Skip to main content

Multiphase DC-DC Boost Converter: Introduction to Controller Design

  • Conference paper
  • First Online:
Transactions on Engineering Technologies (IMECS 2018)

Abstract

Many investigators of the industry and academia have given their attention to analyse and design of multiphase DC-DC converter for high performance applications. This study puts forward a novel graphical technique loop shaping to design a robust controller for a multiphase DC-DC converter that is open loop stable but non minimal phase system. The study servs the outstanding experimental and simulation results of the proposed controller which is materialized on multiphase DC-DC converter using Typhoon HIL 402 (real time hardware in the loop (HIL)). Further, it is investigated for stability and robustness to confirms the ability of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denicia, E.P., Luqueno, F.F., Ayala, D.V., Zetina, M., Nikhar, A.R., Lopez, L.A.M.: Renewable energy sources for electricity generation in Mexico: a review. In: Renewable and Sustainable Energy Reviews, pp. 597–613 (2017)

    Google Scholar 

  2. Krishnan, M.S., Ramkumar, M.S., Sownthara, M.: Power management of hybrid renewable energy system by frequency deviation control. Int. J. Innov. Res. Sci., Eng. Technol. 3(3), 763–769 (2014)

    Google Scholar 

  3. Deshmukh, M.K., Deshmukh, S.S.: Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 12(1), 235–249 (2008)

    Article  MathSciNet  Google Scholar 

  4. Singh, R.S.S., Abbod, M., Balachandran, W.: Low voltage hybrid renewable energy system management for energy storages charging- discharging. IEEE (2016)

    Google Scholar 

  5. Kwon, J.M., Kwon, B.H.: High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems. IEEE Trans. Power Electron. 24(1), 108–115 (2009)

    Article  Google Scholar 

  6. Zhu, L.: A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for bidirectional high power applications. IEEE Trans. Power Electron. 21(2), 422–429 (2006)

    Article  Google Scholar 

  7. Hwu, K.I., Yau, Y.T.: An interleaved AC-DC converter based on current tracking. IEEE Trans. Ind. Electron. 56(5), 1456–1463 (2009)

    Article  Google Scholar 

  8. Balogh, L., Redl, R.: Power-factor correction with interleaved boost converters in continuous-inductor-current mode. In: Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, APEC 1993, pp. 168–174 (1993)

    Google Scholar 

  9. Swamy, H.M.M., Guruswamy, K.P., Singh, S.P.: Design, modeling and analysis of two level interleaved boost converter. In: 2013 International Conference on Machine Intelligence and Research Advancement (2013)

    Google Scholar 

  10. Newton, A., Green, T.C., Andrew, D.: AC/DC power factor correction using interleaving boost and Cuk converters. In: IEEE Power Electronics and Variable Speed, Conference Publication, No. 475, pp. 293–298 (2000)

    Google Scholar 

  11. Miwa, B.A., Otten, D.M., Schlecht, M.F.: High efficiency power factor correction using interleaving techniques. In: IEEE Applied Power Electronics Conference and Exposition, pp. 557–568 (1992)

    Google Scholar 

  12. Apte, S.M., Somalwar, R., Nikhar, A.R.: Review of various control techniques for DC-DC interleaved boost converters. In: 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication, pp. 432–437 (2016)

    Google Scholar 

  13. Revathi, B.S., Prabhakar, M.: Non isolated high gain DC-DC converter topologies for pv applications, a comprehensive review. Renew. Sustain. Energy Rev. 66, 920–933 (2016)

    Article  Google Scholar 

  14. Kabalo, M., Blunier, B., Bouquain, D., Miraoui, A.: State-of-the art of DC-DC converters for fuel cell vehicles. In: 201 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6. IEEE (2010)

    Google Scholar 

  15. Crews, R., Nielson, K.: Interleaving is good for boost converters too. Power Electron. Technol. 34(5), 24–29 (2008)

    Google Scholar 

  16. Khadmuna, W., Subsinghaa, W.: High voltage gain interleaved DC boost converter application for photovoltaic generation system. Energy Procedia 34, 390–398 (2013)

    Article  Google Scholar 

  17. Khoucha, F., Benrabah, A., Herizi, O., Kheloui, A., Benbouzid, M.: An improved MPPT interleaved boost converter for solar electric vehicle application. In: IEEE POWERENG Conefernce, pp. 1076–1081 (2013)

