Skip to main content

Omics (Genomics, Proteomics, Metabolomics, Etc.) Tools to Study the Environmental Microbiome and Bioremediation

  • Chapter
  • First Online:
Waste to Energy: Prospects and Applications

Abstract

The term microbiome refers to the collection of microorganisms or their hereditary material from a specific biological system. Microbiomes are widespread and inescapable and contemporary in the soil, water, air, and in/on other living beings. Changes in the microbiome can conflict the wellbeing of the natural specialty where they occupy. In order to collect more comprehensive knowledge about these microbial communities, various measures have been pursued. Exploration of natural microbiome can be of a specific interest for revelation of novel creatures or novel gene or new microbial metabolites. Technologies that explore the roles, relationships, or characteristics of biomolecules of cells, such as DNA, RNA, proteins, or small metabolites, named by conjoin suffix—“omics”, as in genomics, transcriptomics, proteomics, or metabolomics, respectively. Genomics and transcriptomics research has elevated because of advances in microarray technology. Fast advancement in “omics”—metagenomics, metatranscriptomics, metaproteomics, metabolomics leading to a greater understanding of the patterns, processes, and mechanisms governing the structure and dynamics of microbiomes. Albeit each “omics” technology gives a valuable data independently yet when they use in consolidated structure, they delineate an increasingly extensive picture. The omics technologies have critical commitment to comprehend ecological bioremediation mechanisms. Omics advancements help in discovering of genes involved in biodegradation, to find out the functions of missing genes and to explore the metabolic pathways of bioremediation. Genomics has been used to study pure cultures with regard to bioremediation. Proteomics-based examinations have been helpful in elaborating changes in the structure and function of proteins as well as in the identification of key proteins associated with the physiological reaction of microorganisms when presented to anthropogenic contaminations. Transcriptomic or metatranscriptomics apparatuses are utilized to increase utilitarian bits of knowledge into the exercises of ecological microbial networks by considering their mRNA transcriptional profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aardema MJ, MacGregor JT (2003) Toxicology and genetic toxicology in the new era of “toxicogenomics”: impact of “-omics” technologies. In: Toxicogenomics. Springer, Tokyo, pp 171–193

    Chapter  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198

    Article  CAS  PubMed  Google Scholar 

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V et al (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinf Online 12(Suppl 1):516

    Google Scholar 

  • Aitken A, Learmonth M (2002) Protein identification by in-gel digestion and mass spectrometric analysis. Mol Biotechnol 20:95–97

    Article  CAS  PubMed  Google Scholar 

  • Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6(6):1094

    Article  CAS  PubMed  Google Scholar 

  • Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic foot printing. Nat Biotechnol 21:692–696

    Article  CAS  PubMed  Google Scholar 

  • Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, Al-Asmakh M, Abdel-Aziz H, Cenciarelli C (2016) Human microbiome and its association with health and diseases. J Cell Physiol 231(8):1688–1694

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, Hoon M (2016) Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappa B signaling. Stem Cells 34(3):601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arulazhagan P, Al-Shekri K, Huda Q, Godon JJ, Basahi JM, Jeyakumar D (2017) Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 21:163–174

    Article  CAS  PubMed  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2020) Bioremediation: an eco-friendly sustainable technology for environmental management. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 19–39

    Chapter  Google Scholar 

  • Bae JW, Park YH (2006) Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends Biotechnol 24:318–323

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C (2010) Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 12(4):1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Jehmlich N, Martínez-Navarro J, Bayona V, García C, Moreno JL (2019) The effects of struvite and sewage sludge on plant yield and the microbial community of a semiarid Mediterranean soil. Geoderma 337:1051–1057

    Article  CAS  Google Scholar 

  • Bharagava RN, Purchase D, Saxena G, Mulla SI (2019) Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Microbial diversity in the genomic era. Academic Press, Amsterdam, pp 459–477

    Chapter  Google Scholar 

  • Cai L, Ju F, Zhang T (2014) Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98(7):3317–3326

    Article  CAS  PubMed  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19(6):544–549

    Article  CAS  PubMed  Google Scholar 

  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJ, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73(1):71–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carney LT, Reinsch SS, Lane PD, Solberg OD, Jansen LS, Williams KP, Trent JD, Lane TW (2014) Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal Res 4:52–61

    Article  Google Scholar 

  • Castrillo JI, Hayes A, Mohammed S et al (2003) An optimized protocol for metabolome analysis in yeasts using direct infusion electrospray mass-spectrometry. Phytochemistry 62:929–937

    Article  CAS  PubMed  Google Scholar 

  • Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses Fe (III) oxide by chemotaxis. Nature 416:767–769

    Article  CAS  PubMed  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2003) Molecular evidence for novel planctomycetes diversity in a municipal wastewater treatment plant. Appl Environ Microbiol 69(12):7354–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claus SP, Guillou H, Ellero-Simatos S (2016) The gut microbiota: a major player in the toxicity of environmental pollutants? Npj Biofilms Microb 2:16003

    Article  Google Scholar 

  • Culver KW, Labow MA (2002) Genomics. In: Robinson R (ed) Genetics. Macmillan, New York

    Google Scholar 

  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24(6):306–316

    Article  PubMed  CAS  Google Scholar 

  • DeLorenzo DM, Rottinghaus AG, Henson WR, Moon TS (2018) Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth Biol 7(2):727–738

    Article  CAS  PubMed  Google Scholar 

  • Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Dharmadi Y, Gonzalez R (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20(5):1309–1324

    Article  CAS  PubMed  Google Scholar 

  • Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180

    CAS  PubMed  Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German JB, Ridley WP (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994

    Article  CAS  PubMed  Google Scholar 

  • Draghi WO, Del Papa MF, Barsch A, Albicoro FJ, Lozano MJ, Pühler A, Niehaus K, Lagares A (2017) A metabolomic approach to characterize the acid-tolerance response in Sinorhizobium meliloti. Metabolomics 13(6):71

    Article  CAS  Google Scholar 

  • Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  • Dzionek A, Wojcieszyńska D, Hupert-Kocurek K, Adamczyk-Habrajska M, Guzik U (2018) Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts 8(5):176

    Article  CAS  Google Scholar 

  • Emanuele VA (2010) Advancements in high throughput protein profiling using surface enhanced laser desorption/ionization time of flight mass spectrometry. Doctoral dissertation, Georgia Institute of Technology

    Google Scholar 

  • Eyers L, George I, Schuler L, Stenuit B, Agathos SN, El Fantroussi S (2004) Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 66(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Eymann C, Homuth G, Scharf C et al (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184:2500–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández M, Duque E, Pizarro - Tobías P, Van Dillewijn P, Wittich RM, Ramos JL (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2, 4, 6-trinitrotoluene. J Microbial Biotechnol 2(2):287–294

    Article  CAS  Google Scholar 

  • Galvao TC, Mohn WW, Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23:497–506

    Article  CAS  PubMed  Google Scholar 

  • Gavaghan CL, Holmes E, Lenz E et al (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett 484:169–174

    Article  CAS  PubMed  Google Scholar 

  • German JB, Gillies LA, Smilowitz JT, Zivkovic AM, Watkins SM (2007) Lipidomics and lipid profiling in metabolomics. Curr Opin Lipidol 18(1):66–71

    CAS  PubMed  Google Scholar 

  • Gibney MJ, Walsh M, Brennan L et al (2005) Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 82:497–503

    Article  CAS  PubMed  Google Scholar 

  • Gieg LM, Toth CRA (2019) Anaerobic biodegradation of hydrocarbons: metagenomics and metabolomics. Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation. In: Steffan R (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 249–286

    Google Scholar 

  • Golyshin PN, Martins Dos Santos VA, Kaiser O et al (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R (2005) Biomarker discovery using metabolomics and explanatory machine learning. J Med Genet 42:S16–S16

    Article  Google Scholar 

  • Govantes F, Porrúa O, García-González V, Santero E (2009) Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. J Microbial Biotechnol 2:176–183

    Google Scholar 

  • Guermazi S, Daegelen P, Dauga C, Rivière D, Bouchez T, Godon JJ, Gyapay G, Sghir A, Pelletier E, Weissenbach J, Le Paslier D (2008) Discovery and characterization of a new bacterial candidate division by an anaerobic sludge digester metagenomic approach. Environ Microbiol 10(8):2111–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara-Luna J, Alvarez-Fitz P, Ríos-Leal E, Acevedo-Quiroz M, Encarnación-Guevara S, Moreno-Godinez ME, Castellanos-Escamilla M, Toribio-Jiménez J, Romero-Ramírez Y (2018) Biotransformation of benzo [a] pyrene by the thermophilic bacterium Bacillus licheniformis M2-7. World J Microbiol Biotechnol 34(7):88

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Rani R, Chandra A, Kumar V (2018) Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D (2018) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 44(2):212–229

    Article  CAS  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrigan GG (2006) Metabolic profiling-IBC’s inaugural meeting-using metabolomics to accelerate drug discovery and development, November 2005, Durham, NC. USA. Drugs: Investig Drugs J 9:28–31

    Google Scholar 

  • Hartmann M, Baumbach J, Nolte J et al (2006) Metabolomics—a new approach for the detection of colon cancer? Ann Oncol 17:36

    Google Scholar 

  • Hassan HA, Aly AA (2018) Isolation and characterization of three novel catechol 2, 3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. Int J Biol Macromol 106:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Hegde PS, White IR, Debouck C (2003) Interplay of transcriptomics and proteomics. Curr Opin Biotechnol 14:647–651

    Article  CAS  PubMed  Google Scholar 

  • Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24–36

    Article  CAS  PubMed  Google Scholar 

  • Hochberg Z (2006) Metabolomics of the obese. Int J Obes (Lond) 30:S4

    Article  Google Scholar 

  • Hood L, Rowen L (2013) The human genome project: big science transforms biology and medicine. Genome Med 5(9):79

    Article  PubMed  PubMed Central  Google Scholar 

  • Horlacher T, Seeberger PH (2006) The utility of carbohydrate microarrays in glycomics. Omics: J Integr Biol 10(4):490–498

    Article  CAS  Google Scholar 

  • Houghton JE, Shanley MS (1994) In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals, vol 1994. Dioscorides Press, Portland, pp 11–32

    Google Scholar 

  • Jadeja NB, More RP, Purohit HJ, Kapley A (2014) Metagenomic analysis of oxygenases from activated sludge. Bioresour Technol 165:250–256

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87

    Article  PubMed  PubMed Central  Google Scholar 

  • James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331

    Article  CAS  PubMed  Google Scholar 

  • Jennings LK, Chartrand MM, Lacrampe-Couloume G, Lollar BS, Spain JC, Gossett JM (2009) Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas JS666. Appl Environ Microbiol 11:3733–3744

    Article  CAS  Google Scholar 

  • Johnson CH, Patterson AD, Idle JR, Gonzalez FJ (2012) Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol Toxicol 52:37–56

    Article  CAS  PubMed  Google Scholar 

  • Joo WA, Kim CW (2005) Proteomics of halophilic archaea. J Chromatogr B Analyt Technol Biomed Life Sci 815:237–250

    Article  CAS  PubMed  Google Scholar 

  • Ju K-S, Parales RE (2009) Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. J Microbial Biotechnol 2:239–250

    Google Scholar 

  • Kadakkuzha BM, Puthanveettil SV (2013) Genomics and proteomics in solving brain complexity. Mol Biosyst 9(7):1807–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, Bohannan BJ, Brown GZ, Green JL (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6(8):1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keum YS, Seo JS, Hu Y, Li QX (2009) Degradation pathways of phenanthrene by Sinorhizobium sp. C4 Appl Microbiol Biotechnol 71:935–941

    Article  CAS  Google Scholar 

  • Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS et al (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318

    Article  CAS  PubMed  Google Scholar 

  • King GM (2014) Urban microbiomes and urban ecology: how do microbes in the built environment affect human sustainability in cities? J Microbiol 52(9):721–728

    Article  PubMed  Google Scholar 

  • Knigge T, Monsinjon T, Andersen OK (2004) Surface-enhanced laser desorption/ionization- time of flight-mass spectrometry approach to biomarker discovery in blue mussels (Mytilus edulis) exposed to polyaromatic hydrocarbons and heavy metals under field conditions. Proteomics 4:2722–2727

    Article  CAS  PubMed  Google Scholar 

  • Kucharzyk KH, Meisel JE, Kara-Murdoch F, Murdoch RW, Higgins SA, Vainberg S, Bartling CM, Mullins L, Hatzinger PB, Löffler FE (2020) Metagenome-guided proteomic quantification of reductive dehalogenases in the Dehalococcoides mccartyi-containing consortium SDC-9. J Proteome Res 19(4):1812–1823

    Article  CAS  PubMed  Google Scholar 

  • Kuhner S, Wohlbrand L, Fritz I et al (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 187:1493–1503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Landry F, Lombardo CR, Smith JWA (2000) Method for application of samples to matrix-assisted laser desorption ionization time-of-flight targets that enhances peptide detection. Anal Biochem 279:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lay JO Jr, Liyanage R, Borgmann S, Wilkins CL (2006) Problems with the “omics”. TrAC Trends Anal Chem 25(11):1046–1056

    Article  CAS  Google Scholar 

  • Lee J, Han I, Kang BR, Kim SH, Sul WJ, Lee TK (2017) Degradation of crude oil in a contaminated tidal flat area and the resilience of bacterial community. Mar Pollut Bull 114(1):296–301

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Jiao S, Wang M, Yu H, Shen Z (2020) A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH. Metab Eng 57:13–22

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang W, Shah SB, Zanaroli G, Xu P, Tang H (2020) Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Appl Microbiol Biotechnol 104(1):427–437

    Article  CAS  PubMed  Google Scholar 

  • Lu ZM, Deng Y, Van Nostrand JD, He ZL, Voordeckers J, Zhou AF et al (2012) Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J 6:451–460

    Article  CAS  PubMed  Google Scholar 

  • Malhi H, Gores GJ (2006) Cancer therapy-back to metabolism. Cancer Biol Ther 5:986–987

    Article  CAS  PubMed  Google Scholar 

  • Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263

    Article  CAS  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLellan LSC, Fisher J, Newton R (2015) The microbiome of urban waters. Int Microbiol 18(3):141–149

    PubMed  PubMed Central  Google Scholar 

  • Merchant M, Weinberger SR (2000) Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis Int J 21(6):1164–1177

    Article  CAS  Google Scholar 

  • Oualha M, Al-Kaabi N, Al-Ghouti M, Zouari N (2019) Identification and overcome of limitations of weathered oil hydrocarbons bioremediation by an adapted Bacillus sorensis strain. J Environ Manage 250:109455

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Płociniczak M, Czapla J, Płociniczak T, Piotrowska-Seget Z (2019) The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicol Environ Saf 169:615–622

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405(6788):837

    Article  CAS  PubMed  Google Scholar 

  • Paoletti AC, Zybailov B, Washburn MP (2004) Principles and applications of multidimensional protein identification technology. Expert Rev Proteomics 1(3):275–282

    Article  CAS  PubMed  Google Scholar 

  • Parisi VA, Brubaker GR, Zenker MJ, Prince RC, Gieg LM, Da Silva ML, Alvarez PJ, Suflita JM (2009) Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site. J Microbial Biotechnol 2(2):202–212

    Article  CAS  Google Scholar 

  • Park H, Choi IG (2020) Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 104:6919–6928

    Article  CAS  PubMed  Google Scholar 

  • Park H, Min B, Jang Y, Kim J, Lipzen A, Sharma A, Andreopoulos B, Johnson J, Riley R, Spatafora JW, Henrissat B (2019) Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Appl Microbiol Biotechnol 103(19):8145–8155

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Sardans J (2009) Ecological metabolomics. Chem Ecol 25(4):305–309

    Article  CAS  Google Scholar 

  • Pevsner J (2009) Bioinformatics and functional genomics, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Plewniak F, Crognale S, Rossetti S, Bertin PN (2018) A genomic outlook on bioremediation: the case of arsenic removal. Front Microbiol 9:820

    Article  PubMed  PubMed Central  Google Scholar 

  • Pylro VS, Roesch LFW, Ortega JM, do Amaral AM, Tótola MR, Hirsch PR, Rosado AS, Góes-Neto A, da Silva ALDC, Rosa CA, Morais DK (2014) Brazilian microbiome project: revealing the unexplored microbial diversity-challenges and prospects. Microb Ecol 67(2):237–241

    Article  PubMed  Google Scholar 

  • Rist MJ, Wenzel U, Daniel H (2006) Nutrition and food science go genomics. TIBTECH 24:172–178

    Article  CAS  Google Scholar 

  • Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822

    Article  CAS  PubMed  Google Scholar 

  • Roessner U, Bowne J (2000) What is metabolomics all about? Biotechniques 46:363

    Article  CAS  Google Scholar 

  • Rojo F, Pieper DH, Engesser KH, Knackmuss HJ, Timmis KN (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398

    Article  CAS  PubMed  Google Scholar 

  • Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling metabolites and peptides in single cells. Nat Methods 8(4s):S20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito N, Robert M, Kitamura S et al (2006) Metabolomics approach for enzyme discovery. J Proteome Res 5:1979–1987

    Article  CAS  PubMed  Google Scholar 

  • Scheibe T, Mahadevan R, Fang Y, Garg S, Lovley D (2009) Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. J Microbial Biotechnol 2:272–284

    Google Scholar 

  • Schena M, Heller RA, Theriault TP et al (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306

    Article  CAS  PubMed  Google Scholar 

  • Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K (2013) Genomic variation landscape of the human gut microbiome. Nature 493(7430):45

    Article  PubMed  CAS  Google Scholar 

  • Schlotterbeck G, Ross A, Dieterle F et al (2006) Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics 7:1055–1075

    Article  CAS  PubMed  Google Scholar 

  • Schneegurt MA, Kulpa CF Jr (1998) The application of molecular techniques in environmental biotechnology for monitoring microbial systems. Biotechnol Appl Biochem 27(2):73–79

    Article  CAS  Google Scholar 

  • Schoolnik GK, Voskuil MI, Schnappinger D, Meibom K, Dolganov NA, Wilson MA, Chong KH (2001) Whole genome DNA microarray expression analysis of biofilm development by Vibrio cholerae O1ElT or. In: Methods in enzymology, vol 336. Academic Press, Amsterdam, pp 3–18

    Google Scholar 

  • Seibert V, Ebert MP, Buschmann T (2005) Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct Genomics 4(1):16–26

    Article  CAS  Google Scholar 

  • Seo JS, Keum YS, Li Q (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427

    Article  CAS  PubMed  Google Scholar 

  • Shekhar SK, Godheja J, Modi DR (2020) Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 437–474

    Chapter  Google Scholar 

  • Shi Y, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459(7244):266

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Mol Biol Rev 59(2):201–222

    CAS  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Singh OV (2006) Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6:5481–5492

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. J Microbial Biotechnol 10(1):50–53

    Article  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19(5):437–444

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72:1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Ueno Y, Naraoka H et al (2002a) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Ueno Y, Naraoka H et al (2002b) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229

    Article  CAS  PubMed  Google Scholar 

  • Spirito CM, Richter H, Rabaey K, Stams AJ, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27:115–122

    Article  CAS  PubMed  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279

    Article  CAS  PubMed  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26(6):561–575

    Article  CAS  PubMed  Google Scholar 

  • Tang YJ, Martin HG, Dehal PS, Deutschbauer A, Llora X, Meadows A et al (2009) Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Biotechnol Bioeng 102:1161–1169. https://doi.org/10.1002/bit.22129

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Gallardo L, Santero E, Camafeita E, Calvo E, Schlömann M, Floriano B (2009) Molecular and biochemical characterization of the tetralin degradation pathway in Rhodococcus sp. strain TFB. J Microbial Biotechnol 2(2):262–273

    Article  CAS  Google Scholar 

  • Treu L, Kougias PG, Campanaro S, Bassani I, Angelidaki I (2016) Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresour Technol 216:260–266

    Article  CAS  PubMed  Google Scholar 

  • Trigo A, Valencia A, Cases I (2009) Systemic approaches to biodegradation. FEMS Microbiol Rev 33(1):98–108

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Duhalt R, Marquez-Rocha F, Ponce E, Licea AF, Viana MT (2005) Nonylphenol, an integrated vision of a pollutant. Appl Ecol Environ Res 4(1):1–25

    Article  Google Scholar 

  • Vilchez-Vargas R, Junca H, Pieper DH (2010) Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12(12):3089–3104

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies. Omics: J Integr Biol 11(3):305–313

    Article  Google Scholar 

  • Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  PubMed  CAS  Google Scholar 

  • Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. In: Bioremediation. ASM Press, Washington, DC, p 127

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward N, Fraser CM (2005) How genomics has affected the concept of microbiology. Curr Opin Microbiol 8(5):564–571

    Article  CAS  PubMed  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-poljak A et al (1995) Progress with gene product mapping of the Mollicutes: mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Fiehn O (2002) Can we discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 13:156–160

    Article  CAS  PubMed  Google Scholar 

  • WHA (2004) WHA 57.13: genomics and world health, fifty seventh world health assembly resolution

    Google Scholar 

  • Whitfield PD, German AJ, Noble PJM (2004) Metabolomics: an emerging post-genomic tool for nutrition. Br J Nutr 92:549–555

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) Genomics and world health: report of the Advisory Committee on Health research. WHO, Geneva

    Google Scholar 

  • Wibberg D, Bremges A, Dammann-Kalinowski T, Maus I, Igeño MI, Vogelsang R, König C, Luque-Almagro VM, Roldán MD, Sczyrba A, Moreno-Vivián C (2016) Finished genome sequence and methylome of the cyanide-degrading Pseudomonas pseudoalcaligenes strain CECT5344 as resolved by single-molecule real-time sequencing. J Biotechnol 232:61–68

    Article  CAS  PubMed  Google Scholar 

  • Williams PJ, Botes E, Maleke MM, Ojo A, DeFlaun MF, Howell J, van Heerden E (2014) Effective bioreduction of hexavalent chromium-contaminated water in fixed-film bioreactors. Water SA 40(3):549–554

    Article  CAS  Google Scholar 

  • Wishart DS (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5:2814–2820

    Article  CAS  PubMed  Google Scholar 

  • Xia J (2011) Developing bioinformatics tools for metabolomics. Library and Archives Canada, Ottawa

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5(6):45–57

    CAS  Google Scholar 

  • Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. Nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58(5):397–404

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang N, Xue M, Lu ST, Tao S (2011) Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials. Environ Pollut 159(2):591–595

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Li K, Zhou C, Zhou H, Liu H, Chai H, Lu F, Zhang H (2020) Identification of two novel highly inducible promoters from Bacillus licheniformis by screening transcriptomic data. Genomics 112(2):1866–1871

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Du R, Wang L, Zhang H (2010) The antioxidative effects of probiotic lactobacillus casei Zhang on the hyperlipidemic rats. Eur Food Res Technol 231(1):151–158

    Article  CAS  Google Scholar 

  • Zhao L, Hartung T (2015) Metabonomics and toxicology. In: Metabonomics. Humana Press, New York, pp 209–231

    Google Scholar 

  • Zhao D, Kumar S, Zhou J, Wang R, Li M, Xiang H (2017) Isolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon. Extremophiles 21:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang H, White JC, Chen X, Li H, Qu X, Ji R (2019) Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environ Sci Nano 6(6):1716–1727

    Article  CAS  Google Scholar 

  • Zhou S, Gan M, Zhu J, Liu X, Qiu G (2018) Assessment of bioleaching microbial community structure and function based on next-generation sequencing technologies. Fortschr Mineral 8(12):596

    Article  CAS  Google Scholar 

  • Zwolinski MD, Harris RF, Hickey WJ (2000) Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation 11:141–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D. et al. (2020). Omics (Genomics, Proteomics, Metabolomics, Etc.) Tools to Study the Environmental Microbiome and Bioremediation. In: Kashyap, B.K., Solanki, M.K., Kamboj, D.V., Pandey, A.K. (eds) Waste to Energy: Prospects and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4347-4_10

Download citation

Publish with us

Policies and ethics