Skip to main content

Importance and Utilization of Plant-Beneficial Rhizobacteria in Agriculture

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Due to the use of a large amount of chemical fertilizers, continuous loss of soil fertility puts pressure on farmers toward more crop production in a sustainable manner. This problem creates a big challenge for farmers to fulfill the demand for the next generation. If an adequate amount of fertilizers is not supplied to crops, it raises major issue related to global food production and food security. Therefore, it requires adapting an eco-friendly, sustainable, and cost-effective approach for agricultural practices without arising environmental issues. Several natural rhizobacteria inhabiting the rhizospheric soil exist, which are used for plant growth promotion. They have tremendous capacity to provide directly or indirectly nutrient availability to the plants, stimulate plant hormones, and secrete certain compounds that help in the association of several other beneficial microbes with plant roots. In addition to restoring soil fertility, they have the capability to protect plants against soil-borne pathogens, thereby promoting plant growth. Further, application of plant growth-promoting rhizobacteria reduces the utilization of chemical fertilizers, pesticides, and other artificial growth regulators that cause severe health and environmental issues, soil infertility, water pollution, and biodiversity losses. In this context, sustainable use of rhizobacteria has been suggested to be an eco-friendly and cost-effective approach which increases crop yields and directly or indirectly protects plant from soil-borne pathogens for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

1-Aminocyclopropane-1 carboxylic acid

BNF:

Biological nitrogen fixation

ISR:

Induced systemic resistance

PBR:

Plant-beneficial rhizobacteria

PGR:

Plant growth regulators

WHC:

Water retention capacity

References

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Armada E, Roldan A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549

    Google Scholar 

  • Baghaeeravari S, Heidarzadeh N (2014) Isolation and characterization of rhizosphere auxin producing bacilli and evaluation of their potency on wheat growth improvement. Arch Agron Soil Sci 60:895–905

    Article  CAS  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Barriuso J, Solano BR (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). J Plant Nutr 5:1–17

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocycl opropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Belanger RR, Paulitz TC (1996) Induction of differential host responses by Pseudomonas yuorescens in Ri T-DNA transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology 86:114–178

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66

    Article  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  CAS  PubMed  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chen Z, Ma S, Lio L (2008) Studies on phosphorus solubilizing activities of a strain of phosphor-bacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    Article  CAS  PubMed  Google Scholar 

  • Choudhary M, Patel BA, Meena VS, Yadav RP, Ghasal PC (2017) Seed bio-priming of green gram with Rhizobium and levels of nitrogen and sulphur fertilization under sustainable agriculture. Legume Res LR-3837:1–6

    Google Scholar 

  • Choudhary M, Panday SC, Meena VS, Singh S, Yadav RP, Mahanta D, Mondal T, Mishra PK, Bisht JK, Pattanayak A (2018) Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agric Ecosyst Environ 257:38–46

    Article  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botanique 87:455–462

    Article  CAS  Google Scholar 

  • Das AJ, Kumar M, Kumar R (2013) Plant growth promoting rhizobacteria (pgpr): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric For Sci 4:21–23

    Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogenfixing actinorhizal symbioses, Nitrogen fixation: origins, applications, and research progress, vol 6. Springer, Dordrecht, pp 199–234

    Chapter  Google Scholar 

  • de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    Article  CAS  PubMed  Google Scholar 

  • Etesami HA, Alikhani A, Akbari N (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health-promoting bacteria. Springer, Berlin/Heidelberg, pp 21–42

    Google Scholar 

  • Flores-Felix JD, Menendez E, Rivera LP (2013) Use of rhizobium leguminosarum as a otential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica Article ID 963401. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (pgpr): current and future prospects for the development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    CAS  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Exopolysaccharidesproducing rhizobia ameliorate drought stress in wheat. Int J Agric Biol 16:3–13

    CAS  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Dev 5:0108–0119

    Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    Google Scholar 

  • Kapoor R, Soni R, Kaur M (2016) Gibberellins production by fluorescent ‘Pseudomonas’ isolated from Rhizospheric soil of ‘Malus’ and ‘Pyrus’. Int J Agric Environ Biotechnol 9:193–199

