Skip to main content

Descriptor-Length Reduction Using Low-Variance Filter for Visual Odometry

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1024))

Abstract

Visual odometry is a popular technique used to estimate motion in GPS-challenged environment, whose accuracy depends on the features extracted from the images. In past attempts to improved feature distinctiveness, these features have become complex and lengthier, requiring more storage space and computational power for matching. In this paper, an attempt is made toward reducing the length of these feature descriptors while maintaining a similar accuracy in pose estimation. Elimination of feature indices based on variance analysis on feature column sets is proposed and experimented in this paper. The features with reduced descriptor length are applied over the 3D-2D visual odometry pipeline and experimented on KITTI dataset for evaluating its efficacy. The proposed scheme of variance-based descriptor length reduction is found to reduce the overall time taken by the motion estimation framework while estimating the transformation with similar accuracy as that with full-length feature vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    Article  Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: European Conference on Computer Vision, pp. 404–417. Springer (2006)

    Google Scholar 

  3. Chandrasekhar, V., Takacs, G., Chen, D., Tsai, S.S., Singh, J., Girod, B.: Transform coding of image feature descriptors. In: Visual Communications and Image Processing 2009, vol. 7257, p. 725710. International Society for Optics and Photonics (2009)

    Google Scholar 

  4. Dubey, S.R., Singh, S.K., Singh, R.K.: Rotation and illumination invariant interleaved intensity order-based local descriptor. IEEE Trans. Image Process. 23(12), 5323–5333 (2014)

    Article  MathSciNet  Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Readings in Computer Vision, pp. 726–740. Elsevier (1987)

    Google Scholar 

  6. Fraundorfer, F., Scaramuzza, D.: Visual odometry: Part I: The first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  8. González Valenzuela, R.E., et al.: Linear dimensionality reduction applied to SIFT and SURF feature descriptors (2014)

    Google Scholar 

  9. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 2, pp. II–II. IEEE (2004)

    Google Scholar 

  10. Keser, R.K., Ergün, E., Töreyin, B.U.: Vehicle logo recognition with reduced dimension SIFT vectors using autoencoders. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 92 (2018)

    Article  Google Scholar 

  11. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 486–492. IEEE (2010)

    Google Scholar 

  12. Kottath, R., Yalamandala, D.P., Poddar, S., Bhondekar, A.P., Karar, V.: Inertia constrained visual odometry for navigational applications. In: 2017 Fourth International Conference on Image Information Processing (ICIIP), pp. 1–4. IEEE (2017)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Maitra, S., Yan, J.: Principle component analysis and partial least squares: two dimension reduction techniques for regression. In: Applying Multivariate Statistical Models, vol. 79, pp. 79–90 (2008)

    Google Scholar 

  15. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Technical report, Stanford Univ CA Dept of Computer Science (1980)

    Google Scholar 

  16. More, R., Kottath, R., Jegadeeshwaran, R., Kumar, V., Karar, V., Poddar, S.: Improved pose estimation by inlier refinement for visual odometry. In: 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), pp. 224–228. IEEE (2017)

    Google Scholar 

  17. Nistér, D.: An effcient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  18. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I–I. IEEE (2004)

    Google Scholar 

  19. Poddar, S., Kottath, R., Karar, V.: Evolution of visual odometry techniques (2018). arXiv:1804.11142

  20. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013)

    Article  Google Scholar 

  21. Sulic, V., Perš, J., Kristan, M., Kovacic, S.: Efficient dimensionality reduction using random projection

    Google Scholar 

  22. Wang, S., Clark, R., Wen, H., Trigoni, N.: DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043–2050. IEEE (2017)

    Google Scholar 

  23. Ye, J., Ji, S.: Discriminant analysis for dimensionality reduction: an overview of recent developments. In: Biometrics: Theory, Methods, and Applications. Wiley-IEEE Press, New York (2010)

    Google Scholar 

  24. Zhou, Z., Cheng, S., Li, Z.: MDS-SIFT: an improved SIFT matching algorithm based on MDS dimensionality reduction. In: 2016 3rd International Conference on Systems and Informatics (ICSAI), pp. 896–900. IEEE (2016)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by DRDO—Aeronautical Research & Development Board through grant-in-aid project on design and development of visual odometry System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalambe, S.S., Rufus, E., Karar, V., Poddar, S. (2020). Descriptor-Length Reduction Using Low-Variance Filter for Visual Odometry. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9291-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9290-1

  • Online ISBN: 978-981-32-9291-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics