Skip to main content

Mushroom Nanobiotechnology: Concepts, Developments and Potentials

  • Chapter
  • First Online:
Microbial Nanobiotechnology

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

In nanobiotechnological research, mushrooms are of great interest. The high nutritional and medicinal value, phytochemicals, polysaccharide, protein, enzymes, glucan and other bioactive compounds present in mushrooms have made them sources of good precursors for nanoparticles synthesis. Mushrooms-mediated nanoparticles biosynthesis is an interesting research field, as these macrofungi act as eco-friendly biofactories that secrete enzymes and phytochemicals essential for metal ions reduction to zerovalent or nano-form. Nanotechnology provides a unique pathway of technological deliveries through biological entities’ revolution and exploration as found in mushrooms. The synthesis of nanomaterials physically or chemically raises concerns regarding toxic by-products. Biological synthesis of nanoparticles is now of great interest in the world as it provides safer environmental-friendly technique and biocompatible applications in contrast to the conventional methods of physical and chemical strategies. Several species of mushrooms such as Agaricus, Calocybe, Pleurotus, Ganoderma, Lentinula and Volvariella among others have been used for metallic nanoparticles synthesis and their antimicrobial, antioxidant, antitumor, anti-inflammatory and other medicinal importance have been explored. Synthesized nanoparticles from mushroom enzymes such as α-amylase, laccase and other metabolites like polysaccharide and glucan may have their importance in bioremediation, bioleaching, biocatalysis, water purification and other industrial processes. Mushrooms are favoured in nanobiotechnology due to their relatively safe nature and ease of production, high stability and longer shelf life, enhanced biological activities of metabolites and enzymes coupled with ease of extraction. They exhibit higher stability, longer shelf life and enhanced biological activities. On this note, the concept and development of mushroom nanotechnology will be directed towards utility of mushrooms in biosynthesis of nanoparticles. Furthermore, the importance of mushroom-mediated nanoparticles and future role in addressing medical and industrial problems will also be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash, Pandey BD (2012) Synthesis of zinc-based nanomaterials: a biological perspective. IET Nanobiotechnol 6:144–148. https://doi.org/10.1049/iet-nbt.2011.0051

    Article  CAS  Google Scholar 

  • Adebayo EA, Oloke JK (2017) Oyster mushroom (Pleurotus species); a natural functional food. J Microbiol Biotechnol Food Sci 7(3):254–264. https://doi.org/10.15414/jmbfs.2017/18.7.3.254-264

  • Adebayo EA, Oloke JK, Ayandele AA, Adegunlola CO (2012a) Phytochemical, antioxidant and antimicrobial assay of mushroom metabolite from Pleurotus pulmonarius–LAU 09 (JF736658). J Microbiol Biotechnol Res 2(2):366–374

    CAS  Google Scholar 

  • Adebayo EA, Oloke JK, Majolagbe ON, Ajani RA, Bora TC (2012b) Antimicrobial and anti-inflammatory potential of polysaccharide from Pleurotus pulmonarius LAU 09. Afr J Microbiol Res 6(13):3315–3323

    CAS  Google Scholar 

  • Adebayo EA, Oloke JK, Azeez MA, Omomowo IO, Bora TC (2014a) Assessment of the genetic diversity among ten genotypes of Pleurotus (Oyster mushroom) using nutrient and mineral compositions. Scientia Horticul 166:59–67. https://doi.org/10.1016/j.scienta.2013.12.010

    Article  CAS  Google Scholar 

  • Adebayo EA, Oloke JK, Aina DA, Bora TC (2014b) Antioxidant and nutritional importance of some Pleurotus species. J Microbiol Biotechnol Food Sci 3(4):289–294. https://www.researchgate.net/publication/260020139

  • Adebayo EA, Martınez-Carrera D, Morales P, Sobal M, Escudero H, Meneses ME, Avila-Nava A, Castillo I, Bonilla M (2018) Comparative study of antioxidant and antibacterial properties of the edible mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. Int J Food Sci Technol 53:1316–1330. https://doi.org/10.1111/ijfs.13712

    Article  CAS  Google Scholar 

  • Adebayo EA, Oke MA, Lateef A, Oyatokun AA, Abisoye OD, Adiji IP, Fagbenro DO, Amusan TV, Badmus JA, Asafa TB, Beukes LS, Gueguim-Kana EB, Abbas SH (2019a) Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnol Environ Eng 4:13. https://doi.org/10.1007/s41204-019-0060-8

    Article  CAS  Google Scholar 

  • Adebayo EA, Ibikunle JB, Oke AM, Lateef A, Azeez MA, Adeboye OO, Ajala VA, Olowoporoku TB, Okunlola OC, Ogundele OA, Badmus JA, Asafa TB, Beukes LS, Gueguim-Kana EB, Abbas SH (2019b) Antimicrobial and antioxidant activity of silver, gold and silver-gold alloy nanoparticles phytosynthesized using extract of Opuntia ficus-indica. Rev Adv Mater Sci 58:313–326. https://doi.org/10.1515/rams-2019-0039

    Article  CAS  Google Scholar 

  • Adeeyo AO, Lateef A, Gueguim-Kana EB (2016) Optimization of the production of extracellular polysaccharide from the Shiitake medicinal mushroom Lentinus edodes (Agaricomycetes) using mutation and a genetic algorithm-coupled artificial neural network (GA-ANN). Int J Med Mushrooms 18(7):571–581. https://doi.org/10.1615/IntJMedMushrooms.v18.i7.20

    Article  Google Scholar 

  • Adeeyo AO, Odiyo JO (2018) Biogenic synthesis of silver nanoparticle from mushroom exopolysaccharides and its potentials in water purification. Open Chem 5:64–75. https://doi.org/10.2174/1874842201805010064

    Article  Google Scholar 

  • Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes and pigments. Nanotechnol Rev 5(6):567–587. https://doi.org/10.1515/ntrev-2016-0024

    Article  CAS  Google Scholar 

  • Afshar P, Sedaghat S (2016) Bio-synthesis of silver nanoparticles using water extracts of Satureja hortensis L and evaluation of the antibacterial properties. Curr Nanosci 12(1):90–93. https://doi.org/10.2174/1573413711666150529202238

    Article  CAS  Google Scholar 

  • Agarwal HS, Kumar VS, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resou Eff Technol 3:406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Kahn MI, Kumar R (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerf 28:313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  • Aina DA, Owolo O, Lateef A, Aina FO, Abbas SH, Adeoye-Isijola M, Okon V, Asafa TB, Elegbede JA, Olukanni OD, Adediji I (2019) Biomedical applications of Chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial, antioxidant, anticoagulant, thrombolytic, and larvicidal agents. Karbala Int J Modern Sci 5(2):71–80. https://doi.org/10.33640/2405-609X.1018

  • Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles—a practical approach. Iran J Mat Sci Eng 8:48–56

    CAS  Google Scholar 

  • Akgul H, Sevindik M, Coban C, Alli H, Selamoglu Z (2017) New Approaches in traditional and complementary alternative medicine practices: Auricularia auricula and Trametes versicolor. J Tradit Med Clin Nat 6:239. https://doi.org/10.4172/2573-4555.1000239

    Article  Google Scholar 

  • Andreescu D, Eastman C, Balantrapu K, Goia DV (2007) A simple route for manufacturing highly dispersed silver nanoparticles. J Mater Res 22:2488–2496. https://doi.org/10.1557/jmr.2007.0308

    Article  CAS  Google Scholar 

  • Anthony KJ, Murugan M, Jeyaraj M, Rathinam NK, Sangiliyandi G (2013) Synthesis of silver nanoparticles using pine mushroom extract: a potential antimicrobial agent against E. coli & B. subtilis. J Ind Eng Chem 5:1–7. https://doi.org/10.1016/j.jiec.2013.10.008

    Article  CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382. https://doi.org/10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  • Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19:1083–1090. https://doi.org/10.1007/s12257-014-0071-z

    Article  CAS  Google Scholar 

  • AygĂĽn A, Ă–zdemir S, GĂĽlcan M, Cellat K, Ĺžen F (2020) Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharma Biomed Anal 178:112970. https://doi.org/10.1016/j.jpba.2019.112970

    Article  CAS  Google Scholar 

  • Azeez MA, Lateef A, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2017) Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J Clust Sci 28:149–164. https://doi.org/10.1007/s10876-016-1055-2

    Article  CAS  Google Scholar 

  • Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S (2013) Plants: emerging as nanofactories towards facile route in the synthesis of nanoparticles. Bio Impacts 3:111–117. https://doi.org/10.5681/bi.2013.012

  • Bal C, Akgul H, Sevindik M (2017) Determination of the anti-oxidative activities of six mushrooms. Fresenius Environ Bull 26:6246–6252

    CAS  Google Scholar 

  • Bamigboye CO, Oloke JK, Dames JF, Burton M, Lateef A (2019) Optimization of the process for producing biomass and exopolysaccharide from the King tuber oyster mushroom, Pleurotus tuber-regium (Agaricomycetes), for biotechnological applications. Int J Med Mushrooms 21(4):311–322. https://doi.org/10.1615/IntJMedMushrooms.2019030357

    Article  Google Scholar 

  • Bawadekji A, Oueslati MH, Al Ali, Basha J (2018) Biosynthesis of gold nanoparticles using Pleurotus ostreatus (Jacq. ex. Fr.) Kummer extract and their antibacterial and antifungal activities. J Appl Environ Biol Sci 8(3):142–147

    Google Scholar 

  • Baymiller M, Huang F, Rogelj S (2017) Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH. Matters 3(7):e201705000007. https://doi.org/10.19185/matters.201705000007

  • Bhangale HG, Bachhav SG, Nerkar DM, Sarode KM, Patil DR (2019) Study on optical properties of green synthesized silver nanoparticles for surface plasmon resonance. J Nanosci Tech 5:658–661. https://doi.org/10.30799/jnst.230.19050203

  • Bhat R, Deshpande R, Ganachari SV, Huh DS, Venkataraman A (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg Chem Appl Article ID 650979. https://doi.org/10.1155/2011/650979

  • Bhat R, Deshpande R, Ganachari SV, SungHuh D, Venkataraman A (2013) Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B Biol 125:63–69. https://doi.org/10.1016/j.jphotobiol.2013.05.002

    Article  CAS  Google Scholar 

  • Borovaya M, Pirko Y, Krupodorova T, Naumenko A, Blume Y, Yemets A (2015) Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol Biotechnol Equip 29(6):1156–1163. https://doi.org/10.1080/13102818.2015.1064264

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2: MR17. https://doi.org/10.1116/1.2815690

  • Chen W, Cai W, Zhang L, Wang G, Zhang L (2001) Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J Colloid Interf Sci 238:291–295. https://doi.org/10.1006/jcis.2001.7525

    Article  CAS  Google Scholar 

  • Chen T, Wong KH, Wu HL, Zheng W, Wong MK, Man WYC (2015). Pleurotus tuber-regium polysaccharide functionalized nano-selenium hydrosol with anti-tumor activity and preparation method thereof. U.S. Patent No. 9,072,669. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) gold with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett 9:2–11. https://doi.org/10.1186/1556-276X-9-365

    Article  CAS  Google Scholar 

  • Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed 6:677–681. https://doi.org/10.2147/IJN.S17669

    Article  CAS  Google Scholar 

  • Debnath G, Das P, Krishna S (2019) Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-Amylase inhibitory activities. BioNanoScience 9:611–619. https://doi.org/10.1007/s12668-019-00650-y

    Article  Google Scholar 

  • Deepak K, Rahi, Barwal M (2015) Biosynthesis of silver nanoparticles by their antibacterial and antibiotic activity enhancing potential. World J Pharm Pharmaceut Sci 4:1234–1247

    Google Scholar 

  • Devika R, Elumalai S, Manikandan E, Eswaramoorthy D (2012) Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Sci Rep 1:10–14. https://doi.org/10.4172/scientificreports.557

    Article  Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpaa M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071. https://doi.org/10.1016/j.procbio.2010.03.024

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. https://doi.org/10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Durán N, Cuevas R, Cordi L, Rubilar O, Diez MC (2014) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@ AgCl) produced by laccase from Trametes versicolor. SpringerPlus 3(1):645. https://doi.org/10.1186/2193-1801-3-645

    Article  CAS  Google Scholar 

  • Durán M, Silveira CP, Durán N (2015) Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnol 9:314–323. https://doi.org/10.1049/iet-nbt.2014.0054

