Skip to main content

Usage of Rhizobial Inoculants in Agriculture

  • Chapter
  • First Online:
Ecology and Evolution of Rhizobia

Abstract

In this chapter, the history and current status of rhizobial inoculation application around the world are reviewed briefly. Then, the strategy for screening and choosing effective rhizobia, preparation of inoculant and application in agriculture for specific legumes are discussed. Next, some microelements and biostimulants are proposed to be used together with rhizobial inoculants to enhance symbiotic nitrogen fixation. Finally, the other roles of rhizobia beyond nitrogen fixation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu I, Cerda ME, de Nanclares MP, Baena I, Lloret J, Bonilla I, Bolaños L, Reguera M. Boron deficiency affects rhizobia cell surface polysaccharides important for suppression of plant defense mechanisms during legume recognition and for development of nitrogen-fixing symbiosis. Plant Soil. 2012;361(1):385–95. https://doi.org/10.1007/s11104-012-1229-0.

    Article  CAS  Google Scholar 

  • Alagawadi AR, Gaur AC. Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 1988;105(2):241–6. https://doi.org/10.1007/bf02376788.

    Article  Google Scholar 

  • Alam F, Kim TY, Kim SY, Alam SS, Pramanik P, Kim PJ, Lee YB. Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Sci Plant Nutr. 2015;61(4):664–75. https://doi.org/10.1080/00380768.2015.1030690.

    Article  CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Temprano FJ. Soybean inoculation: dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crop Res. 2009a;113(3):352–6. https://doi.org/10.1016/j.fcr.2009.05.013.

    Article  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Temprano FJ. Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain. Eur J Agron. 2009b;30(3):205–11. https://doi.org/10.1016/j.eja.2008.10.002.

    Article  Google Scholar 

  • Angus JF. Nitrogen supply and demand in Australian agriculture. Aust J Exp Agric. 2001;41:277–88.

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil. 1998;204(1):57–67. https://doi.org/10.1023/a:1004326910584.

    Article  CAS  Google Scholar 

  • Araújo PRA, Araújo GAA, Rocha PRR, Carneiro JES. Combinações de doses de molibdênio e nitrogênio na adubação da cultura do feijoeiro comum. Acta Sci Agron. 2009;31:227–34.

    Google Scholar 

  • Armiadi. The role of molybdenum in biological nitrogen fixation. Wartazoa. 2009;19(3):150–5.

    Google Scholar 

  • Ashrafi E, Zahedi M, Razmjoo J. Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Sci Plant Nutr. 2014;60(5):619–29. https://doi.org/10.1080/00380768.2014.936037.

    Article  CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta. 1988;175(4):532–8. https://doi.org/10.1007/bf00393076.

    Article  CAS  PubMed  Google Scholar 

  • Badawi FSF, Biomy AMM, Desoky AH. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann Agric Sci. 2011;56(1):17–25. https://doi.org/10.1016/j.aoas.2011.05.005.

    Article  Google Scholar 

  • Bajandi T, Sharifi R, Sedghi M, Namvar A. Effects of plant density, Rhizobium inoculation and microelements on nodulation, chlorophyll content and yield of chickpea (Cicer arietinum L.). Ann Biol Res. 2011;3(2):951–8.

    Google Scholar 

  • Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci. 2009;2:42–5.

    Article  CAS  Google Scholar 

  • Bedmar EJ, Robles EF, Delgado MJ. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans. 2005;33(1):141–4. https://doi.org/10.1042/bst0330141.

    Article  CAS  PubMed  Google Scholar 

  • Belhadi D, de lajudie P, Ramdani N, Le Roux C, Boulila F, Tisseyre P, Boulila A, Benguedouar A, Kaci Y, Laguerre G. Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol. 2018;41(2):122–30. https://doi.org/10.1016/j.syapm.2017.10.004.

    Article  PubMed  Google Scholar 

  • Bellaloui N, Reddy KN, Gillen AM, Abel CA. Nitrogen metabolism and seed composition as influenced by foliar boron application in soybean. Plant Soil. 2010;336(1):143–55. https://doi.org/10.1007/s11104-010-0455-6.

    Article  CAS  Google Scholar 

  • Berninger T, Lopez OG, Bejarano A, Preininger C, Sessitsch A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol. 2018;11(2):277–301. https://doi.org/10.1111/1751-7915.12880.

    Article  CAS  PubMed  Google Scholar 

  • Beuerlein J. Why I Inoculate Soybeans. C.O.R.N. Newsletter 2008-06 Columbus; 2008.

    Google Scholar 

  • Bhattacharyya RN, Basu PS. Bioproduction of indoleacetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum DC. Acta Microbiol Immunol Hung. 1997;44(2):109–18.

    CAS  PubMed  Google Scholar 

  • Biscaro GA, Freitas JSRP, Kikuti H, Goulart JSAR, Aguirre WM. Nitrogênio em cobertura e molibdênio via foliar no feijoeiro irrigado cultivado em solo de cerrado. Acta Sci Agron. 2011;33:665–70.

    CAS  Google Scholar 

  • Bogino P, Banchio E, Rinaudi L, Cerioni G, Bonfiglio C, Giordano W. Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann Appl Biol. 2006;148(3):207–12. https://doi.org/10.1111/j.1744-7348.2006.00055.x.

    Article  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol. 2007;74(4):874–80. https://doi.org/10.1007/s00253-006-0731-9.

    Article  CAS  PubMed  Google Scholar 

  • Bolaños L, Esteban E, de Lorenzo C, Fernández-Pascual M, de Felipe MR, Gárate A, Bonilla L. Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum) rhizobium nodules. Plant Physiol. 1994;104:85–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolaños L, Cebrián A, Redondo-Nieto M, Rivilla R, Bonilla I. Lectin-like glycoprotein PsNLEC-1 is not correctly glycosylated and targeted in boron deficient pea nodules. Mol Plant-Microbe Interact. 2001;14:663–70.

    Article  PubMed  Google Scholar 

  • Boogerd FC, van Rossum D. Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev. 1997;21(1):5–27. https://doi.org/10.1111/j.1574-6976.1997.tb00342.x.

    Article  CAS  Google Scholar 

  • Breitenbeck GA, Bremner JM. Ability of free-living cells of Bradyrhizobium japonicum to denitrify in soils. Biol Fertil Soils. 1989;7(3):219–24. https://doi.org/10.1007/bf00709652.

    Article  Google Scholar 

  • Brenchley WE, Thornton HG. The relation between the development, structure and functioning of the nodules on Vicia faba, as influenced by the presence or absence of boron in the nutrient medium. Proc R Soc Lond B Biol Sci. 1925;498:373–98.

    Article  Google Scholar 

  • Brikics S, Milakovic Z, Kristek A, Antunovic M. Pea yield and its quality depending on inoculation, nitrogen and molybdenum fertilization. Plant Soil Environ. 2004;50(1):39–45.

    Google Scholar 

  • Brockwell J, Bottomley PJ. Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem. 1995;27:683–97.

    Article  CAS  Google Scholar 

  • Brodrick SJ, Giller KE. Root nodules of Phaseolus: efficient scavengers of molybdenum for N2-fixation. J Exp Bot. 1991;42:679–86.

    Article  CAS  Google Scholar 

  • Carlsson G, Huss-Danell K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil. 2003;253(2):353–72. https://doi.org/10.1023/a:1024847017371.

    Article  CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol. 2009;45(1):28–35. https://doi.org/10.1016/j.ejsobi.2008.08.005.

    Article  CAS  Google Scholar 

  • Chen XH, Ma L, Ma WQ, Wu ZG, Cui ZL, Hou Y, Zhang FS. What has caused the use of fertilizers to skyrocket in China? Nutr Cycl Agroecosyst. 2018;110(2):241–55. https://doi.org/10.1007/s10705-017-9895-1.

    Article  CAS  Google Scholar 

  • Cui T, Fang L, Wang M, Jiang M, Shen G. Intercropping of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals. J Chem. 2018;2018:1–11. https://doi.org/10.1155/2018/7803408.

    Article  CAS  Google Scholar 

  • Dall’Agnol RF, Ribeiro RA, Ormeno-Orrillo E, Rogel MA, Delamuta JR, Andrade DS, Martinez-Romero E, Hungria M. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol. 2013;63(Pt 11):4167–73. https://doi.org/10.1099/ijs.0.052928-0.

    Article  PubMed  Google Scholar 

  • Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R. Co-inoculation of Rhizobium and Azotobacter on growth of faba bean under water deficit conditions. Am Eurasian J Agric Environ Sci. 2011;11(3):314–9.

    Google Scholar 

  • De Meyer SE, Ruthrof KX, Edwards T, Hopkins AJM, Hardy G, O’Hara G, Howieson J. Diversity of endemic rhizobia on Christmas Island: implications for agriculture following phosphate mining. Syst Appl Microbiol. 2018;41(6):641–9. https://doi.org/10.1016/j.syapm.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  • Deaker R, Hartley E, Gemell G, Herridge DF, Karanja N. Inoculant production and quality control. In: Howieson JG, Dilworth MJ, editors. Working with rhizobia. Canberra: Australian Centre for International Agricultural Research; 2016. p. 167–86.

    Google Scholar 

  • Delgado MJ, Tresierra-Ayala A, Talbi C, Bedmar EJ. Functional characterization of the Bradyrhizobium japonicum modA and modB genes involved in molybdenum transport. Microbiology. 2006;152(1):199–207. https://doi.org/10.1099/mic.0.28347-0.

    Article  CAS  PubMed  Google Scholar 

  • Delgado MJ, Casella S, Bedmar EJ. Chapter 6 – denitrification in rhizobia-legume symbiosis. In: Bothe H, Ferguson SJ, Newton WE, editors. Biology of the nitrogen cycle. Amsterdam: Elsevier; 2007. p. 83–91. https://doi.org/10.1016/B978-044452857-5.50007-2.

    Chapter  Google Scholar 

  • Denton MD, Phillips LA, Peoples MB, Pearce DJ, Swan AD, Mele PM, Brockwell J. Legume inoculant application methods: effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant Soil. 2017;419(1):25–39. https://doi.org/10.1007/s11104-017-3317-7.

    Article  CAS  Google Scholar 

  • Donati AJ, Lee H-I, Leveau JHJ, Chang W-S. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PLoS One. 2013;8(10):e76559. https://doi.org/10.1371/journal.pone.0076559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew E, Herridge D, Ballard R, O’Hara G, Deaker R, Denton M, Yates R, Gemell G, Hartley E, Phillips L, Seymour N, Howieson J, Ballard N. Inoculating legumes: a practical guide. Kingston: Grains Research and Development Corporation; 2012.

    Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR. 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol. 2009;57(3):423–36. https://doi.org/10.1007/s00248-008-9407-6.

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Hakoyama T, Kamiya T, Miwa H, Lombardo F, Sato S, Tabata S, Chen Z, Watanabe T, Shinano T, Fujiwara T. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. Plant J. 2017;90(6):1108–19. https://doi.org/10.1111/tpj.13532.

    Article  CAS  PubMed  Google Scholar 

  • Elkoca E, Kantar F, Sahin F. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr. 2008;31(1):157–71. https://doi.org/10.1080/01904160701742097.

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA, Jadidi M, Aliakbari A. Effect of superior IAA producing Rhizobia on N, P, K uptake by wheat grown under greenhouse condition. World Appl Sci J. 2009;6(12):1629–33.

    CAS  Google Scholar 

  • Fageria NK, Stone LF, Santos AB. Molybdenum requirements of dry bean with and without liming. Commun Soil Sci Plant Anal. 2015;46:965–78. https://doi.org/10.1080/00103624.2015.1018523.

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol. 2008;24(7):1187–93. https://doi.org/10.1007/s11274-007-9591-4.

    Article  CAS  Google Scholar 

  • Fox SL, O’Hara GW, Bräu L. Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when co-inoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil. 2011;348:245–54.

    Article  CAS  Google Scholar 

  • Fujikake H, Yashima H, Tanabata S, Ishikawa S, Sato T, Nishiwaki T, Ohtake N, Sueyoshi K, Ishii S, Fujimaki S. Effect of nitrate on nodulation and nitrogen fixation of soybean. In: El-Shemy HA, editor. Soybean physiology and biochemistry. Rijeka: InTech; 2011.

    Google Scholar 

  • Gao J-L, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K, Chen WX. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol. 2004;54(6):2003–12. https://doi.org/10.1099/ijs.0.02840-0.

    Article  CAS  PubMed  Google Scholar 

  • Gao TG, Xu YY, Jiang F, Li BZ, Yang JS, Wang ET, Yuan HL. Nodulation characterization and proteomic profiling of Bradyrhizobium liaoningense CCBAU05525 in response to water-soluble humic materials. Sci Rep. 2015;5:10836. https://doi.org/10.1038/srep10836.

    Article  Google Scholar 

  • Garg V, Kukreja K, Gera R, Singla A. Production of indole-3-acetic acid by berseem (Trifolium alexandrinum L.) rhizobia isolated from Haryana, India. Agric Sci Dig. 2015;35(3):229–32. https://doi.org/10.5958/0976-0547.2015.00053.1.

    Article  Google Scholar 

  • Ghanti YH. Influence of boron and molybdenum on growth and yield of groundnut. Dhanwad: University of Agricultural Sciences; 2012.

    Google Scholar 

  • Gil-Díez P, Tejada-Jiménez M, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules. Plant Cell Environ. 2019;42(1):310–20. https://doi.org/10.1111/pce.13388.

    Article  CAS  PubMed  Google Scholar 

  • Giri N. Growth and yield response of chick pea (Cicer arietinum) to seed inoculation with Rhizobium sp. Nat Sci. 2010;8(9):232–6.

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015;5(4):355–77. https://doi.org/10.1007/s13205-014-0241-x.

    Article  PubMed  Google Scholar 

  • Gyogluu C, Mohammed M, Jaiswal SK, Kyei-Boahen S, Dakora FD. Assessing host range, symbiotic effectiveness, and photosynthetic rates induced by native soybean rhizobia isolated from Mozambican and South African soils. Symbiosis. 2018;75(3):257–66. https://doi.org/10.1007/s13199-017-0520-5.

    Article  CAS  PubMed  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol. 1990;36:81–92.

    Article  CAS  Google Scholar 

  • Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol. 2009;12(3):259–66. https://doi.org/10.1016/j.pbi.2009.05.006.

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Sahid IB. Evaluation of rhizobium inoculation in combination with phosphorus and nitrogen fertilization on groundnut growth and yield. J Agron. 2016;15:142–6.

    Article  CAS  Google Scholar 

  • Herridge DF. Managing legume and fertiliser N for northern grains cropping. Canberra: GRDC; 2011.

    Google Scholar 

  • Hille R. Molybdenum enzymes. Essays Biochem. 1999;34:125–37. https://doi.org/10.1042/bse0340125.

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RN, Arihara J. Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci. 2006;86(4):927–39.

    Article  Google Scholar 

  • Imada E, Paiva dos Santos A, Oliveira AL, Hungria M, Rodrigues E. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Res Microbiol. 2016;168(3):283–392. https://doi.org/10.1016/j.resmic.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  • Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R. Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol. 2009;83(4):727. https://doi.org/10.1007/s00253-009-1974-z.

    Article  CAS  PubMed  Google Scholar 

  • Irmer S, Podzun N, Langel D, Heidemann F, Kaltenegger E, Schemmerling B, Geilfus CM, Zorb C, Ober D. New aspect of plant-rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation. Proc Natl Acad Sci U S A. 2015;112(13):4164–9. https://doi.org/10.1073/pnas.1423457112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbar BKA, Saud HM, Ismail MR, Othman R, Habib SH, Kausar H. Influence of molybdenum in association with Rhizobium on enhanced biological nitrogen fixation, growth and yield of soybean under drip irrigation system. Legum Res. 2013;36(6):522–7.

    Google Scholar 

  • Jarvis BDW, VanBerkum P, Chen WX, Nour SM, Fernandez MP, CleyetMarel JC, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol. 1997;47(3):895–8. https://doi.org/10.1099/00207713-47-3-895.

    Article  Google Scholar 

  • Jensen ES, Haahr V. The effect of pea cultivation on succeeding winter cereals and winter oilseed rape nitrogen nutrition. Appl Agric Res. 1990;5:102–7.

    Google Scholar 

  • Ji ZJ, Yan H, Cui QG, Wang ET, Chen WF, Chen WX. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Syst Appl Microbiol. 2017;40(2):114–9. https://doi.org/10.1016/j.syapm.2016.12.003.

    Article  PubMed  Google Scholar 

  • Jia RZ, Gu J, Tian CF, Man CX, Wang ET, Chen WX. Screening of high effective alfalfa rhizobial strains with a comprehensive protocol. Ann Microbiol. 2008;58(4):731–9. https://doi.org/10.1007/bf03175583.

    Article  Google Scholar 

  • Jia RZ, Tao Wang E, Liu JH, Li Y, Gu J, Yuan HL, Chen WX. Effectiveness of different Ensifer meliloti strain-alfalfa cultivar combinations and their influence on nodulation of native rhizobia. Soil Biol Biochem. 2013;57:960–3. https://doi.org/10.1016/j.soilbio.2012.07.021.

    Article  CAS  Google Scholar 

  • Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF. Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant-Microbe Interact. 2015;28(12):1338–52. https://doi.org/10.1094/MPMI-06-15-0141-R.

    Article  CAS  PubMed  Google Scholar 

  • Jiao XQ, Mongol N, Zhang FS. The transformation of agriculture in China: looking back and looking forward. J Integr Agric. 2018;17(4):755–64. https://doi.org/10.1016/s2095-3119(17)61774-x.

    Article  Google Scholar 

  • Jongruaysup S, Ohara GW, Dell B, Bell RW. Effects of low molybdenum seed on nodule initiation, development and N2 fixation in black gram (Vigna mungo L.). Plant Soil. 1993;156:345–8.

    Article  Google Scholar 

  • Kamberger W. Regulation of symbiotic nitrogen fixation in root nodules of alfalfa (Medicago sativa) infected with Rhizobium meliloti. Arch Microbiol. 1977;115(1):103–8.

    Article  CAS  PubMed  Google Scholar 

  • Kastoori Ramamurthy R, Jedlicka J, Graef GL, Waters BM. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. Mol Breed. 2014;34(2):431–45. https://doi.org/10.1007/s11032-014-0045-z.

    Article  CAS  Google Scholar 

  • Khaitov B. Effects of Rhizobium inoculation and magnesium application on growth and nodulation of soybean (Glycine max L.). J Plant Nutr. 2018;41(16):2057–68. https://doi.org/10.1080/01904167.2018.1485164.

    Article  CAS  Google Scholar 

  • Khan N, Tariq M, Ullah K, Muhammad D, Khan I, Rahatullah K, Ahmed N, Ahmed S. The effect of molybdenum and iron on nodulation, nitrogen fixation and yield of chickpea genotypes (Cicer arietinum L.). J Agric Vet Sci. 2014;7:63–79.

    Google Scholar 

  • Kinzig AP, Socolow RH. Is nitrogen fertilizer use nearing a balance? Reply Phys Today. 1994;47:24–35.

    Article  CAS  Google Scholar 

  • Kumar PR, Ram MR. Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L.) Verdc. Afr J Microbiol Res. 2012;6(27):5536–41.

    Google Scholar 

  • Kumar GK, Ram MR. Phosphate solubilizing rhizobia isolated from Vigna trilobata. Am J Microbiol Res. 2014;2(3):105–9.

    Article  Google Scholar 

  • Laws MT, Graves WR. Nitrogen inhibits nodulation and reversibly suppresses nitrogen fixation in nodules of Alnus maritima. J Am Soc Hortic Sci. 2005;130(4):496–9.

    Article  Google Scholar 

  • Ledgard SF, Steele KW. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil. 1992;141(1):137–53. https://doi.org/10.1007/bf00011314.

    Article  CAS  Google Scholar 

  • Leonard LT. A simple assembly for use in the testing of cultures of rhizobia. J Bacteriol. 1943;45:523–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Sinkko H, Montonen L, Wei GH, Lindstrom K, Rasanen LA. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol Ecol. 2012a;79(1):46–68. https://doi.org/10.1111/j.1574-6941.2011.01198.x.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li Y, Chen WF, Sui XH, Li Y, Li Y, Wang ET, Chen WX. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the north of China. Syst Appl Microbiol. 2012b;35(4):239–45. https://doi.org/10.1016/j.syapm.2012.02.004.

    Article  PubMed  Google Scholar 

  • Li YH, Wang R, Zhang XX, Young JPW, Wang ET, Sui XH, Chen WX. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol. 2015;65(12):4655–61. https://doi.org/10.1099/ijsem.0.000629.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li Y-Y, Wu H-M, Zhang F-F, Li C-J, Li X-X, Lambers H, Li L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci U S A. 2016;113(23):6496–501. https://doi.org/10.1073/pnas.1523580113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol. 2009;32(5):351–61. https://doi.org/10.1016/j.syapm.2008.10.004.

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56. https://doi.org/10.1146/annurev.micro.62.081307.162918.

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Charles TC, Glick BR. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol. 2004;70(10):5891–7. https://doi.org/10.1128/aem.70.10.5891-5897.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Wang L, Li W, Song J, He Y, Luo M. Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia. Acta Pratacul Sin. 2013;22(1):95–102.

    CAS  Google Scholar 

  • Maier RJ, Graham L. Molybdate transport by Bradyrhizobium japonicum bacteroids. J Bacteriol. 1988;170(12):5613–9. https://doi.org/10.1128/jb.170.12.5613-5619.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.

    Google Scholar 

  • Martinez R, Espejo A, Sierra M, Ortiz-Bernad I, Correa D, Bedmar E, Lopez-Jurado M, Porres JM. Co-inoculation of Halomonas maura and Ensifer meliloti to improve alfalfa yield in saline soils. Appl Soil Ecol. 2015;87:81–6. https://doi.org/10.1016/j.apsoil.2014.11.013.

    Article  Google Scholar 

  • McDonagh JF, Toomsan B, Limpinutana V, Giller KE. Estimates of the residual nitrogen benefit of groundnut to maize in Northern Thailand. Plant Soil. 1993;154:267–77.

    Article  Google Scholar 

  • Minamisawa K, Fukai K. Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol. 1991;32(1):1–9.

    CAS  Google Scholar 

  • Minamisawa K, Ogawa K-I, Fukubara h KJ. Indolepyruvate pathway fro indole-3-acetic acid biosynthesis in Bradyrhizobium elkanii. Plant Cell Physiol. 1996;37(4):449–53.

    Article  CAS  Google Scholar 

  • Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S. Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol. 2006;52(5):383–9. https://doi.org/10.1007/s00284-005-0296-3.

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS. Co-inoculation of Bacillus thuringiensis -KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol. 2009;25:753–61.

    Article  Google Scholar 

  • Mnasri B, Badri Y, Saidi S, de Lajudie P, Mhamdi R. Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Syst Appl Microbiol. 2009;32(8):583–92. https://doi.org/10.1016/j.syapm.2009.07.007.

    Article  CAS  PubMed  Google Scholar 

  • Moudiongui A, Rinaudo G. Effect of ammonium nitrate on nodulation and nitrogen fixation (acetylene reduction) of the tropical legume Sesbania rostrata. MIRCEN J Appl Microbiol Biotechnol. 1987;3(3):235–41. https://doi.org/10.1007/bf00933577.

    Article  CAS  Google Scholar 

  • Mousavi SA, Li L, Wei GH, Rasanen L, Lindstrom K. Evolution and taxonomy of native mesorhizobia nodulating medicinal Glycyrrhiza species in China. Syst Appl Microbiol. 2016;39(4):260–5. https://doi.org/10.1016/j.syapm.2016.03.009.

    Article  PubMed  Google Scholar 

  • Mulissa J, Fassil A. Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr J Microbiol Res. 2011;5(24):4133–42.

    Google Scholar 

  • Nambiar PTC. Response of groundnut (Arachis hypogaea L.) to rhizobium inoculation in the field: problems and prospects. MIRCEN J Appl Microbiol Biotechnol. 1985;1(4):293–309. https://doi.org/10.1007/bf01553414.

    Article  Google Scholar 

  • Namvar A, Sharifi RS, Khandan T, Moghadam MJ. Seed inoculation and inorganic nitrogen fertilization effects on some physiological and agronomical traits of chickpea (Cicer arietinum L.) in irrigated condition. J Cent Eur Agric. 2013;14(3):28–40.

    Article  Google Scholar 

  • Nobbe F, Hiltner L. Inoculation of the soil for cultivating. USA Patent; 1896.

    Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol. 1994;44(3):511–22. https://doi.org/10.1099/00207713-44-3-511.

    Article  CAS  PubMed  Google Scholar 

  • Nyaguthii MC. Soybean (Glycine max) response to rhizobia inoculation as influenced by soil nitrogen levels. Nairobi: Kenyatta University; 2017.

    Google Scholar 

  • Olsen PE, Rice WA, Collins MM. Biological contaminants in North American legume inoculants. Soil Biol Biochem. 1995;27(4):699–701. https://doi.org/10.1016/0038-0717(95)98650-D.

    Article  CAS  Google Scholar 

  • Ozkoc I, Deliveli MH. In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol. 2001;25(4):435–45.

    Google Scholar 

  • Peoples MB, Crasswell ET. Biological nitrogen fixation: investments, expectations and actual contributions to agriculture. Plant Soil. 1992;141:13–39.

    Article  CAS  Google Scholar 

  • Peoples MB, Craswell ET. Biological nitrogen-fixation – investments, expectations and actual contributions to agriculture. Plant Soil. 1992;141(1-2):13–39. https://doi.org/10.1007/bf00011308.

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil. 1995;174:3–28.

    Article  CAS  Google Scholar 

  • Pope MT, Steel ER, Williams RJP. The comparison between the chemistry and biochemistry of molybdenum and related elements. In: Coughlan M, editor. Molybdenum and molybdenum-containing enzymes. Oxford: Pergamon Press; 1980. p. 3–40.

    Google Scholar 

  • Prabha C, Maheshwari DK, Bajpai VK. Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacogn Mag. 2013;9(36):57–65. https://doi.org/10.4103/0973-1296.117870.

    Article  CAS  Google Scholar 

  • Preissel S, Reckling M, Schläfke N, Zander P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res. 2015;175:64–79. https://doi.org/10.1016/j.fcr.2015.01.012.

    Article  Google Scholar 

  • Provorov NA, Onishchuk OP, Kurchak ON. Impacts of inoculation with Sinorhizobium meliloti strains differing in salt tolerance on the productivity and habitus of alfalfa (Medicago sativa L.). Agric Biol. 2016;51(3):343–50. https://doi.org/10.15389/agrobiology.2016.3.343eng.

    Article  Google Scholar 

  • Rai MK. Handbook of microbial biofertilizers. New York, London, Oxford: Food Products Press, An Imprint of the Haworth Press, Inc; 2006.

    Google Scholar 

  • Redondo-Nieto M, Rivilla R, El-Hamdaoui A, Bonilla I, Bolaños L. Boron deficiency affects early infection events in the pea-Rhizobium symbiotic interaction. Aust J Plant Physiol. 2001;28:819–23. https://doi.org/10.1071/PP01020.

    Article  Google Scholar 

  • Redondo-Nieto M, Wilmot AR, El-Hamdaoui A, Bonilla I, Bola Os L. Relationship between boron and calcium in the N2-fixing legume–rhizobia symbiosis. Plant Cell Environ. 2003;26(11):1905–15. https://doi.org/10.1046/j.1365-3040.2003.01107.x.

    Article  CAS  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J. Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil. 2008;312(1):25–37. https://doi.org/10.1007/s11104-008-9606-4.

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer arietinum L.). Appl Soil Ecol. 2005;28(2):139–46. https://doi.org/10.1016/j.apsoil.2004.07.005.

    Article  Google Scholar 

  • Rugheim AME, Taha KEM, Ali SEA. Influence of nitrogen fixing and phosphorus solubilizing bacteria inoculation on fenugreek symbiotic properties, growth and yield. Int J Hortic Agric Food Sci. 2017;1(3):42–7.

    Google Scholar 

  • Sadowsky MJ, Graham PH, Sugawara M. Root and stem nodule bacteria of legumes. In: Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F, editors. The prokaryotes: prokaryotic biology and symbiotic associations. Berlin: Springer-Verlag; 2013. p. 401–25.

    Chapter  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res. 2008;108(1):1–13. https://doi.org/10.1016/j.fcr.2008.03.001.

    Article  Google Scholar 

  • Sarkar D, Laha S. Production of phytohormone Auxin (IAA) from soil born Rhizobium sp., isolated from different leguminous plant. Int J Appl Environ Sci. 2013;8(5):521–8.

    Google Scholar 

  • Schiffmann J, Alper Y. Effects of rhizobium-inoculum placement on peanut inoculation. Exp Agric. 1968;4:203–8.

    Article  Google Scholar 

  • Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada CE, Gabiatti NC, Prates F, Stumpf R. Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Cienc Rural. 2008;38:658–64.

    Article  Google Scholar 

  • Shah VK, Ugalde RA, Imperial J, Brill WJ. Molybdenum in nitrogenase. Annu Rev Biochem. 1984;53:231–57.

    Article  CAS  PubMed  Google Scholar 

  • Shahzad SM, Khalid A, Arif MS, Riaz M, Ashraf M, Iqbal Z, Yasmeen T. Co-inoculation integrated with P-enriched compost improved nodulation and growth of chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. Biol Fertil Soils. 2014;50(1):1–12. https://doi.org/10.1007/s00374-013-0826-2.

    Article  CAS  Google Scholar 

  • Singh BJ, Jyothi CN, Ravichandra K, Gautam G. Effect of Zn and bio-inoculants on yield attributes of chickpea (Cicer arietinum). Environ Ecol. 2014a;32(4A):1515–7.

    Google Scholar 

  • Singh O, Gupta M, Mittal V, Kiran S, Nayyar H, Gulati A, Tewari R. Novel phosphate solubilizing bacteria ‘Pantoea cypripedii PS1’ along with Enterobacter aerogenes PS16 and Rhizobium ciceri enhance the growth of chickpea (Cicer arietinum L.). Plant Growth Regul. 2014b;73(1):79–89. https://doi.org/10.1007/s10725-013-9869-5.

    Article  CAS  Google Scholar 

  • Smith RS. Legume inoculant formulation and application. Can J Microbiol. 1992;38:485–92.

    Article  Google Scholar 

  • Smith GB, Smith MS. Symbiotic and free-living denitrification by Bradyrhizobium japonicum. Soil Sci Soc Am J. 1986;50:349–54.

    Article  CAS  Google Scholar 

  • Sommer AL, Sorokin H. Effects of the absence of boron and of some other essential elements on the cell and tissue structure of the root tips of Pisum sativum. Plant Physiol. 1928;3:237–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31(4):425–48. https://doi.org/10.1111/j.1574-6976.2007.00072.x.

    Article  CAS  PubMed  Google Scholar 

  • Sridevi M, Mallaiah KV. Phosphate solubilization by Rhizobium strains. Indian J Microbiol. 2009;49(1):98–102. https://doi.org/10.1007/s12088-009-0005-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stajkovic-Srbinovic O, De Meyer SE, Milicic B, Delic D, Willems A. Genetic diversity of rhizobia associated with alfalfa in Serbian soils. Biol Fertil Soils. 2012;48(5):531–45. https://doi.org/10.1007/s00374-011-0646-1.