    Article  Google Scholar 

  • Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol 5:17–22

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Kang SM (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and acc deaminase fromendophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  CAS  Google Scholar 

  • Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23:4358–4369

    Article  CAS  Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:2

    Article  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry, and possible role in the biocontrol of Plantpathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin producing, plant growthpromoting rhizobacteria that confer resistance to drought stress in Platycladusorientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth- promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23

    Google Scholar 

  • Mitra D, Sharma K, Uniyal N, Chauhan A, Sarkar P (2016) Study on plant hormone (indole-3-acetic acid) producing level and other plant growth promotion ability (pgpa) by Asparagus racemosus rhizobacteria. J Chem Pharm Res 8:995–1002

    CAS  Google Scholar 

  • Mohapatra B, Verma DK, Sen A, Panda BB, Asthie B (2013) Biofertilizers- a gateway of sustainable agriculture. Popular Kheti 1:97–106

    Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42(3):279–283

    Article  CAS  PubMed  Google Scholar 

  • Noumavo PA, Agbodjato NA, Moussa FB, Adjanohoun A, Moussa LB (2016) Plant growth promoting rhizobacteria: beneficial effects for healthy and sustainable agriculture. Afr J Biotechnol 15:1452–1463

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 257–270. https://doi.org/10.1007/978-81-322-2647-5_15

    Chapter  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pereira SIA, Castro PL (2014) Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P deficient soils. Ecol Eng 73:526–535

    Article  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2013) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 10:1007

    Google Scholar 

  • Prathap M, Ranjitha Kumari BD (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microb 6:266. https://doi.org/10.4172/2157-7471.1000266

    Article  CAS  Google Scholar 

  • Qi J, Aiuchi D, Tani M, Asano S, Koike M (2016) Potential of entomopathogenic Bacillus thuringiensis as plant growth promoting rhizobacteria and biological control agents for tomato Fusarium wilt. Int J Environ Agric Res 2(6):55–63

    Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. https://doi.org/10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. https://doi.org/10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sahgal M, Johri BN (2003) The changing face of rhizobial systematics. Curr Sci 84:43–48

    Google Scholar 

  • Sang-Mo K, Radhakrishnan R, Khan AL, Min-Ji K, Jae-Man P, Bo-Ra K, Dong-Hyun S, In-Jung L (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 10:1–25

    Google Scholar 

  • Sharma YT, Rai N (2015) Isolation of plant hormone (indole-3-acetic acid) producing rhizobacteria and study on their effects on tomato (Lycopersicum esculentum) seedling. Int J PharmTech Res 7:099–107

    Google Scholar 

  • Shilev (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–150

    Chapter  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. https://doi.org/10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Chapter  Google Scholar 

  • Silva VN, Silva LESF, Figueiredo MVB (2006) Atuaçäo de rizo’bios com rhizobacteria promotoras de crescimento em plants na culture do caupi (Vigna unguiculata L. Walp). Acta Sci Agron 28:407–412

    Google Scholar 

  • Singh DP et al (eds) (2016) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_15

    Book  Google Scholar 

  • Sokolova MG, Akimova GP, Vaishlia OB (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Prikl Biokhim Mikrobiol 47:302–307

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suhag M (2016) Potential of biofertilizers to replace chemical fertilizers. Int Adv Res J Sci Eng Technol 3:163–167

    Google Scholar 

  • Sundaram VM, Kathiresan D, Eswaran S, Sankaralingam S, Balakan B, Harinathan B (2016) Phosphate solubilization and phytohormones production by rhizosphere microorganisms. Adv Agric Biol 5:5–13

    CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. https://doi.org/10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition – a review. World J Agric Sci 5:270–278

    CAS  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Skz A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing micro- organisms for sustainable agriculture. Springer, New Delhi, pp 187–201. https://doi.org/10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. https://doi.org/10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. https://doi.org/10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zahid M, Abbasi MK, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahir A, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting Rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness ofrhizobacteria containing ACC-deaminase for growth promotion of peas (P.sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B.N. et al. (2019). Importance and Utilization of Plant-Beneficial Rhizobacteria in Agriculture. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_8

Download citation

Publish with us

Policies and ethics