    Article  Google Scholar 

  • Ekar SU, Khollam YB, Koinkar PM, Mirji SA, Mane RS, Naushad M, Jadhav SS (2015) Biosynthesis of silver nanoparticles by using Ganoderma mushroom extract. Modern Phys Lett B 29(6–7):1540047. https://doi.org/10.1142/S0217984915400473

    Article  CAS  Google Scholar 

  • Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:28. https://doi.org/10.1186/s41938-018-0028-1

    Article  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178. https://doi.org/10.1289/ehp.9030

    Article  CAS  Google Scholar 

  • Elegbede JA, Lateef A (2019) Green nanotechnology in Nigeria: the research landscape, challenges and prospects. Ann Sci Technol 4(2):6–38. https://doi.org/10.2478/ast-2019-0008

    Article  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB (2018) Fungal Xylanase-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 12(6):857–863. https://doi.org/10.1049/iet-nbt.2017.0299

    Article  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Abbas SH, Beukes LS, Gueguim-Kana EB (2019) Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Progr 35:e2829. https://doi.org/10.1002/btpr.2829

    Article  CAS  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Aina DA, Beukes LS, Gueguim-Kana EB (2020) Biofabrication of gold nanoparticles using xylanases through valorization of corncob by Aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valor 11(3):781–791. https://doi.org/10.1007/s12649-018-0540-2

    Article  CAS  Google Scholar 

  • Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3:655–663. https://doi.org/10.1517/14712598.3.4.655

    Article  CAS  Google Scholar 

  • Eskandari-Nojedehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J (2018) Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physico-chemical characteristics and antifungal activity studies. Green Process Synth 7:38–47. https://doi.org/10.1515/gps-2017-0004

    Article  CAS  Google Scholar 

  • Eustis S, Hsu HY, El-Sayed MA (2005) Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions: a proposed molecular mechanism. J Phys Chem B 109:4811–4815. https://doi.org/10.1021/jp0441588

    Article  CAS  Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization and applications. J Iran Chem Soc 7:1–37. https://doi.org/10.1007/BF03245856

    Article  CAS  Google Scholar 

  • Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B Biointerf 87(1):23–27. https://doi.org/10.1016/j.colsurfb.2011.04.022

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf B Biointerf 74:123–126. https://doi.org/10.1016/j.colsurfb.2009.07.002

    Article  CAS  Google Scholar 

  • Frattini A, Pellegri N, Nicastro D, deSanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 949:148–152. https://doi.org/10.1016/j.matchemphys.2005.04.023

    Article  CAS  Google Scholar 

  • Galib, Barve M, Mashru M, Jagtap C, Patgiri BJ, Prajapati PK (2011) Therapeutic potentials of metals in ancient India: a review through Charaka Samhita. J Ayurveda Integr Med 2(2):55–63. https://doi.org/10.4103/0975-9476.82523

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Icano-Aguilera I, Furenlid LR, Renner MW (1999) Recovery of gold (III) by Alfalfa biomass and binding characterization using X-ray Microfluorescence. Adv Environ Res 3:83–93. https://doi.org/10.1021/es991325m

    Article  CAS  Google Scholar 

  • Gudikandula K, Vadapally P, Charya MAS (2017) Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. Open Nano 2:64–78. https://doi.org/10.1016/j.onano.2017.07.002

    Article  Google Scholar 

  • Gurunathan S, Raman J, Malek SN, Ajohn P, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399. https://doi.org/10.2147/IJN.S51881

    Article  CAS  Google Scholar 

  • Haq MU, Rathod V, Shivraj N, Singh D, Yasin M, Singh AK (2015a) Silver nanoparticles from mushroom Agricus bisporus and their activity against multi-drug resistant strains of Klebsiella sp., Pseudomonas sp. & Acinetobacter sp. Int J Nat Prod Res 5:20–26

    Google Scholar 

  • Haq MU, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015b) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin-resistant Staphylococcus aureus (MRSA) Strains. Int J Nanosci 5:1–8

    Google Scholar 

  • Hietzschold S, Walter A, Davis C, Taylor AA, Sepunaru L (2019) Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain Chem Eng 7(9):8070–8076. https://doi.org/10.1021/acssuschemeng.9b00506

    Article  CAS  Google Scholar 

  • Hoet PHM, BrĂĽske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12. https://doi.org/10.1186/1477-3155-2-12