    Article  Google Scholar 

  • Stanley J, Cervantes E. Biology and genetics of the broad host range Rhizobium sp. NGR234. J Appl Bacteriol. 1991;70(1):9–19. https://doi.org/10.1111/j.1365-2672.1991.tb03780.x.

    Article  Google Scholar 

  • Sun YM, Zhang NN, Wang ET, Yuan HL, Yang JS, Chen WX. Influence of intercropping and intercropping plus rhizobial inoculation on microbial activity and community composition in rhizosphere of alfalfa (Medicago sativa L.) and Siberian wild rye (Elymus sibiricus L.). FEMS Microbiol Ecol. 2009;70(2):218–26. https://doi.org/10.1111/j.1574-6941.2009.00752.x.

    Article  CAS  Google Scholar 

  • Talebi MB, Bahar M, Saeidi G, Mengoni A, Bazzicalupo M. Diversity of Sinorhizobium strains nodulating Medicago sativa from different Iranian regions. FEMS Microbiol Lett. 2008;288(1):40–6. https://doi.org/10.1111/j.1574-6968.2008.01329.x.

    Article  CAS  PubMed  Google Scholar 

  • Tchebotar VK, Kang UG, Asis CA, Akao S. The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover. Biol Fertil Soils. 1998;27(4):349–52. https://doi.org/10.1007/s003740050442.

    Article  CAS  Google Scholar 

  • Tejada-Jimenez M, Gil-Diez P, Leon-Mediavilla J, Wen J, Mysore K, Imperial J, Gonzalez-Guerrero M. Medicago truncatula MOT1.3 is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules. New Phytol. bioRxiv:102517. 2017; https://doi.org/10.1101/102517.

  • Torres D, Benavidez I, Donadio F, Mongiardini E, Rosas S, Spaepen S, Vanderleyden J, Pencik A, Novak O, Strnad M, Frebortova J, Cassan F. New insights into auxin metabolism in Bradyrhizobium japonicum. Res Microbiol. 2018;169(6):313–23. https://doi.org/10.1016/j.resmic.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  • Trung BC, Yoshida S. Improvement of Leonard jar assembly for screening of effective rhizobium. Soil Sci Plant Nutr. 1983;29(1):97–100. https://doi.org/10.1080/00380768.1983.10432410.

    Article  Google Scholar 

  • Vincent JM. A manual for the practical study of the root-nodule bacteria. London: IBP Handbuch No. 15 des International Biology Program; 1970.

    Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Evol Microbiol. 1999;49(1):51–65. https://doi.org/10.1099/00207713-49-1-51.

    Article  Google Scholar 

  • Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol. 2013a;36(2):101–5. https://doi.org/10.1016/j.syapm.2012.10.009.

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Wang F, Hou BC, Wang ET, Chen WF, Sui XH, Chen WX, Li Y, Zhang YB. Proposal of Ensifer psoraleae sp nov., Ensifer sesbaniae sp nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol. 2013b;36(7):467–73. https://doi.org/10.1016/j.syapm.2013.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Cui WJ, Feng XY, Zhong ZM, Li Y, Chen WX, Chen WF, Shao XM, Tian CF. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: a strong selection of facultative microsymbionts. Soil Biol Biochem. 2018;116:340–50. https://doi.org/10.1016/j.soilbio.2017.10.033.

    Article  CAS  Google Scholar 

  • Weisany W, Raei Y, Allahverdipoor KH. Role of some of mineral nutrients in biological nitrogen fixation. Bull Environ Pharmacol Life Sci. 2013;2(4):77–84.

    CAS  Google Scholar 

  • Wigley K, Liu WYY, Khumalo Q, Moot DJ, Brown DS, Ridgway HJ. Effectiveness of three inoculation methods for lucerne (Medicago sativa L.) in two Canterbury soils. N Z J Agric Res. 2015;58(3):292–301. https://doi.org/10.1080/00288233.2015.1028652.

    Article  CAS  Google Scholar 

  • Williams PM. Current use of legume inoculant technology. In: Alexander M, editor. Biological nitrogen fixation, ecology, technology and physiology. New York: Plenum Press; 1984. p. 173–200.

    Google Scholar 

  • Wong CH, Patchamuthu R, Meyer HA, Pankhurst CE. Rhizobia in tropical legumes: ineffective nodulation of Arachis hypogaea L. by fast-growing strains. Soil Biol Biochem. 1988;20(5):677–81. https://doi.org/10.1016/0038-0717(88)90152-6.

    Article  Google Scholar 

  • Wookroof N. US Biofertilizer Market: new report; 2018.

    Google Scholar 

  • Xiong HY, Zhang XX, Guo HJ, Ji YY, Li Y, Wang XL, Zhao W, Mo FY, Chen JC, Yang T, Zong X, Chen WX, Tian CF. The epidemicity of facultative microsymbionts in faba bean rhizosphere soils. Soil Biol Biochem. 2017;115:243–52. https://doi.org/10.1016/j.soilbio.2017.08.032.

    Article  CAS  Google Scholar 

  • Xu KW, Chen Y, Chen Q, Jiang F, Peng D, Liu M, Wu Y. New Vicia sativa Rhizobium strain VS6-3, useful in production of Vicia sativa. China Patent; 2018.

    Google Scholar 

  • Yamagishi M, Yamamoto Y. Effects of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr. 1994;40:265–74.

