP (1989) Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 86(2):462–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sibanda L, Marovatsanga LT, Pestka JJ (1997) Review of mycotoxin work in sub-Saharan Africa. Food Control 8(1):21–29

    Google Scholar 

  • Simon P, Godin M, Fillastre JP (1996) Ochratoxin A: a new environmental factor which is toxic for the kidney? Nephrol Dial Transplant 11:2389–2391

    CAS  PubMed  Google Scholar 

  • Smith JE (1994) Aspergillus. Plenum press, New York, p 273

    Google Scholar 

  • Smith JE, Moss MO (1985) Mycotoxins: formation, analysis and significance. Wiley, Chichester

    Google Scholar 

  • Snow D (1949) Germination of mould spores at controlled humidities. Ann Appl Biol 36:1–13

    CAS  PubMed  Google Scholar 

  • Sommer NF, Fortlage RJ (1969) Ionizing radiation for control of postharvest diseases of fruits and vegetables. Adv Food Res 15:147

    Google Scholar 

  • Speijers GJA (2004) Patulin. In: Magan N, Olsen M (eds) Mycotoxins in foods: detection and control. CRC Press, Boca Raton, pp 339–352

    Google Scholar 

  • Speijers GJA, Franken MAM, Van Leeuwen FXR (1988) Subacute toxicity study of patulin in the rat, effects on the kidney and the gastro-intestinal tract. Food Chem Toxicol 26:23–30

    CAS  PubMed  Google Scholar 

  • Springer JP, Clardy J, Cole RJ et al (1974) Structure and synthesis of moniliformin, a novel cyclobutane microbial toxin. J Am Chem Soc 96:2267–2268

    CAS  PubMed  Google Scholar 

  • Stepien Ł (2014) The use of Fusarium secondary metabolite biosynthetic genes in chemotypic and phylogenetic studies. Crit Rev Microbiol 40(2):176–185

    CAS  PubMed  Google Scholar 

  • Steyn GJ (1998) A farming systems study of two rural areas in the Peddies District of Ciskei. D. Sc. dissertation, University of Fort Hare, Alice

    Google Scholar 

  • Stockmann-Juvala H, Alenius H, Savolainen K (2008) Effects of fumonisin B(1) on the expression of cytokines and chemokines in human dendritic cells. Food Chem Toxicol 46(5):1444–1451

    CAS  PubMed  Google Scholar 

  • Stopper H, Schmitt E, Kobras K (2005) Genotoxicity of phytoestrogens. Mutat Res 574(1–2):139–155

    CAS  PubMed  Google Scholar 

  • Streit E, Schwab C, Sulyok M et al (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 5:504–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suproniene S, Mankeviciene A, Kadziene G et al (2011) The effect of different tillage fertilization practices on the mycoflora of wheat grains. Agric Food Sci 20:315–326

    Google Scholar 

  • Sweeney MJ, Dobson ADW (1998) Mycotoxin production by Aspergillus, Fusarium and Penicillium spp. Int J Food Microbiol 43:141–158

    CAS  PubMed  Google Scholar 

  • Talaro KP (2005) Foundations in microbiology, 5th edn. McGraw-Hill, New York, p 407

    Google Scholar 

  • Taylor MJ, Pang VF, Beasley VR (1989) The immunotoxicity of trichothecene mycotoxins. In: Beasley VR (ed) Trichotecene mycotoxicosis: pathophysiological effects, vol II. CRC Press, Boca Raton, pp 1–37

    Google Scholar 

  • Teitell L (1958) Effects of relative humidity on viability of conidia of aspergilli. Am J Bot 45:748–753

    Google Scholar 

  • Thiel PG (1978) A molecular mechanism for the toxic action of moniliformin, a mycotoxin produced by Fusarium moniliforme. Biochem Pharmacol 27:483–489

    CAS  PubMed  Google Scholar 

  • Thrasher JD, Crawley S (2009) The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health 25(9–10):583–615

    CAS  PubMed  Google Scholar 

  • Tiemann U, Dänicke S (2007) In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: a review. Food Addit Contam 24:306–314

    CAS  PubMed  Google Scholar 

  • Tomaszewski J, Miturski R, Semczuk A et al (1998) Tissue zearalenone concentration in normal, hyperplastic and neoplastic human endometrium. Ginekol Pol 69:363–366

