Skip to main content

Optimal Number of Seed Point Selection Algorithm of Unknown Dataset

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1024))

  • 561 Accesses

Abstract

In the present world, clustering is considered to be the most important data mining tool which is applied to huge data to help the futuristic decision-making processes. It is an unsupervised classification technique by which the data points are grouped to form the homogeneous entity. Cluster analysis is used to find out the clusters from a unlabeled data. The position of the seed points primarily affects the performances of most partitional clustering techniques. The correct number of clusters in a dataset plays an important role to judge the quality of the partitional clustering technique. Selection of initial seed of K-means clustering is a critical problem for the formation of the optimal number of the cluster with the benefit of fast stability. In this paper, we have described the optimal number of seed points selection algorithm of an unknown data based on two important internal cluster validity indices, namely, Dunn Index and Silhouette Index. Here, Shannon’s entropy with the threshold value of distance has been used to calculate the position of the seed point. The algorithm is applied to different datasets and the results are comparatively better than other methods. Moreover, the comparisons have been done with other algorithms in terms of different parameters to distinguish the novelty of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  2. Chen, K., Liu, L.: The “best k” for entropy-based categorical data clustering (2005)

    Google Scholar 

  3. Vendramin, L., Campello, R.J., Hruschka, E.R.: Relative clustering validity criteria: a comparative overview. Stat. Anal. Data Min. ASA Data Sci. J. 3(4), 209–235 (2010)

    MathSciNet  Google Scholar 

  4. Mao, J., Jain, A.K.: A self-organizing network for hyperellipsoidal clustering (hec). IEEE Trans. Neural Netw. 7(1), 16–29 (1996)

    Article  Google Scholar 

  5. Zhang, J.S., Leung, Y.W.: Robust clustering by pruning outliers. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 33(6), 983–998 (2003)

    Article  Google Scholar 

  6. Chaudhuri, D., Chaudhuri, B.: A novel multiseed nonhierarchical data clustering technique. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 27(5), 871–876 (1997)

    Article  Google Scholar 

  7. Reddy, D., Jana, P.K., et al.: Initialization for k-means clustering using voronoi diagram. Proc. Technol. 4, 395–400 (2012)

    Article  Google Scholar 

  8. Lu, J.F., Tang, J., Tang, Z.M., Yang, J.Y.: Hierarchical initialization approach for k-means clustering. Pattern Recognit. Lett. 29(6), 787–795 (2008)

    Article  Google Scholar 

  9. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  10. Cao, F., Liang, J., Jiang, G.: An initialization method for the k-means algorithm using neighborhood model. Comput. Math. Appl. 58(3), 474–483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pal, S.K., Pramanik, P.: Fuzzy measures in determining seed points in clustering (1986)

    Article  Google Scholar 

  12. Kansal, S., Jain, P.: Automatic seed selection algorithm for image segmentation using region growing. Int. J. Adv. Eng. Technol. 8(3), 362 (2015)

    Google Scholar 

  13. Astrahan, M.: Speech analysis by clustering, or the hyperphoneme method. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, Tech. rep. (1970)

    Google Scholar 

  14. Chaudhuri, D., Murthy, C., Chaudhuri, B.: Finding a subset of representative points in a data set. IEEE Trans. Syst. Man Cybern. 24(9), 1416–1424 (1994)

    Article  Google Scholar 

  15. Bai, L., Liang, J., Dang, C., Cao, F.: A cluster centers initialization method for clustering categorical data. Exp. Syst. Appl. 39(9), 8022–8029 (2012)

    Article  Google Scholar 

  16. Ball, G.H., Hall, D.J.: Isodata, a novel method of data analysis and pattern classification. Tech. rep, Stanford research inst Menlo Park CA (1965)

    Google Scholar 

  17. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  18. Anderberg, M.R.: Cluster Analysis for Applications: Probability and Mathematical Statistics: A Series of Monographs and Textbooks, vol. 19. Academic Press, New York (2014)

    Google Scholar 

  19. Jancey, R.: Multidimensional group analysis. Aust. J. Bot. 14(1), 127–130 (1966)

    Article  Google Scholar 

  20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  21. Norušis, M.J.: IBM SPSS Statistics 19 Statistical Procedures Companion. Prentice Hall, Upper Saddle River (2012)

    Google Scholar 

  22. Späth, H.: Computational experiences with the exchange method: applied to four commonly used partitioning cluster analysis criteria. Eur. J. Oper. Res. 1(1), 23–31 (1977)

    Article  MATH  Google Scholar 

  23. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Milligan, G.W.: A monte carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 46(2), 187–199 (1981)

    Article  MATH  Google Scholar 

  25. Yan, M., Ye, K.: Determining the number of clusters using the weighted gap statistic. Biometrics 63(4), 1031–1037 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng, A.: Clustering with the k-means algorithm. Machine Learning (2012)

    Google Scholar 

  27. Bozdogan, H.: Mixture-model cluster analysis using model selection criteria and a new informational measure of complexity. In: Proceedings of the first US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach, pp. 69–113. Springer, Berlin (1994)

    Chapter  Google Scholar 

  28. Xu, L.: Byy harmony learning, structural rpcl, and topological self-organizing on mixture models. Neural Netw. 15(8–9), 1125–1151 (2002)

    Article  Google Scholar 

  29. Sugar, C.A., James, G.M.: Finding the number of clusters in a dataset: an information-theoretic approach. J. Am. Stat. Assoc. 98(463), 750–763 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smyth, P.: Clustering using monte carlo cross-validation. Kdd 1, 26–133 (1996)

    Google Scholar 

  31. Wang, J.: Consistent selection of the number of clusters via crossvalidation. Biometrika 97(4), 893–904 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Evanno, G., Regnaut, S., Goudet, J.: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14(8), 2611–2620 (2005)

    Article  Google Scholar 

  33. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

  34. Hu, X., Xu, L.: Investigation on several model selection criteria for determining the number of cluster. Neural Inf. Process.-Lett. Rev. 4(1), 1–10 (2004)

    Google Scholar 

  35. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  37. Tzortzis, G., Likas, A.: The minmax k-means clustering algorithm. Pattern Recognit. 47(7), 2505–2516 (2014)

    Article  Google Scholar 

  38. Wang, X., Bai, Y.: A modified minmax-means algorithm based on PSO. Comput. Intell. Neurosci. 2016, (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuntal Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chowdhury, K., Chaudhuri, D., Pal, A.K. (2020). Optimal Number of Seed Point Selection Algorithm of Unknown Dataset. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9291-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9290-1

  • Online ISBN: 978-981-32-9291-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics