Skip to main content

Eco-Intensified Breeding Strategies for Improving Climate Resilience in Goats

  • Chapter
  • First Online:

Abstract

Goats are projected as an ideal climate adapted animal because of the various advantages associated with this species such as higher thermo-tolerance, drought tolerance, ability to survive on limited pastures, and high disease resistance. With the projected climate associated adversities such as high temperature, shrinking grazing lands, less feed, fodder and water resources, and emerging new diseases, goat farming seems to be the more profitable enterprise. With its exceptional adaptability to the adversities of climate change, goat farming seems to be the better option available for poor and marginal farmers across the globe to ensure their livelihood and food security. The main challenges associated with goat production are the improvement of the productive potential of the indigenous breeds and the conservation of indigenous germplasm. The phenotypic traits coat color, respiration rate, rectal temperature, skin temperature, thyroid hormones, and other genotypic markers such as heat shock proteins and thyroid hormone receptors are considered reliable markers of metabolic adaptation of goat during heat. Study involving genome-wide selection signatures and genomic inbreeding has identified MTOR, MAPK3, SLC27, NR2F6, and DRD2 genes for thermal adaptation in goat. Further research efforts can help in identifying agro-ecological zone-specific goat breeds to be disseminated to the local farmers for obtaining optimum economic return. In addition, refinements in existing breeding programs to develop eco-intensified breeding strategies by incorporating traits governing production, adaptation, and low methane emission could revolutionize goat sector reducing the impact on the ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACACA:

Acetyl-coenzyme A carboxylase alpha

CBBP:

Community-based breeding programs

CSN3:

Kappa casein

EI:

Ecological intensification

ELFI:

Electrochemical lateral flow immunosensor

ELISA:

Enzyme linked immunosorbent assay

eNOS:

endothelial type III NOS

GEBV:

Genomic estimated breeding value

GH:

Growth hormone

GHG:

Greenhouse gas

GS:

Genomic selection

GWAS:

Genome-wide association study

Hb:

Hemoglobin

HS:

Heat stress

HSP:

Heat shock proteins

HSPBAP1:

Heat shock 27 kDa associated protein 1

MAS:

Marker assisted selection

ME1:

malic enzyme 1

Ne-ELISA:

Nanoelectronic-enzyme linked immunosorbent assays

NEFA:

Non-esterified fatty acids

NOS:

Nitric oxide synthase

PBMC:

Peripheral blood mononuclear cell

PCV:

Packed cell volume

PPAR:

Peroxisome proliferator-activated receptor

RT-qPCR:

Quantitative reverse transcription polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SNP:

Single nucleotide polymorphism

SPGE:

Screen-printed gold electrodes

T3:

Triiodothyronine

T4:

Thyroxine

TLR:

Toll like receptors

References

  • Abdul-Razak M, Kruse S (2017) The adaptive capacity of smallholder farmers to climate change in the northern region of Ghana. Climate Risk Mgt 17:104–122

    Article  Google Scholar 

  • Afsal A, Bagath M, Sejian V, Krishnan G, Beena V, Bhatta R (2019) Effect of heat stress on HSP70 gene expression pattern in different vital organs of Malabari goats. Biol Rhythm Res:1–15. https://doi.org/10.1080/09291016.2019.1600270

  • Aleena J, Sejian V, Bagath M, Krishnan G, Beena V, Bhatta R (2018) Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. Int J Biometeorol 62(11):1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Amills M, Capote J, Tosser-Klopp G (2017) Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Anim Genet 48:631–644

    Article  CAS  PubMed  Google Scholar 

  • Angel SP, Bagath M, Sejian V, Krishnan G, Bhatta R (2018) Expression patterns of candidate genes reflecting the growth performance of goats subjected to heat stress. Mol Biol Rep 45(6):2847–2856

    Article  CAS  PubMed  Google Scholar 

  • Archana PR, Aleena J, Pragna P, Vidya MK, Niyas APA, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien EK, Sejian V (2017) Role of heat shock proteins in livestock adaptation to heat stress. J Dairy Veterinary Animal Res 5(1):1–8

    Google Scholar 

  • Archana PR, Sejian V, Ruban W, Bagath M, Krishnan G, Aleena Manjunathareddy GB, Beena V, Bhatta R (2018) Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem black goat breeds. Meat Sci 141:66–80

    Article  CAS  PubMed  Google Scholar 

  • Aziz MA (2010) Present status of the world goat populations and their productivity. World 861(10782):1

    Google Scholar 

  • Banerjee D, Upadhyay RC, Chaudhary UB, Kumar R, Singh S, Polley S, Mukherjee A, Das TK, De S (2014) Seasonal variation in expression pattern of genes under HSP70. Cell Stress Chaperones 19(3):401–408

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. CRC Press, Boca Raton, FL, p 400. https://doi.org/10.1201/9780429276026

    Book  Google Scholar 

  • Benjelloun B, Alberto FJ, Streeter I, Boyer F, Coissac E, Stucki S (2015) Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data. Front Genet 6:107. https://doi.org/10.3389/fgene.2015.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berihulay H, Abied A, He X, Jiang L, Ma Y (2019) Adaptation mechanisms of small ruminants to environmental heat stress. Animals 9(3):75

    Article  PubMed Central  Google Scholar 

  • Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A (2010) Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 4(7):1167–1183

    Article  CAS  PubMed  Google Scholar 

  • Brito LF, Kijas JW, Ventura RV, Sargolzaei M, Porto-Neto LR, Cánovas A, Feng Z, Jafarikia M, Schenkel FS (2017) Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics 18:229. https://doi.org/10.1186/s12864-017-3610-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruinsma J (2003) In: Bruinsma J (ed) World agriculture: towards 2015/2030 an FAO perspective. FAO, Earthscan Publications, London, UK

    Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaidanya K, Soren NK, Sejian V, Bagath M, Kurien EK, Manjunathareddy GB, Varma G, Bhatta R (2017) Impact of heat stress, nutritional stress and combined (heat and nutritional) stresses on rumen associated fermentation characteristics, histopathology and HSP70 gene expression in goats. J Anim Behav Biometeorol 5:36–48

    Article  Google Scholar 

  • Colditz IG, Hine BC (2016) Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci 56:1961–1983. https://doi.org/10.1071/an15297

    Article  Google Scholar 

  • Contreras-Jodar A, Salama AA, Hamzaoui S, Vailati-Riboni M, Caja G, Loor JJ (2018) Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J Dairy Res 85(4):423–430

    Article  CAS  PubMed  Google Scholar 

  • Dangi SS, Gupta M, Maurya D, Yadav VP, Panda RP, Singh G, Mohan NH, Bhure SK, Das BC, Bag S (2012) Expression profile of HSP genes during different seasons in goats (Capra hircus). Trop Anim Health Prod 44(8):1905–1912

    Article  PubMed  Google Scholar 

  • Dangi SS, Gupta M, Dangi SK, Chouhan VS, Maurya VP, Kumar P, Singh G, Sarkar M (2015) Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus). Int J Biometeorol 59(8):1095–1106

    Article  PubMed  Google Scholar 

  • Darcan KN, Silanikove N (2018) The advantages of goats for future adaptation to climate change: a conceptual overview. Small Ruminant Res 163:34–38

    Article  Google Scholar 

  • Darcan NK, Karakök SG, Daşkıran I (2009) Strategy of adapting Turkish animal production to global warming, 1. National symposium of drought and desertificiation, 14–16 May 2009, Konya-Turkey

    Google Scholar 

  • De Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272

    Article  Google Scholar 

  • Dossa LH, Sangaré M, Buerkert A, Schlecht E (2015) Production objectives and breeding practices of urban goat and sheep keepers in West Africa: regional analysis and implications for the development of supportive breeding programs. Springerplus 4(1):281

    Article  PubMed  PubMed Central  Google Scholar 

  • Drucker AG, Scarpa R (2003) Introduction and overview to the special issue on animal genetic resources. Ecol Econ 45(3):315–317

    Article  Google Scholar 

  • Dubeuf JP, Morales FDAR, Guerrero YM (2018) Evolution of goat production systems in the Mediterranean basin: between ecological intensification and ecologically intensive production systems. Small Ruminant Res 163:2–9

    Article  Google Scholar 

  • Elbeltagy AR, Kim ES, Rischkowsky B, Aboul-naga AM, Mwacharo JM, Rothschild MF (2016) Genome-wide analysis of small ruminant tolerance to grazing stress under Arid Desert. Animal Ind Rep 662(1):67

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61(1):243–282

    Article  CAS  PubMed  Google Scholar 

  • Feleke FB, Berhe M, Gebru G, Hoag D (2016) Determinants of adaptation choices to climate change by sheep and goat farmers in northern Ethiopia: the case of southern and Central Tigray, Ethiopia. Springerplus 5:1692

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseka WSR, Mahusoon MM, Narmhikaa K (2018) The rearing system of goats in Mahaoya veterinary range in Ampara District, Sri Lanka. Int Res J Biological Sci 7(12):26–31

    Google Scholar 

  • Garner JB, Douglas M, Williams SRO, Wales WJ, Marett LC, DiGiacomo K, Leury BJ, Hayes BJ (2017) Responses of dairy cows to short-term heat stress in controlled-climate chambers. Animal Prod Sci 57(7):1233–1241

    Article  Google Scholar 

  • Gasperino DJ, Leon D, Lutz B, Cate DM, Nichols KP, Bell D, Weigl BH (2018) Threshold-based quantification in a multiline lateral flow assay via computationally designed capture efficiency. Analytical Chem 90(11):6643–6650

    Article  CAS  Google Scholar 

  • Gatenby RM (1986) Sheep production in the tropics and sub-tropics. Longman Press, New York, p 351

    Google Scholar 

  • Giridhar K, Samireddypalle A (2015) Impact of climate change on forage availability for livestock. In: Climate change impact on livestock: adaptation and mitigation. Springer, Cham, pp 97–112

    Chapter  Google Scholar 

  • Gizaw S, Kassahun A, Alemu Y (2011) A practical guide on village-based sheep and goat cooperative breeding schemes. Technical Bulletin No. 42. Addis Ababa, Ethiopia: ESGPIP

    Google Scholar 

  • Gomes L, Pailleux JP, Dedieu B, Claudete R, Cournut S (2014) An approach for assessing the ecological intensification of livestock systems. International Farming Systems Association, Berlin, Germany

    Google Scholar 

  • Guo J, Tao H, Li PLL, Zhong T, Wang L, Ma J, Chen X, Song T, Zhang H (2018) Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci Rep 8:10405. https://doi.org/10.1038/s41598-018-28719-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Zhong J, Li L, Zhong T, Wang L, Song T, Zhang H (2019) Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genet Sel Evol 51:70. https://doi.org/10.1186/s12711-019-0512-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Kumar S, Dangi SS, Jangir BL (2013) Physiological, biochemical and molecular responses to thermal stress in goats. Int J Livest Res 3(2):27–38

    Article  Google Scholar 

  • Hassan FU, Nawaz A, Rehman MS, Ali MA, Dilshad SM, Yang C (2019) Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim Nutr 5:340–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53(11):876–883

    Article  CAS  PubMed  Google Scholar 

  • Helal A, Hashem ALS, Abdel-Fattah MS, El-Shaer HM (2010) Effect of heat stress on coat characteristics and physiological responses of Balady and Damascus goats in Sinai, Egypt. American-Eurasian J Agric Environ Sci 7(1):60–69

    CAS  Google Scholar 

  • Henry B, Charmley E, Eckard R, Gaughan JB, Hegarty R (2012) Livestock production in a changing climate: adaptation and mitigation research in Australia. Crop Pasture Sci 63(3):191–202