    CAS  PubMed  Google Scholar 

  • Torres M, Balcells M, Sala N et al (1998) Bactericidal and fungicidal activity of Aspergillus ochraceus metabolites and some derivatives. Pestic Sci 53:9–14

    CAS  Google Scholar 

  • Torres P, Guzman-Ortiz M, Ramirez-Wong B (2001) Revising the role of pH and thermal treatments in aflatoxin content reduction during tortilla and deep frying processes. J Agric Food Chem 49:2825–2829

    CAS  PubMed  Google Scholar 

  • Towers NR, Sprosen JM (1993) Zearalenone-induced infertility in sheep and cattle in New Zealand. N Z Vet J 41:223–224

    Google Scholar 

  • Tribst AA, Sant’Ana Ade S, De Massaguer PR (2009) Review: microbiological quality and safety of fruit juices- past, present and future perspectives. Crit Rev Microbiol 35(4):310–339

    CAS  PubMed  Google Scholar 

  • Tuite J, Forester GH (1979) Control of storage diseases of grains. Annu Rev Phytopathol 17:433–436

    Google Scholar 

  • Tuite J, Koh-Knox C, Stroshine R et al (1985) Effect of physical damage to corn kernels on the development of Penicillium spp. and Aspergillus glaucus in storage. Phytopathology 75:1137

    Google Scholar 

  • Turner PC, Moore SE, Hall AJ et al (2003) Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ Health Perspect 111:217–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhaya SD, Park MA, Ha JK (2010) Mycotoxins and their biotransformation in the rumen: a review. Asian-Australas J Anim Sci 23(9):1250–1260

    CAS  Google Scholar 

  • Uraih N, Offonre S (1981) Inhibition of aflatoxin production in groundnut with benzoic acid derivatives and possible toxic effect of their aromatic residues. Microbios 31:93–102

    CAS  PubMed  Google Scholar 

  • USDA (1996) Index of plant disease in the United States, Agricultural hand book, no 165, p 531

    Google Scholar 

  • van der Merwe KJ, Steyn PS, Fourie L et al (1965a) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus, Wilh. Nature 205:1112–1113

    PubMed  Google Scholar 

  • van der Merwe KJ, Steyn PS, Fourie L (1965b) Mycotoxins. Part II. The constitution of ochratoxin A, B, and C, metabolites of Aspergillus ochraceus, Wilh. J Chem Soc Perkin 1:7083–7088

    Google Scholar 

  • Van Egmond HP, Speijers GJA (1994) Survey of data on the incidence and levels of ochratoxin A in food and animal feed worldwide. Nat Toxins 3:125–143

    CAS  Google Scholar 

  • Van Rensburg SJ (1977) Role of epidemiology in the elucidation of mycotoxin health risks. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox, Park Forest South, pp 699–711

    Google Scholar 

  • Vandergraft EE, Hesseltine CW, Shotwell OL (1975) Grain preservatives. Effect on aflatoxin and ochratoxin production. Cereal Chem 52:79–84

    Google Scholar 

  • Vargas J, Due M, Frisvad JC et al (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    Google Scholar 

  • Veršilovskis A, Bartkevičs V (2012) Stability of sterigmatocystin during the bread making process and its occurrence in bread from the Latvian market. Mycotoxin Res 28(2):123–129

    PubMed  Google Scholar 

  • Versilovskis A, De Saeger S (2010) Sterigmatocystin: occurrence in foodstuffs and analytical methods- an overview. Mol Nutr Food Res 54(1):136–147

    CAS  PubMed  Google Scholar 

  • Visconti A (2001) Problems associated with Fusarium mycotoxins in cereals. Bull Inst Compr Agric Sci Kinki Univ 9:39–55

    CAS  Google Scholar 

  • Wang E, Norred WP, Bacon CW et al (1991) Inhibition of sphingolipids biosynthesis by fumonisin. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266(22):14486–14490

    CAS  PubMed  Google Scholar 

  • Watson SA, Mirocha CJ, Hayes AW (1984) Analysis for tricothecenes in samples from Southeast Asia associated with “yellow rain”. Fundam Appl Toxicol 4(5):700–717

    CAS  PubMed  Google Scholar 

  • Wheeler JL, Harrison MA, Koehler PE (1987) Presence and stability of patulin in pasteurized apple cider. J Food Sci 52:479–480