    Google Scholar 

  18. Seyezhai, R., Mathur, B.L.: Design and implementation of interleaved boost converter for fuel cell systems: application to the interleaved boost and modular multilevel converters. Int. J. Hydrog. Energy 37(43), 3897–3903 (2012)

    Article  Google Scholar 

  19. Jang, Y., Jovanovic, M.M.: Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end. IEEE Trans. Power Electron. 22(4), 1394–1401 (2007)

    Article  Google Scholar 

  20. Liu, C., Johnson, A., Lai, J.-S.: A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications. IEEE Trans. Ind. Appl. 41(6), 1691–1697 (2005)

    Article  Google Scholar 

  21. Krein, P.T., Bentsman, J., Bass, R.M., Lesieutre, B.L.: On the use of averaging for the analysis of power electronic systems. IEEE Trans. Power Electron. 5, 182–190 (1990)

    Article  Google Scholar 

  22. Sun, J., Mitchell, D.M., Greuel, M.F., Krein, P.T., Bass, R.M.: Averaged modeling of pwm converters operating in discontinuous conduction mode. IEEE Trans. Power Electron. 16, 482–492 (2001)

    Article  Google Scholar 

  23. Chapparya, V., Murali Krishna, G., Dwivedi, P., Bose, S.: Loop shaping controller design for constant output interleaved boost converter using real-time hardware in-the-loop (HIL). In: Proceedings of The International MultiConference of Engineers and Computer Scientists 2018. Lecture Notes in Engineering and Computer Science, Hong Kong, 14–16 March 2018, pp. 659–664 (2018)

    Google Scholar 

  24. Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M.: Global tracking passivity-based PI control of bilinear systems: application to the interleaved boost and modular multilevel converters. Control Eng. Pract. 43, 109–119 (2015)

    Article  Google Scholar 

  25. Karthika, P., Basha, A.M., Ayyapan, P.: PV based speed control of DC motor using interleaved boost converter with SiC MOSFET and fuzzy logic controller. In: International Conference on Communication and Signal Processing, pp. 1826–1830 (2016)

    Google Scholar 

  26. Banerjee, S., Ghosh, A., Rana, N.: An improved interleaved boost converter with PSO-based optimal type-III controller. IEEE J. Emerg. Sel. Top. Power Electron. 5, 323–337 (2017)

    Article  Google Scholar 

  27. Sartipizadeh, H., Harirchi, F.: Robust model predictive control of DC-DC floating interleaved boost converter under uncertainty, pp. 320–327 (2017)

    Google Scholar 

  28. Banerjee, S., Ghosh, A., Rana, N.: Design and fabrication of closed loop two-phase interleaved boost converter with type-III controller, pp. 3331–3336 (2016)

    Google Scholar 

  29. Adachi, Y., Mochizuki, Y., Higuchi, K.: Approximate 2DOF digital controller for interleaved PFC boost converter. In: Journal Article on Lecture Notes in Electrical Engineering. LNEE, vol. 282, pp. 135–144 (2014)

    Google Scholar 

  30. Doyle, J.C., Stein, G.: Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans. Autom. Control. 26, 4–16 (1981)

    Article  Google Scholar 

  31. Agamennoni, O., Figueroa, J.L., Desages, A.C., Palazoglu, A., Romaonoli, J.A.: A loop-shaping technique for feedback control design. Comput. Chem. Eng. 20, 27–37 (1996)

    Article  Google Scholar 

  32. Rahim, A.H.M.A., Kandlawala, M.F.: Robust STATCOM voltage controller design using loop-shaping technique. Electr. Power Syst. Res. 68(2004), 61–74 (2004)

    Article  Google Scholar 

  33. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control Analysis and Design (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vaishali Chapparya , Prakash Dwivedi or Sourav Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chapparya, V., Dwivedi, P., Bose, S. (2020). Multiphase DC-DC Boost Converter: Introduction to Controller Design. In: Ao, SI., Kim, H., Castillo, O., Chan, As., Katagiri, H. (eds) Transactions on Engineering Technologies. IMECS 2018. Springer, Singapore. https://doi.org/10.1007/978-981-32-9808-8_4

Download citation

Publish with us

Policies and ethics