Skip to main content

A Brief Review on Terahertz Avalanche Transit Time Sources

  • Chapter
  • First Online:
Advanced Materials for Future Terahertz Devices, Circuits and Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 727))

Abstract

During last few years, numerous researches have been processed for the growth of reliable sources in the terahertz (THz) frequency regime. Among different solid-state sources, impact ionization avalanche transit time (IMPATT) diode is the most promising one for THz wave generation. Here, a selective review has been carried on THz IMPATT diode, which helps in detailed understanding of device operation in this domain. The paper mainly deals with several terahertz properties based on DC, noise, small and large-signal simulation of IMPATT devices. This study reveals the potency of this device in many THz applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007)

    Article  Google Scholar 

  2. D. Grischkowsky, S. Keiding, M. Exter, C. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B. 7, 2006–2015 (1990)

    Article  CAS  Google Scholar 

  3. C. Debus, P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91, 184102–184103 (2007)

    Article  Google Scholar 

  4. T. Yasui, T. Yasuda, K. Sawanaka, T. Araki, Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl. Opt. 44, 6849–6856 (2005)

    Article  Google Scholar 

  5. C.D. Stoik, M.J. Bohn, J.L. Blackshire, Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express. 16, 17039–17051 (2008)

    Article  Google Scholar 

  6. C. Jordens, M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng. 47, 037003 (2008)

    Article  Google Scholar 

  7. A.J. Fitzgerald, B.E. Cole, P.F. Taday, Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J. Pharm. Sci. 94, 177–183 (2005)

    Article  CAS  Google Scholar 

  8. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Tech. 52, 2438–2447 (2004)

    Article  Google Scholar 

  9. P.H. Siegel, THz Instruments for Space. IEEE Trans. Antenn. Propag. 55, 2957–2965 (2007)

    Article  Google Scholar 

  10. S. Banerjee, A. Acharyya, J.P. Banerjee, Noise performance of heterojunction DDR MITATT devices based on Si~Si1-xGex at W-Band. Act. Passive Electron. Compon. 1–7 (2013)

    Google Scholar 

  11. W.T. Read, A proposed high frequency negative resistance. Bell Syst. Tech. J. 37, 401 (1958)

    Article  Google Scholar 

  12. T. Misawa, The negative resistance in p-n junction under avalanche breakdown conditions. part-I, IEEE Trans. Electron Devices ED 13, 137 (1966a)

    Google Scholar 

  13. T. Misawa, The negative resistance in p-n junction under avalanche breakdown conditions. part-II, IEEE Trans. Electron Devices ED 13, 143 (1966b)

    Google Scholar 

  14. D.L. Scharfetter, H.K. Gummel, Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron devices ED 18, 1137 (1978)

    Google Scholar 

  15. L.C. Chang, D.H. Hu, Large signal analysis of Lo-Hi-Lo double drift silicon Impatt at 50 GHz. IEEE Trans. Electron. Devices ED 25, 1137 (1978)

    Google Scholar 

  16. P.A. Rolland, C. Dalle, M.R. Friscourt, Physical understanding and optimum design of high power millimeter wave pulsed Impatt diode. IEEE Electron Device Lett. 17(5), 221 (1991)

    Article  Google Scholar 

  17. Jr. B.C. Deloach, Recent advances in solid state microwave generators. in Advances in Microwaves, vol. 2. (Academic Press, New York, 1967), p. 43

    Google Scholar 

  18. D. L. Scharfetter, W.J. Evans, H.L. Johnson, Double drift region p+pnn+ avalanche diode oscillators. Proc. IEEE Lett. 50, 1131 (1970)

    Google Scholar 

  19. T.E. Seidel, R.E. Davis, D.E. Iglesias, Double-Drift-region ion implanted millimetre wave IMPATT diodes. Proc. IEEE 59, 1222 (1971)

    Article  CAS  Google Scholar 

  20. S. Su, S.Sze, Design considerations of high efficiency GaAs impatt diodes. IEEE Trans. Electron. Devices ED 20, 541 (1973)

    Google Scholar 

  21. J.F. Luy, E. Kasper, W. Behr,Semiconductor structures for 100 GHz Silicon Impatt diodes. Proc. 17th European Microwave Conference (Rome), 820 (1987)

    Google Scholar 

  22. C. Dalle, P.A. Rolland, Read versus flat doping profile structures for the realization of reliable high-power, high-efficiency 94 GHz IMPATT Sources. IEEE Trans. Microwave Theory Tech. MTT 38, 366 (1990)

    Google Scholar 

  23. L.C. Chang, D.H. Hu, C.C. Wang, Design considerations of high efficiency double drift silicon IMPATT diodes. IEEE Trans. Electron. Devices ED-24,655 (1977)

    Google Scholar 

  24. J.P. Banerjee, J.F. Luy, F. Schaffler, Comparison of theoretical and experimental 60 GHz silicon Impatt diode performance. Electron. Lett. 27, 1049 (1991)

    Article  Google Scholar 

  25. J.F. Luy, F. Schaffler, M. Schlett, 17.6% conversion efficiency at 60 GHz with IMPATT diodes, in Proceedings of 22nd European Microwave Conference, p. 485 (1992)

    Google Scholar 

  26. S.P. Kwok, G.I. Hadded, Effects of tunnelling on an IMPATT oscillator. J. Appl. Phys. 43, 3824–3860 (1972)

    Article  Google Scholar 

  27. M. Chive, E. Constant, M. Lefebvre, J.P. Ribetich, Effect of tunneling on high efficiency Impatt avalanche diode. Proc. IEEE (Lett.) 63, 824–826 (1975)

    Article  Google Scholar 

  28. E.M. Elta, G.I. Hadded, Mixed tunneling and avalanche mechanisms in pn junctions and their effects on microwave transit-time devices. IEEE Trans. Electron Devices ED 25(6), 694–702 (1978)

    Google Scholar 

  29. E.M. Elta, G.I. Hadded, High frequency limitations of IMPATT, MITATT and TUNNET mode devices. IEEE Trans. MTT. 27, 442 (1979a)

    Google Scholar 

  30. E.M. Elta, G.I. Hadded, Large-signal performance of microwave transit-time devices in mixed tunneling and avalanche breakdown. IEEE Trans. Electron Device. 26, 941 (1979)

    Article  Google Scholar 

  31. J.C. De Jaeger, R. Kozlowski, G. Salmer, High efficiency GaInAs/InP heterojunction Impatt diodes. IEEE Trans. Electron Devices ED 30,790 (1983)

    Google Scholar 

  32. D. Lippens, J.L. Nieruchalski, E. Constant, Multilayered heterojunction structure for millemeter wave Impatt devices .Physics 134 B, 72 (1985)

    Google Scholar 

  33. N.S. Dogan, J.R. East, M. Elta, G.I. Haddad, Millimeter wave heterojunction MITATT diodes. IEEE Trans. Microwave Theory Tech. MTT 35, 1304 (1987)

    Google Scholar 

  34. M.J. Kearney, N.R. Couch, J. Stephens, R.S. Smith, Heterostructure impact avalanche transit time diodes grown by molecular beam epitaxy. Semicond. Sci. Tech. 8, 560 (1993)

    Article  CAS  Google Scholar 

  35. G.N. Dash, S.P. Pati, Computer aided studies on the microwave characteristics of InP/GaInAs and GaAs/GaInAs heterostructure single drift region impact avalanche transit diodes. J. Phys. D. Appl. Phys. 27, 1719 (1994)

    Article  CAS  Google Scholar 

  36. M.J. Bailey, Hetrojunction IMPATT diodes. IEEE Trans. Electron. Devices 39, 1829 (1992)

    Article  Google Scholar 

  37. P. Weissglas, Avalanche and barrier injection devices, in Microwave Devices, Device-Circuit Interactions, vol. 41. ed by M.J. Howes, D.V. Morgan, Wiley (1976)

    Google Scholar 

  38. J.K. Mishra, A.K. Panda, G.N. Dash, An extremely low-noise heterojunction IMPATT. IEEE Trans. Electron. Devices ED-44(12), 2143–2148 (1997)

    Google Scholar 

  39. S.M. Sze, R.M. Ryder, Microwave avalanche diodes. Proc. IEEE Special Issue Microwave Semicond. Devices 59, 1140–1154 (1971)

    CAS  Google Scholar 

  40. S.K. Roy, M. Sridharan, R. Ghosh, B.B. Pal, Computer method for the dc field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer. in Proceedings of the 1st Conference on Numerical Analysis of Semiconductor Devices (NASECODE I), ed. ByJ.H. Miller (Dublin, Ireland, 1979), pp. 266–274

    Google Scholar 

  41. S.K. Roy, J.P. Banerjee, S.P. Pati, A Computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT Diodes, in Proceedings 4th Conference on Numerical Analysis of Semiconductor Devices (NASECODE IV) (Dublin, Ireland, 1985), pp. 494–500

    Google Scholar 

  42. M. Mukherjee, N. Mazumder, Optically illuminated 4H-SiC terahertz IMPATT device. Egypt. J. Solids 30, 87–101 (2007)

    Google Scholar 

  43. M. Mukherjee, N. Mazumder, K. Goswami, S.K. Roy, An opto-sensitive InP based Impatt diode for application in Terahertz regime, in Physics of Semiconductor Devices, IWPSD (2007).

    Google Scholar 

  44. M. Mukherjee, N. Mazumder, S.K. Roy, Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime. Act. Passive Electron. Compon. 2009, 1–9 (2009)

    Google Scholar 

  45. M. Mukherjee, S. Banerjee, J.P. Banerjee, Dynamic characteristics of III-V and IV-IV semiconductor based transit time devices in the terahertz regime: a comparative analysis. Terahertz Sci. Technol. 3, 98–109 (2010)

    Google Scholar 

  46. A. Acharyya, M. Mukherjee, J.P. Banerjee, Influence of tunnel current on DC and dynamic properties of silicon based terahertz IMPATT source. Terahertz Sci. Technol.4(1), 26–41 (2011)

    Google Scholar 

  47. A. Acharyya, J.P. Banerjee, Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl. Nanosci. 4, 1–14 (2014)

    Article  CAS  Google Scholar 

  48. A. Acharyya, J. Chakraborty, K. Das, S. Datta, P. De, S. Banerjee, J.P. Banerjee, Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microwave Wirel. Technol. 5(5),567–578 (2013)

    Google Scholar 

  49. A. Acharyya, A. Mallik, D. Banerjee, S. Ganguli, A. Das, S. Dasgupta, J.P. Banerjee, IMPATT devices based on group III–V compound semiconductors: prospects as potential terahertz radiators. HKIE Trans. 21(3), 135–147 (2014)

    Google Scholar 

  50. Bi Xiaochuan, East R. Jack, Ravaioli Umberto, G.I. Haddad, A Monte Carlo study of Si/SiGe MITATT diodes for terahertz power generation. Solid State Electron 52, 688–694 (2008)

    Google Scholar 

  51. S. Banerjee, A. Acharyya, J.P. Banerjee, Noise performance of Heterojunction DDR MITATT Devices Based on Si~Si1-xGex at W-Band. Act. Passive Electron. Compon. [USA] 2013, 1–7 (2013)

    Article  Google Scholar 

  52. S. Banerjee, A. Acharyya, M. Mitra, J.P. Banerjee, Large-signal properties of 3C-SiC/Si heterojunction DDR IMPATT devices at terahertz frequencies, in 34thPIERS in Stockholm, Sweden 12–15 Aug 2013, , pp. 462–467

    Google Scholar 

  53. S. Banerjee, M. Mitra, Heterojunction DDR THz IMPATT diodes based on AlxGa1-x N/GaN material system. J. Semicond. 36(6) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhopadhyay, S.J., Hazra, P., Mitra, M. (2021). A Brief Review on Terahertz Avalanche Transit Time Sources. In: Acharyya, A., Das, P. (eds) Advanced Materials for Future Terahertz Devices, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 727. Springer, Singapore. https://doi.org/10.1007/978-981-33-4489-1_4

Download citation

Publish with us

Policies and ethics