    Article  Google Scholar 

  • Herrero M, Thornton PK, Gerber P, Reid RS (2009) Livestock, livelihoods and the environment: understanding the trade-offs. Curr Opin Environ Sustain 1(2):111–120

    Article  Google Scholar 

  • Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97(3):222–234

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann I (2013) Adaptation to climate change – exploring the potential of locally adapted breeds. Animal 7(s2):346–362

    Article  PubMed  Google Scholar 

  • Ibidhi R, Salem HB (2020) Water footprint and economic water productivity assessment of eight dairy cattle farms based on field measurement. Animal 14(1):180–189

    Article  CAS  PubMed  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2000) In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Special report on land use, land use change and forestry. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. CRC Press, Boca Raton, FL, p 335. https://doi.org/10.1201/9780429057274

    Book  Google Scholar 

  • Joy A, Dunshea FR, Leury BJ, Clarke IJ, DiGiacomo K, Chauhan SS (2020) Resilience of small ruminants to climate change and increased environmental temperature: a review. Animals 10:867

    Article  PubMed Central  Google Scholar 

  • Karnuah AB, Dunga G, Rewe T (2018) Community based breeding program for improved goat production in Liberia. MOJ Curr Res Rev 1:216–221

    Article  Google Scholar 

  • Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME (2014) Selection for complex traits leaves little or no classic signatures of selection. BMC Genom 15(1):246

    Article  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Kim E, Elbeltagy A, Aboul-Naga A, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF (2016) Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116:255–264. https://doi.org/10.1038/hdy.2015.94

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Jeong S, Kim KH, Lim WJ, Lee HY, Kim N (2019) Discovery of genomic characteristics and selection signatures in Korean indigenous goats through comparison of 10 goat breeds. Front Genet 10:699. https://doi.org/10.3389/fgene.2019.00699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosgey IS, Baker RL, Udo HMJ, Van Arendonk JA (2006) Successes and failures of small ruminant breeding programmes in the tropics: a review. Small Ruminant Res 61(1):13–28

    Article  Google Scholar 

  • Kumar S, Upadhyay AD (2009) Goat Farmers’ coping strategy for sustainable livelihood security in arid Rajasthan: an empirical Analysis1. Agric Econ Res Rev 22(2):281–290

    Google Scholar 

  • Kumar S, Vaid RK, Sagar RL (2006) Contribution of goats to livelihood security of small ruminant farmers in semiarid region. Indian J Small Rumin 12(1):61–66

    Google Scholar 

  • Kumar S, Rao CA, Kareemulla K, Venkateswarlu B (2010) Role of goats in livelihood security of rural poor in the less favoured environments. Indian J Agric Econ 65(4):1–22

    Google Scholar 

  • Kumar S, Meena RS, Jhariya MK (2020) Resources use efficiency in agriculture. Springer, Singapore, p 760. https://doi.org/10.1007/978-981-15-6953-1

    Book  Google Scholar 

  • Lozano-Jaramillo M, Bastiaansen JWM, Dessie T, Komen H (2019) Use of geographic information system tools to predict animal breed suitability for different agro-ecological zones. Animal 13(7):1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Lv FH, Agha S, Kantanen J, Colli L, Stucki S, Kijas JW, Joost S, Li MH, Ajmone Marsan P (2014) Adaptations to climate-mediated selective pressures in sheep. Mol Biol Evol 31(12):3324–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhusoodan AP, Bagath M, Sejian V, Krishnan G, Rashamol VP, Savitha ST, Awachat VB, Bhatta R (2020) Summer season induced changes in quantitative expression patterns of different heat shock response genes in Salem black goats. Trop Anim Health Prod 52:2725–2730

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Karunakaran M, Rout PK, Roy R (2014) Conservation of threatened goat breeds in India. Anim Genet Resour 55:47–55

    Article  Google Scholar 

  • Marai IFM, El-Darawany AA, Fadiel A, Abdel-Hafez MAM (2007) Physiological traits as affected by heat stress in sheep—a review. Small Ruminant Res 71(1–3):1–12