    Article  CAS  Google Scholar 

  • Jegadeeswaran P, Shivaraj R, Venckatesh R (2012) Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Digest J Nanomater Biostruct 7(3):991–998

    Google Scholar 

  • Karthikeyan V, Ragunathan R, Jesteena J, Kabesh K (2019) Green synthesis of silver nanoparticles and application in dye decolorization by Pleurotus ostreatus (MH591763). Global J Bio-Sci Biotechnol 8:80–86

    Google Scholar 

  • Karwa A, Gaikwar S, Rai M (2011) Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. and their role as antimicrobials and antibiotic activity enhancers. Int J Med Mushroom 13:483–491. https://doi.org/10.1615/intjmedmushr.v13.i5.80

    Article  CAS  Google Scholar 

  • Khan S, Rizvi SMD, Avaish M, Arshad M, Bagga P, Khan MS (2015) A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Mater Lett 159:373–376. https://doi.org/10.1016/j.matlet.2015.06.118

    Article  CAS  Google Scholar 

  • Khandel O, Shahi SK (2018) Mycogenic nanoparticles and their bioprospective applications: current status and future challenges. J Nanostruct Chem 8:369–391. https://doi.org/10.1007/s40097-018-0285-2

    Article  CAS  Google Scholar 

  • Kowalczyk B, Lagzi I, Grzybowski BA (2011) Nanoseparations: strategies for size and shape selective purification of nanoparticles. Curr Opin Colloids Interf Sci 16:135–148. https://doi.org/10.1016/j.cocis.2011.01.004

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha N, Ahmad A (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445. https://doi.org/10.1007/s10529-006-9256-7

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134. https://doi.org/10.1093/toxsci/kfg243

    Article  CAS  Google Scholar 

  • Lateef A, Adeeyo AO (2015) Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of Lentinus edodes. Not Sci Biol 7(4):405–411. https://doi.org/10.15835/nsb749643

  • Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5:29–35. https://doi.org/10.1007/s40089-014-0133-4

    Article  CAS  Google Scholar 

  • Lateef A, Ojo SA, Elegbede JA (2016a) The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol Rev 5(6):601–622. https://doi.org/10.1515/ntrev-2016-0049

    Article  CAS  Google Scholar 

  • Lateef A, Ojo SA, Oladejo SM (2016b) Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem 51(10):1406–1412. https://doi.org/10.1016/j.procbio.2016.06.027

    Article  CAS  Google Scholar 

  • Lateef A, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016c) Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J Clust Sci 27(5):1561–1577. https://doi.org/10.1007/s10876-016-1019-6

    Article  CAS  Google Scholar 

  • Lateef A, Akande MA, Azeez MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016d) Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. Nanotechnol Rev 5(6):507–520. https://doi.org/10.1515/ntrev-2016-0039

    Article  CAS  Google Scholar 

  • Lateef A, Akande MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016e) Paper wasp nest-mediated biosynthesis of silver nanoparticles for antimicrobial, catalytic, anti-coagulant and thrombolytic applications. 3 Biotech 6:140 http://dx.doi.org/10.1007/s13205-016-0459-x

  • Lateef A, Ojo SA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016f) Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl Nanosci 6(6):863–874. http://dx.doi.org/10.1007/s13204-015-0492-9

  • Lateef A, Ojo SA, Elegbede JA, Azeez MA, Yekeen TA, Akinboro A (2017) Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. J Clust Sci 28(3):1379–1392. https://doi.org/10.1007/s10876-016-1146-0

    Article  CAS  Google Scholar 

  • Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS, Gueguim-Kana EB (2018) Characterization, antimicrobial, antioxidant and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 48(7):646–652. https://doi.org/10.1080/10826068.2018.1479864

  • Lee SH, Jun BH (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:E865. https://doi.org/10.3390/ijms20040865

    Article  CAS  Google Scholar 

  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP (2007) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382. https://doi.org/10.1289/ehp.9688

    Article  CAS  Google Scholar 

  • Mafune F, Jun-ya K, Yoshihiro T, Tamotsu K (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 105:9050–9056. https://doi.org/10.1021/jp0111620

    Article  CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44

    Article  CAS  Google Scholar 

  • Maurya S, Bhardwaj AK, Gupta KK, Agarwal S, Kushwaha A, Chturvedi VK, Pathak RK, Gopal R, Uttam KN, Singh AK, Verma V, Singh MP (2016) Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. J Cell Mol Biol 62:1–3. https://doi.org/10.4172/1165-158X.1000131

