Skip to main content

Chitosan-Based Edible Coating: A Customise Practice for Food Protection

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

This chapter demonstrates the use of chitosan as an edible coating material for improved storage life of food products especially perishable food products. Chitosan is a versatile biopolymer derived from renewable resources with several befitting properties. Additionally, chitosan is a substantial biodegradable, biocompatible and non-toxic material extensively used for enormous applications. Among existing applications, chitosan and its derivatives are constant materials for edible coating. The edible coating is considered a tailor-made customised technique for food protection including fruits and vegetables, meat and meat products and others. The specified packaging sectors aid in maintaining food integrity without changing or degrading nutritional quality, which possibly a problem in other post-harvest techniques. Further, chitosan has various medicinal properties such as antimicrobial, antibacterial, antidiabetic and others, which make it a promising agent in day-to-day life. However, the poor mechanical and barrier properties of chitosan may restrict its use in food packaging sections. In this regards, the fabrication of chitosan-based composites and blends can offer tuned properties against individual use as edible coating materials. Moreover, chitosan as an edible coating can deliver bioactive compounds to food products maintaining food properties with an improved shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosh T, Katiyar V (2018) Cellulose-based hydrogel films for food packaging. In: Mondal M (ed) Cellulose-based superabsorbent hydrogels. Polymers and polymeric composites: a reference series. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-77830-3_35

    Google Scholar 

  2. https://www.alliedmarketresearch.com/edible-packaging-market

  3. Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Saf 6:60–75. https://doi.org/10.1111/j.1541-4337.2007.00018.x

    Article  CAS  Google Scholar 

  4. Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15:237–248

    Google Scholar 

  5. Liamnimitr N, Thammawong M, Nakano K (2018) Application of pressure treatment for quality control in fresh fruits and vegetables. Rev Agric Sci 6:34–45

    Article  Google Scholar 

  6. Ghosh T, Dash KK (2018) Respiration rate model and modified atmosphere packaging of bhimkol banana. Eng Agric Environ Food 11:186–195. https://doi.org/10.1016/j.eaef.2018.04.004

    Article  Google Scholar 

  7. Ghaly AE, Dave D, Budge S, Brooks MS (2010) Fish spoilage mechanisms and preservation techniques. Am J Appl Sci 7:859

    Article  CAS  Google Scholar 

  8. Sivertsvik M, Jeksrud WK, Rosnes JT (2002) A review of modified atmosphere packaging of fish and fishery products–significance of microbial growth, activities and safety. Int J Food Sci Technol 37:107–127. https://doi.org/10.1046/j.1365-2621.2002.00548.x

    Article  CAS  Google Scholar 

  9. Falowo AB, Fayemi PO, Muchenje V (2014) Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: a review. Food Res Int 64:171–181. https://doi.org/10.1016/j.foodres.2014.06.022

    Article  CAS  Google Scholar 

  10. Love JD, Pearson AM (1971) Lipid oxidation in meat and meat products—a review. J Am Oil Chem Soc 48:547–549

    Article  CAS  Google Scholar 

  11. El Ghaouth A, Arul J, Ponnampalam R, Boulet M (1991) Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci 56:1618–1620. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x

    Article  Google Scholar 

  12. Gómez-Estaca J, De Lacey AL, López-Caballero ME, Gómez-Guillén MC, Montero P (2010) Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27:889–896. https://doi.org/10.1016/j.fm.2010.05.012

    Article  CAS  Google Scholar 

  13. Garcıa MA, Ferrero C, Bertola N, Martino M, Zaritzky N (2002) Edible coatings from cellulose derivatives to reduce oil uptake in fried products. Innov Food Sci Emerg Technol 3:391–397. https://doi.org/10.1016/S1466-8564(02)00050-4

    Article  Google Scholar 

  14. Arnon H, Zaitsev Y, Porat R, Poverenov E (2014) Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Tec 87:21–26. https://doi.org/10.1016/j.postharvbio.2013.08.007

    Article  CAS  Google Scholar 

  15. Elbarbary AM, Mostafa TB (2014) Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit. Carbohydr Polym 104:109–117. https://doi.org/10.1016/j.carbpol.2014.01.021

    Article  CAS  Google Scholar 

  16. Velickova E, Winkelhausen E, Kuzmanova S, Alves VD, Moldão-Martins M (2013) Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Sci Technol 52:80–92. https://doi.org/10.1016/j.lwt.2013.02.004

    Article  CAS  Google Scholar 

  17. Pagella C, Spigno G, De Faveri DM (2002) Characterization of starch based edible coatings. Food Bioprod Process 80:193–198. https://doi.org/10.1205/096030802760309214

    Article  CAS  Google Scholar 

  18. Rodríguez M, Oses J, Ziani K, Mate JI (2006) Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res Int 39:840–846. https://doi.org/10.1016/j.foodres.2006.04.002

    Article  CAS  Google Scholar 

  19. Ali A, Maqbool M, Ramachandran S, Alderson PG (2010) Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato(Solanum lycopersicum L.)fruit. Postharvest Biol Tec 58:42–47. https://doi.org/10.1016/j.postharvbio.2010.05.005

    Article  CAS  Google Scholar 

  20. Nieto MB (2009) Structure and function of polysaccharide gum-based edible films and coatings. In: Edible films and coatings for food applications, Springer, New York, NY, pp 57–112. https://doi.org/10.1007/978-0-387-92824-1_3

    Chapter  Google Scholar 

  21. Borkotoky SS, Ghosh T, Bhagabati P, Katiyar V (2019) Poly(lactic acid)/modified gum arabic (MG) based microcellular composite foam: effect of MG on foam properties, thermal and crystallization behavior. Int J Biol Macromol 125:159–170. https://doi.org/10.1016/j.ijbiomac.2018.11.257

    Article  CAS  Google Scholar 

  22. Yen MT, Tseng YH, Li RC, Mau JL (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Sci Technol 40:255–261. https://doi.org/10.1016/j.lwt.2005.08.006

    Article  CAS  Google Scholar 

  23. Hayashi K, Ito M (2002) Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharm Bull 25:188–192

    Article  CAS  Google Scholar 

  24. Mhurchu CN, Dunshea-Mooij C, Bennett D, Rodgers A (2005) Effect of chitosan on weight loss in overweight and obese individuals: a systematic review of randomized controlled trials. Obes Rev 6:35–42. https://doi.org/10.1111/j.1467-789X.2005.00158.x

    Article  CAS  Google Scholar 

  25. Wimardhani YS, Suniarti DF, Freisleben HJ, Wanandi SI, Siregar NC, Ikeda MA (2014) Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J Oral Sci 56:119–126. https://doi.org/10.2334/josnusd.56.119

    Article  CAS  Google Scholar 

  26. Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG (2008) Safety aspects and cholesterol-lowering efficacy of chitosan tablets. J Am Coll Nutr 27:22–30. https://doi.org/10.1080/07315724.2008.10719671

    Article  CAS  Google Scholar 

  27. Guan-juan DYH (2006) Application of chitosan in antibrowning of chestnut kernel [J]. China Food Addit 3:012

    Google Scholar 

  28. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  Google Scholar 

  29. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182. https://doi.org/10.1016/j.foodchem.2008.11.047

    Article  CAS  Google Scholar 

  30. Coma V, Deschamps A, Martial-Gros A (2003) Bioactive packaging materials from edible chitosan polymer—antimicrobial activity assessment on dairy-related contaminants. J Food Sci 68:2788–2792. https://doi.org/10.1111/j.1365-2621.2003.tb05806.x

    Article  CAS  Google Scholar 

  31. Genskowsky E, Puente LA, Pérez-Álvarez JA, Fernandez-Lopez J, Muñoz LA, Viuda-Martos M (2015) Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT-Food Sci Technol 64:1057–1062. https://doi.org/10.1016/j.lwt.2015.07.026

    Article  CAS  Google Scholar 

  32. Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crop Prod 21:185–192. https://doi.org/10.1016/j.indcrop.2004.03.002

    Article  CAS  Google Scholar 

  33. Arvanitoyannis IS, Nakayama A, Aiba SI (1998) Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym 37:371–382. https://doi.org/10.1016/S0144-8617(98)00083-6

    Article  CAS  Google Scholar 

  34. Azeredo HM, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7. https://doi.org/10.1111/j.1750-3841.2009.01386.x

    Article  CAS  Google Scholar 

  35. Maqbool M, Ali A, Alderson PG, Zahid N, Siddiqui Y (2011) Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruits during cold storage. J Agric Food Chem 59:5474–5482. https://doi.org/10.1021/jf200623m

    Article  CAS  Google Scholar 

  36. Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42:762–769. https://doi.org/10.1016/j.foodres.2009.02.026

    Article  CAS  Google Scholar 

  37. Abugoch LE, Tapia C, Villamán MC, Yazdani-Pedram M, Díaz-Dosque M (2011) Characterization of quinoa protein–chitosan blend edible films. Food Hydrocoll 25:879–886. https://doi.org/10.1016/j.foodhyd.2010.08.008

    Article  CAS  Google Scholar 

  38. Jia D, Fang Y, Yao K (2009) Water vapor barrier and mechanical properties of konjac glucomannan–chitosan–soy protein isolate edible films. Food Bioprod Process 87:7–10. https://doi.org/10.1016/j.fbp.2008.06.002

    Article  CAS  Google Scholar 

  39. Vu KD, Hollingsworth RG, Leroux E, Salmieri S, Lacroix M (2011) Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 44:198–203. https://doi.org/10.1016/j.foodres.2010.10.037

    Article  CAS  Google Scholar 

  40. Wang SY, Gao H (2013) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Sci Technol 52:71–79. https://doi.org/10.1016/j.lwt.2012.05.003

    Article  CAS  Google Scholar 

  41. Vargas M, Chiralt A, Albors A, González-Martínez C (2009) Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biol Tec 51:263–271. https://doi.org/10.1016/j.postharvbio.2008.07.019

    Article  CAS  Google Scholar 

  42. Han C, Lederer C, McDaniel M, Zhao Y (2005) Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings. J Food Sci 70:S172–S178. https://doi.org/10.1111/j.1365-2621.2005.tb07153.x

    Article  CAS  Google Scholar 

  43. Baez-Sañudo M, Siller-Cepeda J, Muy-Rangel D, Heredia JB (2009) Extending the shelf-life of bananas with 1-methylcyclopropene and a chitosan-based edible coating. J Sci Food Agric 89:2343–2349. https://doi.org/10.1002/jsfa.3715

    Article  CAS  Google Scholar 

  44. Huang J, Chen Q, Qiu M, Li S (2012) Chitosan-based edible coatings for quality preservation of postharvest whiteleg shrimp (Litopenaeus vannamei). J Food Sci 77:C491–C496. https://doi.org/10.1111/j.1750-3841.2012.02651.x

    Article  CAS  Google Scholar 

  45. Vargas M, Albors A, Chiralt A, González-Martínez C (2006) Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biol Tec 41:164–171. https://doi.org/10.1016/j.postharvbio.2006.03.016

    Article  CAS  Google Scholar 

  46. Song Y, Liu L, Shen H, You J, Luo Y (2011) Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 22:608–615. https://doi.org/10.1016/j.foodcont.2010.10.012

    Article  CAS  Google Scholar 

  47. Wu S (2014) Effect of chitosan-based edible coating on preservation of white shrimp during partially frozen storage. Int J Biol Macromol 65:325–328. https://doi.org/10.1016/j.ijbiomac.2014.01.056

    Article  CAS  Google Scholar 

  48. Kumar KS, Chrisolite B, Sugumar G, Bindu J, Venkateshwarlu G (2018) Shelf life extension of tuna fillets by gelatin and chitosan based edible coating incorporated with clove oil. Fish Technol 55:104–113

    CAS  Google Scholar 

  49. Chen C, Cai N, Chen J, Peng X, Wan C (2018) Chitosan-based coating enriched with hairy fig (Ficus Hirta Vahl.) fruit extract for “newhall” navel orange preservation. Coatings 8:445. https://doi.org/10.3390/coatings8120445

    Article  CAS  Google Scholar 

  50. Ghosh T, Teramoto Y, Katiyar V (2019) Influence of non-toxic magnetic cellulose nanofibers on chitosan based edible nanocoating: a candidate for improved mechanical, thermal, optical, and texture properties. J Agric Food Chem 67:4289–4299. https://doi.org/10.1021/acs.jafc.8b05905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, T., Katiyar, V. (2019). Chitosan-Based Edible Coating: A Customise Practice for Food Protection. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_8

Download citation

Publish with us

Policies and ethics