    CAS  Google Scholar 

  • Wheeler KA, Hurdman BF, Pitt JI (1991) Influence of pH on the growth of some toxigenic spp. of Aspergillus, Penicillium and Fusarium. Int J Food Microbiol 12:141–150

    CAS  PubMed  Google Scholar 

  • Whitlow WM, Hagler Jr WM, Diaz DE (2010) Mycotoxins in feeds. Quality feed mycotoxins. September 15, Feedstuffs 83

    Google Scholar 

  • WHO (1990) Selected mycotoxins: ochratoxins, trichothecenes, and ergots, Environmental health criteria 105. WHO, Geneva

    Google Scholar 

  • Wichmann G, Herbarth O, Lehmann I (2002) The mycotoxins citrinin, gliotoxin, and patulin affect interferon-gamma rather than interleukin-4 production in human blood cells. Environ Toxicol 17(3):211–218

    CAS  PubMed  Google Scholar 

  • Widstrom NW (1992) Aflatoxin in developing maize: interactions among involved biota and pertinent econiche factors. In: Bhatnagar D, Lillehoj EB, Arora DK (eds) Handbook of applied mycology: mycotoxins in ecological systems. Marcel Dekker, Inc., New York, pp 23–58

    Google Scholar 

  • Wiese MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul, p 112

    Google Scholar 

  • Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31(1):71–82. https://doi.org/10.1093/carcin/bgp264

    Article  CAS  PubMed  Google Scholar 

  • Wild CP, Hall AJ (1996) Epidemiology of mycotoxin related disease. In: Howard DH, Miller JD (eds) Human and animal relationships, the Mycota (a comprehensive treatise on fungi as experimental systems for basic and applied research), vol 6. Springer, Berlin/Heidelberg, pp 213–227

    Google Scholar 

  • Wolf CE, Bullerman LB (1998) Heat and pH alter the concentration of deoxynivalenol in an aqueous environment. J Food Prot 61:365–367

    CAS  PubMed  Google Scholar 

  • Wood GM (1982) Effect of processing on mycotoxins in maize. Chem Ind 24:972–974

    Google Scholar 

  • Wouters MFA, Speijers GJA (1996) Toxicological evaluations of certain food additives and contaminants: patulin. WHO Food Addit Ser 35:377–402

    Google Scholar 

  • Xu BJ, Jia XQ, Gu LJ et al (2006) Review on the qualitative and quantitative analysis of the mycotoxin citrinin. Food Control 17(4):271–285

    CAS  Google Scholar 

  • Yamanaka T (2003) The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia 95(4):584–589. https://doi.org/10.2307/3761934

    Article  PubMed  Google Scholar 

  • Yiannikouris A, Jouany JP (2002) Mycotoxins in feeds and their fate in animals: a review. Anim Res 51:81–99

    CAS  Google Scholar 

  • Yoo HS, Norred WP, Showker J et al (1996) Elevated sphingoid bases and complex sphingolipid depletion as contributing factors in fumonisin-induced cytotoxicity. Toxicol Appl Pharmacol 138(2):211–218

    CAS  PubMed  Google Scholar 

  • Yoshizawa T, Morooka N (1973) Deoxynivalenol and its nonacetate: new mycotoxins from Fusarium roseum and mouldy barley. Agric Biol Chem 37(12):2933–2934

    CAS  Google Scholar 

  • Yousef AE, Marth EH (1984) Growth and synthesis of aflatoxin by Aspergillus parasiticus in the presence of sorbic acid. J Food Prot 44(10):736–741

    Google Scholar 

  • Zafar M, Jamal A, Tahira R et al (2014) Incidence of seed-borne mycoflora in wheat and rice germplasm. Int J Agric Innov Res 2(5):720–722

    Google Scholar 

  • Zhai HC, Zhang SB, Huang SX et al (2015) Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection. Food Addit Contam: Part A 32(4):596–603. https://doi.org/10.1080/19440049.2014.968221

    Article  CAS  Google Scholar 

  • Zhao XJ (2002) Research progress moniliformin. Prog Vet Med 23(4):19–22

    Google Scholar 

  • Zinedine A, Soriano JM, Moltó JC et al (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Sinha, A., Kumar, R., Singh, V., Hooda, K.S., Nath, K. (2020). Storage Fungi and Mycotoxins. In: Kumar, R., Gupta, A. (eds) Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9046-4_29

Download citation

Publish with us

Policies and ethics