    Article  Google Scholar 

  • McManus C, Paludo GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41(1):95–101

    Article  PubMed  Google Scholar 

  • Mdladla K, Dzomba EF, Muchadeyi FC (2018) Landscape genomics and pathway analysis to understand genetic adaptation of south African indigenous goat populations. Heredity 120:369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541. https://doi.org/10.1007/978-981-13-0253-4_10

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: A review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020c) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meza-Herrera CA, Martinez L, Arechiga C, Bafiuelos R, Rincon RM, Urrutia J, Salinas H, Mellado M (2006) Circannual identification and quantification of constitutive heat shock proteins (HSP 70) in goats. J Appl Anim Res 29:9–12

    Article  CAS  Google Scholar 

  • Miller BA, Lu CD (2019) Current status of global dairy goat production: an overview. Asian-Australasian J Anim Sci 32(8):1219

    Article  Google Scholar 

  • Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo A, Wurzinger M, Sölkner J (2010) Genetics of adaptation in domestic farm animals: a review. Livest Sci 132:1–12

    Article  Google Scholar 

  • Monau P, Raphaka K, Zvinorova-Chimboza P, Gondwe T (2020) Sustainable utilization of indigenous goats in southern Africa. Diversity 12:20. https://doi.org/10.3390/d12010020

    Article  Google Scholar 

  • Morales FAR, Genís JMC, Guerrero YM (2019) Current status, challenges and the way forward for dairy goat production in Europe. Asian-Australas J Anim Sci 32(8):1256–1265

    Article  Google Scholar 

  • Naandam J, Assan IK (2014) Effect of coat color, ecotype, location and sex on hair density of west African dwarf (WAD) goats in northern Ghana. Sky J Agric Res 3(2):25–30

    Google Scholar 

  • Naderi S, Rezaei HR, Pompanon F, Blum MG, Negrini R, Naghash HR, Balkız O, Mashkour M, Gaggiotti OE, Ajmone-Marsan P (2008) The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proc Natl Acad Sci 105(46):17659–17664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagayach R, Gupta UD, Prakash A (2017) Expression profiling of hsp70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions. Small Ruminant Res 147:41–47

    Article  Google Scholar 

  • Naqvi SMK, Sejian V (2011) Global climate change: role of livestock. Asian J Agric Sci 3:19–25

    Google Scholar 

  • Nardone A, Ronchi B, Lacetera N, Raniere MS, Bernabucci U (2010) Effects of climate change on animal production and sustainability of livestock systems. Livest Sci 130:57–69

    Article  Google Scholar 

  • Nguyen TT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ (2016) Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 99(4):2849–2862

    Article  CAS  PubMed  Google Scholar 

  • Ojango JMK, Audho J, Oyieng E, Recha J, Muigai A (2015) Sustainable small ruminant breeding program for climate-smart villages in Kenya: Baseline household survey report. CCAFS Working Paper no. 127. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

    Google Scholar 

  • Okoruwa MI (2014) Effect of heat stress on thermoregulatory, live bodyweight and physiological responses of dwarf goats in southern Nigeria. Eur Sci J 10(27):255–264

    Google Scholar 

  • Onzima RB, Upadhyay MR, Doekes HP, Brito LF, Bosse M, Kanis E (2018) Genome-wide characterization of selection signatures and runs of homozygosity in ugandan goat breeds. Front Genet 9:318. https://doi.org/10.3389/fgene.2018.00318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR (2019) Genetic selection for Thermotolerance in ruminants. Animals 9:948–948

    Article  PubMed Central  Google Scholar 

  • Paul AK, Sultana MJ, Nasrin F (2020) Management practices, reproductive performance and constraints of goat rearing in Bangladesh. Indian J Small Ruminants 26(1):138–141

    Article  Google Scholar 

  • Pragna P, Chauhan SS, Sejian V, Leury BJ, Dunshea FR (2018a) Climate change and goat production: enteric methane emission and its mitigation. Animals 8(12):235

    Article  PubMed Central  Google Scholar 

  • Pragna P, Sejian V, Bagath M, Krishnan G, Archana PR, Soren NM, Beena V, Bhatta R (2018b) Comparative assessment of growth performance of three different indigenous goat breeds exposed to summer heat stress. J Animal Physiol Animal Nutrition 102(4):825–836

    Article  CAS  Google Scholar 

  • Pragna P, Sejian V, Soren NM, Bagath M, Krishnan G, Beena V, Devi PI, Bhatta R (2018c) Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem black) goat breeds. Biol Rhythm Res 49(4):551–565

    Article  CAS  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019a) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 101–131. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019b) Soil for sustainable environment and ecosystems management. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 189–221. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. CRC Press, Boca Raton, FL, p 383. https://doi.org/10.1201/9780429286759

    Book  Google Scholar 

  • Rashamol VP, Sejian V, Bagath M, Krishnan G, Beena V, Bhatta R (2019) Effect of heat stress on the quantitative expression patterns of different cytokine genes in Malabari goats. Int J Biometeorol 63(8):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Raut MS, Kurpatwar LC (2020) Commercial goat farming in India: an emerging Agri-business opportunity. Stud Indian Place Names 40(38):1034–1039

    Google Scholar 

  • Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(5):707–728

    Article  CAS  PubMed  Google Scholar 

  • Rewe TO, Ogore PB, Kahi AK (2002) Integrated goat projects in Kenya: impact on genetic improvement. In: Proceedings of the seventh world congress on genetics applied to livestock production, Vol. 33, pp. 385–387

    Google Scholar 

  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Climate Risk Mgt 16:145–163

    Article  Google Scholar 

  • Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025: dealing with scarcity. IFPRI, Washington, DC

    Google Scholar 

  • Rout PK, Kaushik R, Ramachandran N (2016) Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period. Cell Stress Chaperones 21(4):645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rout PK, Kaushik R, Ramachandran N, Jindal SK (2018) Identification of heat stress-susceptible and-tolerant phenotypes in goats in semiarid tropics. Anim Prod Sci 58(7):1349–1357

    Article  Google Scholar 

  • Savitha ST, Girish Kumar V, Amitha JP, Sejian V, Bagath M, Krishnan G, Devaraj C, Bhatta R (2019) Comparative assessment of thermo-tolerance between indigenous Osmanabadi and Salem black goat breeds based on expression patterns of different intracellular toll-like receptor genes during exposure to summer heat stress. Biol Rhythm Res 1:1–9

    Google Scholar 

  • Sejian V (2013) Climate change: impact on production and reproduction, adaptation mechanisms and mitigation strategies in small ruminants: a review. Indian J Small Rumin 19(1):1–21

    Google Scholar 

  • Sejian V, Bagath M, Parthipan S, Manjunathareddy BG, Selvaraju S, Archana SS, Soren NM, Rao SBN, Giridhar K, Ravindra JP, Bhatta R (2015) Effect of different diet level on the physiological adaptability, biochemical and endocrine responses and relative hepatic HSP 70 and HSP 90 genes expression during summer season in Osmanabadi kids. J Agric Sci Tech A 5:755–769

    CAS  Google Scholar 

  • Sejian V, Bagath M, Krishnan G, Rashamol VP, Pragna P, Devaraj C, Bhatta R (2019) Genes for resilience to heat stress in small ruminants: a review. Small Ruminant Res 173:42–53

    Article  Google Scholar 

  • Shilja S, Sejian V, Bagath M, Mech A, David CG, Kurien EK, Varma G, Bhatta R (2016) Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors. Int J Biometeorol 60(9):1311–1323

    Article  PubMed  Google Scholar 

  • Shilja S, Sejian V, Bagath M, Manjunathareddy GB, Kurien EK, Varma G, Bhatta R (2017) Summer season related heat and nutritional stresses on the adaptive capability of goats based on blood biochemical response and hepatic HSP70 gene expression. Biol Rhythm Res 48(1):65–83

    Article  CAS  Google Scholar 

  • Shivakumar C, Reddy BS, Patil SS (2020) Socio-economic characteristics and composition of sheep and goat farming under extensive system of rearing. Agric Sci Digest 40:1

    Google Scholar 

  • Shumbusho F, Raoul J, Astruc JM, Palhiere I, Elsen JM (2013) Potential benefits of genomic selection on genetic gain of small ruminant breeding programs. J Animal Sci 91(8):3644–3657

    Article  CAS  Google Scholar 

  • Silanikove N (2000) The physiological basis of adaptation in goats to harsh environments. Small Ruminant Res 35(3):181–193

    Article  Google Scholar 

  • Sinawang PD, Rai V, Ionescu RE, Marks RS (2016) Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron 77:400–408

    Article  CAS  PubMed  Google Scholar 

  • Singh MK, Dixit AK, Roy AK, Singh SK (2013) Goat rearing: a pathway for sustainable livelihood security in Bundelkhand region. Agric Econ Res Rev 26(conf):79–88

    Google Scholar 

  • Smith C (1984) Rates of genetic change in farm livestock. Res Dev Agric 1:79–85

    Google Scholar 

  • Sophia I, Sejian V, Bagath M, Bhatta R (2016) Quantitative expression of hepatic toll-like receptors 1–10 mRNA in Osmanabadi goats during different climatic stresses. Small Ruminant Res 141:11–16

    Article  Google Scholar 

  • Sophia I, Sejian V, Bagath M, Bhatta R (2017) Influence of different environmental stresses on various spleen toll like receptor genes expression in Osmanabadi goats. Sciences 10(1):9–16

    Google Scholar 

  • Stern E, Vacic A, Li C, Ishikawa FN, Zhou C, Reed MA, Fahmy TM (2010) A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions. Small 6(2):232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans Royal Soc London Series B: Biol Sci 365(1554):2853–2867

    Article  Google Scholar 

  • Thornton PK, Herrero MT, Freeman HA, Okeyo Mwai A, Rege JEO, Jones PG, McDermott JJ (2007) Vulnerability, climate change and livestock-opportunities and challenges for the poor. J Semi-Arid Trop Agric Res 4(1):1–23

    Google Scholar 

  • Tresset A, Vigne JD (2011) Last hunter-gatherers and first farmers of Europe. C R Biol 334(3):182–189

    Article  PubMed  Google Scholar 

  • Turturici G, Sconzo G, Geraci F (2011) Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011:618127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandana GD, Bagath M, Sejian V, Krishnan G, Beena V, Bhatta R (2019) Summer season induced heat stress impact on the expression patterns of different toll-like receptor genes in Malabari goats. Biol Rhythm Res 50(3):466–482

    Article  CAS  Google Scholar 

  • Wang X, Liu J, Zhou G, Guo J, Yan H, Niu Y (2016) Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci Rep 6:38932. https://doi.org/10.1038/srep38932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeder MA (2005) A view from the Zagros: new perspectives on livestock domestication in the Fertile Crescent. In: Vigne JD, Peters J, Helmer D (eds) The first steps of animal domestication: new archaeozoological approaches. Oxbow Books, Oxford, FL, pp 125–146

    Google Scholar 

  • Zidi A, Abo-Shady H, Molina A, Menéndez-Buxadera A, Sánchez-Rodríguez M, Díaz C, Carabaño MJ, Serradilla JM (2014) Genome wide association for heat stress tolerance/susceptibility in Florida dairy goats. In 10th World Congress on Genetics Applied to Livestock Production, pp 17–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sejian, V. et al. (2021). Eco-Intensified Breeding Strategies for Improving Climate Resilience in Goats. In: Jhariya, M.K., Meena, R.S., Banerjee, A. (eds) Ecological Intensification of Natural Resources for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-33-4203-3_18

Download citation

Publish with us

Policies and ethics