    Article  CAS  Google Scholar 

  • Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol. 2016;39(2):141–9. https://doi.org/10.1016/j.syapm.2016.01.004.

    Article  PubMed  Google Scholar 

  • Yang JK, Yuan TY, Zhang WT, Zhou JC, Li YG. Polyphasic characterization of mung bean (Vigna radiata L.) rhizobia from different geographical regions of China. Soil Biol Biochem. 2008;40(7):1681–8. https://doi.org/10.1016/j.soilbio.2008.02.002.

    Article  CAS  Google Scholar 

  • Yang SH, Chen WH, Chen WX, Tian CF, Sui XH, Chen WX. Influence of rhizobial inoculation and crop variety on dry matter accumulation of crops in maize-soybean intercropping system. Int J Adv Agric Res. 2018a;6(8):101–5.

    Google Scholar 

  • Yang SH, Chen WH, Wang ET, Chen WF, Yan J, Han XZ, Tian CF, Sui XH, Singh RP, Jiang GM, Chen WX. Rhizobial biogeography and inoculation application to soybean in four regions across China. J Appl Microbiol. 2018b;125(3):853–66. https://doi.org/10.1111/jam.13897.

    Article  CAS  PubMed  Google Scholar 

  • Yong T-w, Chen P, Dong Q, Du Q, Yang F, X-c W, W-g L, W-y Y. Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system. J Integr Agric. 2018;17(3):664–76. https://doi.org/10.1016/s2095-3119(17)61836-7.

    Article  Google Scholar 

  • Younesi O, Baghbani A, Namdari A. The effects of Pseudomonas fluorescence and Rhizobium meliloti co-inoculation on nodulation and mineral nutrient contents in alfalfa (Medicago sativa) under salinity stress. Int J Agric Crop Sci. 2013a;5(14):1500–7.

    Google Scholar 

  • Younesi O, Moradi A, Chaichi MR. Effects of different rhizobacteria on nodulation and nitrogen fixation in alfalfa (Medicago sativa) at suboptimal root zone temperatures. Am Eurasian J Agric Environ Sci. 2013b;13(10):1370–4.

    Google Scholar 

  • Zeng ZH, Lu ZY, Jiang Y, Zhang K. Legume-cereal crop rotation systems in China. In: Ma BL, editor. Crop rotations: farming practices, monitoring and environmental benefits. Lancaster: Nova Science Pub Inc; 2016.

    Google Scholar 

  • Zhang YF, Wang ET, Tian CF, Wang FQ, Han LL, Chen WF, Chen WX. Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiol Lett. 2008;285(2):146–54. https://doi.org/10.1111/j.1574-6968.2008.01169.x.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Li Y Jr, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol. 2011a;77(18):6331–42. https://doi.org/10.1128/aem.00542-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YZ, Wang ET, Li M, Li QQ, Zhang YM, Zhao SJ, Jia XL, Zhang LH, Chen WF, Chen WX. Effects of rhizobial inoculation, cropping systems and growth stages on endophytic bacterial community of soybean roots. Plant Soil. 2011b;347(1):147. https://doi.org/10.1007/s11104-011-0835-6.

    Article  CAS  Google Scholar 

  • Zhang JJ, Yu T, Lou K, Mao PH, Wang ET, Chen WF, Chen WX. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol. 2014;37(7):520–4. https://doi.org/10.1016/j.syapm.2014.07.004.

    Article  PubMed  Google Scholar 

  • Zhang J, Yin B, Xie Y, Li J, Yang Z, Zhang G. Legume-cereal intercropping improves forage yield, quality and degradability. PLoS One. 2015;10(12):e0144813. https://doi.org/10.1371/journal.pone.0144813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Jing XY, de Lajudie P, Ma C, He PX, Singh RP, Chen WF, Wang ET. Association of white clover (Trifolium repens L.) with rhizobia of sv. trifolii belonging to three genomic species in alkaline soils in North and East China. Plant Soil. 2016;407(1):417–27. https://doi.org/10.1007/s11104-016-2899-9.

    Article  CAS  Google Scholar 

  • Zhang JJ, Guo C, Chen WF, de Lajudie P, Zhang ZY, Shang YM, Wang ET. Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol. 2018;68(6):1930–6. https://doi.org/10.1099/ijsem.0.002770.

    Article  CAS  PubMed  Google Scholar 

  • Zhao LF, Deng ZS, Yang WQ, Cao Y, Wang ET, Wei GH. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol. 2010;33(8):468–77. https://doi.org/10.1016/j.syapm.2010.08.004.

    Article  CAS  PubMed  Google Scholar 

  • Zheng WT, Li Y, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol. 2013;63(6):2002–7. https://doi.org/10.1099/ijs.0.044362-0.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer W, Mendel R. Molybdenum metabolism in plants. Plant Biol. 1999;1:160–8.

    Article  CAS  Google Scholar 

  • Zorawar S, Guriqbal S. Role of Rhizobium in chickpea (Cicer arietinum) production – a review. Agric Rev. 2018;39(1):31–9. https://doi.org/10.18805/ag.r-1699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Feng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W.F. (2019). Usage of Rhizobial Inoculants in Agriculture. In: Ecology and Evolution of Rhizobia. Springer, Singapore. https://doi.org/10.1007/978-981-32-9555-1_10

Download citation

Publish with us

Policies and ethics