Skip to main content

Nanocomposites for Cancer Targeted Drug Delivery Therapeutics

  • Chapter
  • First Online:
Biomedical Composites

Abstract

Tumor targeting of therapeutic or imaging agents has the advantage of improving specificity and effectiveness of treatment for various cancer types. In this context, the use of nanocomposites in cancer drug delivery appears as a promising strategy for the next generation of chemotherapeutics. In this chapter, the materials that can be combined to form the most interesting nanocomposites will be summarized by making a classification depending on the nature of one of the constituent materials. Then, polymer-based, clay-based, metal-based, silica-based, magnetic-based, and carbon-based nanocomposites will be described in the relation of their application in nanomedicine for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  Google Scholar 

  2. Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ (2019) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18

    Article  CAS  Google Scholar 

  3. www.who.int/news-room/fact-sheets/detail/cancer

  4. Facts & Figures (2019) Am Cancer Soc 76

    Google Scholar 

  5. Baek S et al (2015) Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 7:14191–14216

    Article  CAS  Google Scholar 

  6. Mishra DK, Yadav KS, Prabhakar B, Gaud RS (2018) Nanocomposite for cancer targeted drug delivery. In: Applications of nanocomposite materials in drug delivery. Elsevier Inc., pp 323–337

    Google Scholar 

  7. Dai Y, Xu C, Chen X (2017) Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 46:3830–3852

    Article  CAS  Google Scholar 

  8. Wolfram J et al (2014) Safety of nanoparticles in medicine. Curr Drug Targets 16:1671–1681

    Article  CAS  Google Scholar 

  9. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205

    Article  CAS  Google Scholar 

  10. Pattni BS, Torchilin VP (2015) Targeted drug delivery: concepts and design. In: Targeted drug delivery: concepts and design, pp 3–38

    Google Scholar 

  11. Alemán J et al (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007). Pure Appl Chem 79(10):1801–1829

    Article  CAS  Google Scholar 

  12. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697

    Article  CAS  Google Scholar 

  13. Zhao N et al (2019) Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev 119:1666

    Article  CAS  Google Scholar 

  14. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  CAS  Google Scholar 

  15. Jayalekshmi AC (2018) Nanocomposites used for drug delivery applications. In: Drug delivery nanosystems for biomedical applications. Elsevier Inc., pp 181–199

    Google Scholar 

  16. Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A (2017) Biointerfaces PNIPAM grafted surfaces through ATRP and RAFT polymerization: chemistry and bioadhesion. Colloids Surf. B Biointerfaces 151:143–155

    Article  CAS  Google Scholar 

  17. Pelissari FM, Neri-Numa IA, Molina G, Ferreira DC, Pastore G (2018) Potential of nanoparticles as drug delivery system for cancer treatment. In: Applications of nanocomposite materials in drug delivery. Elsevier Inc., pp 431–468

    Google Scholar 

  18. Santos HA, Bimbo LM, Peltonen L, Hirvonen J (2015) Inorganic nanoparticles in targeted drug delivery and imaging. In: Targeted drug delivery: concepts and design, pp 571–613

    Google Scholar 

  19. Feldman D (2016) Polymer nanocomposites in medicine. J Macromol Sci Part A Pure Appl Chem 53(1):55–62

    Google Scholar 

  20. Goonoo N, Bhaw-Luximon A, Bowlin GL, Jhurry D (2013) An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering. Polym Int 62(4):523–533

    Article  CAS  Google Scholar 

  21. Sahoo S, Sasmal A, Nanda R, Phani AR, Nayak PL (2010) Synthesis of chitosan-polycaprolactone blend for control delivery of ofloxacin drug. Carbohydr Polym 79(1):106–113

    Article  CAS  Google Scholar 

  22. Paredes M, Pulcinelli SH, Peniche C, Gonçalves V, Santilli CV (2014) Chitosan/(ureasil–PEO hybrid) blend for drug delivery. J Sol-Gel Sci Technol 72(2):233–238

    Article  CAS  Google Scholar 

  23. Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 65(1):60–70

    Article  CAS  Google Scholar 

  24. Tebaldi ML, Belardi RM, Montoro SR (2016) Polymers with nano-encapsulated functional polymers: encapsulated nanoparticles for treatment of cancer cells. Encapsulated nanoparticles for treatment of cancer cells. Elsevier Inc.

    Google Scholar 

  25. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  Google Scholar 

  26. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232

    Article  CAS  Google Scholar 

  27. Luo M et al (2018) Fabrication of chitosan based nanocomposite with legumain sensitive properties using charge driven self-assembly strategy. J Mater Sci Mater Med 29(9)

    Google Scholar 

  28. Xu Y, Shen M, Sun Y, Gao P, Duan Y (2015) Polymer nanocomposites based thermo-sensitive gel for paclitaxel and temozolomide co-delivery to glioblastoma cells. J Nanosci Nanotechnol 15(12):9777–9787

    Article  CAS  Google Scholar 

  29. Liang R, Wei M, Evans DG, Duan X (2014) Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun 50(91):14071–14081

    Article  CAS  Google Scholar 

  30. Zhang L, Li Y, Yu JC (2014) Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B 2:452–470

    Article  CAS  Google Scholar 

  31. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17(5):1041–1054

    Article  CAS  Google Scholar 

  32. Liong M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  Google Scholar 

  33. Nalone LA et al (2018) Applications of nanocomposite materials in the delivery of anticancer drugs. In: Applications of nanocomposite materials in drug delivery, pp 339–352

    Google Scholar 

  34. Yuan L, Tang Q, Yang D, Zhang JZ, Zhang F, Hu J (2011) Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J Phys Chem C 115:9926–9932

    Article  CAS  Google Scholar 

  35. Ma P et al (2015) Inorganic nanocarriers for platinum drug delivery. Mater Today 18(10):554–564

    Article  CAS  Google Scholar 

  36. Kim CS, Tonga GY, Solfiell D, Rotello VM (2013) Inorganic nanosystems for therapeutic delivery: Status and prospects. Adv Drug Deliv Rev 65(1):93–99

    Article  CAS  Google Scholar 

  37. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  Google Scholar 

  38. Bogdal D, Bednarz S, Matras-Postolek K (2014) Microwave-assisted synthesis of hybrid polymer materials and composites. Biol Res 5(1):241–294

    Google Scholar 

  39. Arora A, Padua GW (2010) Review: Nanocomposites in food packaging. J Food Sci 75(1):43–49

    Article  CAS  Google Scholar 

  40. Castro PM, Sarmento B, Madureira AR, Pintado ME (2019) Organic nanocomposites for the delivery of bioactive molecules. In: Natural polysaccharides in drug delivery and biomedical applications. Elsevier Inc., pp 471–493

    Google Scholar 

  41. Mousavi SM, Hashemi SA, Salahi S, Hosseini M, Amani AM, Babapoor A (2018) Development of clay nanoparticles toward bio and medical applications. In: Current topics in the utilization of clay in industrial and medical applications, vol i, no tourism. InTech, p 13

    Google Scholar 

  42. Jafarbeglou M, Abdouss M, Shoushtari AM, Jafarbeglou M (2016) Clay nanocomposites as engineered drug delivery systems. RSC Adv 6(55):50002–50016

    Article  CAS  Google Scholar 

  43. Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96(7):3358–3364

    Article  CAS  Google Scholar 

  44. Zhang Y et al (2017) Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res. 10(8):2633–2643

    Article  CAS  Google Scholar 

  45. Bedoya DA, Vasti C, Rojas R, Giacomelli CE (2017) Risedronate functionalized layered double hydroxides nanoparticles with bone targeting capabilities. Appl Clay Sci 141:257–264

    Article  CAS  Google Scholar 

  46. Alcântara ACS, Darder M (2018) Building up functional bionanocomposites from the assembly of clays and biopolymers. Chem Rec 18(7):696–712

    Article  CAS  Google Scholar 

  47. Mittal V (2009) Polymer layered silicate nanocomposites: a review. Materials (Basel) 2(3):992–1057

    Article  CAS  Google Scholar 

  48. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  49. Yang J et al (2016) Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes. ACS Appl Mater Interfaces 8(40):26578–26590

    Article  CAS  Google Scholar 

  50. Phan VHG et al (2016) Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv 6(47):41644–41655

    Article  CAS  Google Scholar 

  51. Ray S, Saha S, Sa B, Chakraborty J (2017) In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma. Drug Deliv Transl Res 7(2):259–275

    Article  CAS  Google Scholar 

  52. Connor DM, Broome AM (2018) Gold nanoparticles for the delivery of cancer therapeutics. In: Advances in cancer research, 1st ed., vol 139. Elsevier Inc., pp 163–184

    Google Scholar 

  53. Rastinehad AR et al (2019) Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 116(37):18590–18596

    Article  CAS  Google Scholar 

  54. Urries I et al (2014) Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale 6(15):9230

    Article  CAS  Google Scholar 

  55. Yu Y et al (2019) Rattle-type gold nanorods/porous-SiO2 nanocomposites as near-infrared light-activated drug delivery systems for cancer combined chemo-photothermal therapy. Mol Pharm 16(5):1929–1938

    Article  CAS  Google Scholar 

  56. Bolaños K, Kogan MJ, Araya E (2019) Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomed 14:6387–6406

    Article  Google Scholar 

  57. Cai C et al (2018) Transferrin adsorbed on PEGylated gold nanoparticles and its relevance to targeting specificity. J Nanosci Nanotechnol 18(8):5306–5313

    Article  CAS  Google Scholar 

  58. Siirilä J, Karesoja M, Pulkkinen P, Malho JM, Tenhu H (2019) Soft poly(N-vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field. Eur Polym J 115(January):59–69

    Article  CAS  Google Scholar 

  59. De Matteis V, Cascione M, Toma CC, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5)

    Google Scholar 

  60. Farrag NS, El-Sabagh HA, Al-mahallawi AM, Amin AM, AbdEl-Bary A, Mamdouh W (2017) Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting. Int J Pharm 529(1–2):123–133

    Article  CAS  Google Scholar 

  61. Bagheri E et al (2018) Silica based hybrid materials for drug delivery and bioimaging. J Control Release 277:57–76

    Article  CAS  Google Scholar 

  62. Arriagada F, Nonell S, Morales J (2019) Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine 14(16):2243–2267

    Article  CAS  Google Scholar 

  63. Lindén JMRVMCSM (2012) Nanoparticles in targeted cancer therapy mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine 7(1):111–120

    Article  CAS  Google Scholar 

  64. Khaled SZ et al (2016) One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials 87:57–68

    Article  CAS  Google Scholar 

  65. Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8(13):7240–7247

    Article  CAS  Google Scholar 

  66. Follmann HDM et al (2018) Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale 10(4):1704–1715

    Article  CAS  Google Scholar 

  67. Li C et al (2018) Side effects-avoided theranostics achieved by biodegradable magnetic silica-sealed mesoporous polymer-drug with ultralow leakage. Biomaterials 186:1–7

    Article  CAS  Google Scholar 

  68. Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96

    Article  CAS  Google Scholar 

  69. Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems, vol 45, no 5. Royal Society of Chemistry

    Google Scholar 

  70. Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports Pract Oncol Radiother 18(6):397–400

    Article  Google Scholar 

  71. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) “The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol Biol Med 9(1):1–14

    Article  CAS  Google Scholar 

  72. Louguet S et al (2012) Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polym Chem 3(6):1408–1417

    Article  CAS  Google Scholar 

  73. Delavari B et al (2019) Theranostic α-lactalbumin-polymer-based nanocomposite as a drug delivery carrier for cancer therapy. ACS Biomater Sci Eng 5(10):5189–5208

    Article  CAS  Google Scholar 

  74. Meenach SA, Shapiro JM, Hilt JZ, Anderson KW (2013) Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J Biomater Sci Polym Ed 24(9):1112–1126

    Article  CAS  Google Scholar 

  75. Madni A et al (2018) Graphene-based nanocomposites: synthesis and their theranostic applications. J Drug Target 26(10):858–883

    Article  CAS  Google Scholar 

  76. Yuan XY, Zou LL, Liao CC, Dai JW (2012) Improved properties of chemically modified graphene/poly(methyl methacrylate) nanocomposites via a facile in-situ bulk polymerization. Express Polym Lett 6(10):847–858

    Article  CAS  Google Scholar 

  77. Liu Z et al (2013) Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One 8(4)

    Google Scholar 

  78. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Article  CAS  Google Scholar 

  79. Rui L et al (2015) Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases. Biochim Biophys Acta -Biomembr 1848(5):1203–1211

    Article  CAS  Google Scholar 

  80. Chang Y et al (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  CAS  Google Scholar 

  81. Wang C, Zhang Z, Chen B, Gu L, Li Y, Yu S (2018) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci 516:332–341

    Article  CAS  Google Scholar 

  82. Mendes RG et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 3(12):2522–2529

    Article  CAS  Google Scholar 

  83. Yue H et al (2012) The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16):4013–4021

    Article  CAS  Google Scholar 

  84. Li Y et al (2013) Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc Natl Acad Sci USA 110(30):12295–12300

    Article  CAS  Google Scholar 

  85. Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T (2019) Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: a biomedical and toxicological perspective. J Control Release 308(July):130–161

    Article  CAS  Google Scholar 

  86. Kakran M, Sahoo NG, Bao H, Pan Y, Li L (2011) Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr Med Chem 18(29):4503–4512

    Article  CAS  Google Scholar 

  87. Shi J et al (2014) A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging. Biomaterials 35(22):5847–5861

    Article  CAS  Google Scholar 

  88. Zhao J et al (2014) Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors. Appl Phys Lett 105(11)

    Google Scholar 

  89. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48(31):3686–3699

    Article  CAS  Google Scholar 

  90. Wang C et al (2013) Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci Rep 3:1–8

    Google Scholar 

  91. Javanbakht S, Namazi H (2018) Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system, vol 87. Elsevier B.V

    Google Scholar 

  92. Xue Y et al (2011) Oxidizing metal ions with graphene oxide: The in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem Commun 47(42):11689–11691

    Article  CAS  Google Scholar 

  93. Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23(39)

    Google Scholar 

  94. Rao W et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9(6):5725–5740

    Article  CAS  Google Scholar 

  95. Wang Z et al (2013) Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier. Colloids Surf B Biointerfaces 106:60–65

    Article  CAS  Google Scholar 

  96. Chen ML, He YJ, Chen XW, Wang JH (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28(47):16469–16476

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela A. Macchione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figueroa, F.N., Aristizabal Bedoya, D., Strumia, M.C., Macchione, M.A. (2021). Nanocomposites for Cancer Targeted Drug Delivery Therapeutics. In: Nayak, A.K., Hasnain, M.S. (eds) Biomedical Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4753-3_9

Download citation

Publish with us

Policies and ethics