    Article  Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49

    CAS  Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558. https://doi.org/10.1038/sj.bjp.0707130

    Article  CAS  Google Scholar 

  • Mirunalini S, Arulmozhi V, Deepalakshmi K, Krishnaveni M (2012) Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Not Sci Biol 4:55–61. https://doi.org/10.15835/nsb448051

  • Moghaddam AB, Namvar F, Moniri M, Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by Fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 16540. https://doi.org/10.3390/molecules200916540

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517. https://doi.org/10.1007/s11051-007-9275-x

  • Mohanta YK, Singdevsachan SK, Parida UK, Panda SK, Mohanta TK, Bae H (2016) Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol 10:184–189. https://doi.org/10.1049/iet-nbt.2015.0059

    Article  Google Scholar 

  • Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd_Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23:655. https://doi.org/10.3390/molecules2303065

  • Mudunkotuwa A, Pettibone JM, Grassian VH (2013) Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol 46:7001–7010. https://doi.org/10.1021/es203851d

    Article  CAS  Google Scholar 

  • Muthu N, Shanmugasundaram K (2015) Comparative study of phytochemicals in aqueous and silver nanoparticles extracts of Acrocybe aegerita, (V.BRIG.) singer black poplar mushroom. Int J Pharm Biol Sci 6:190–197

    CAS  Google Scholar 

  • Narayanan KB, Park HH, Han SS (2015) Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential. Chemosphere 141:169–175. https://doi.org/10.1016/j.chemosphere.2015.06.101

    Article  CAS  Google Scholar 

  • Ndaw S, Bergaentzle M, Aoude-Werner D, Hasselmann C (2000) Extraction procedures for the liquid chromatographic determination of thiamin, riboflavin and vitamin B6 in foodstuffs. Food Chem 71:129–138. https://doi.org/10.1016/S0308-8146(00)00135-7

    Article  CAS  Google Scholar 

  • Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concepts, applications and perspectives. Wiley, New York, p 491. ISBN: 978-3-527-30658-9

    Google Scholar 

  • Nijhara R, Balakrishnan K (2006) Bringing nanomedicines to market: regulatory challenges, opportunities, and uncertainties. Nanomedicine 2:127–136. https://doi.org/10.1016/j.nano.2006.04.005

    Article  CAS  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4(4):623–629

    Google Scholar 

  • Numata M, Hasegawa T, Fujisawa T, Sakurai K, Shinkai S (2004) Î’-1,3-glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly (aniline) nanofiber structures. Org Lett 6:4447–4450. https://doi.org/10.1021/ol0483448

    Article  CAS  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062. https://doi.org/10.1289/ehp.7021

    Article  CAS  Google Scholar 

  • Oberdörster G, Castranova V, Asgharian B, Sayre P (2015) Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J Toxicol Environ Health B Crit Rev 18(3–4):121–212. https://doi.org/10.1080/10937404.2015.1051611

    Article  CAS  Google Scholar 

  • Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Transact NanoBiosci 15(5):433–442. https://doi.org/10.1109/TNB.2016.2559161

    Article  Google Scholar 

  • Oladipo IC, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Akinwale AS, Gueguim-Kana EB, Beukes LS (2017a) Green synthesis and antimicrobial activities of silver nanoparticles using cell-free extracts of Enterococcus species. Not Sci Biol 9(2):196–203. http://dx.doi.org/10.15835/nsb929938

  • Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR (2017b) Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J Photochem Photobiol B Biol 173:250–257. https://doi.org/10.1016/j.jphotobiol.2017.06.003

    Article  CAS  Google Scholar 

  • Oloke JK, Adebayo EA (2015) Effectiveness of immunotherapies from oyster mushroom (Pleurotus species) in the management of immunocompromised patients. Int J Immunol 3(2–1):8–20

    CAS  Google Scholar 

  • Owaid MN (2019) Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: review. Environ Nanotechnol Monit Manage 12:100256. https://doi.org/10.1016/j.enmm.2019.100256

    Article  Google Scholar 

  • Owaid MN, Ibraheem IJ (2017) Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed 9(1):5–23. https://doi.org/10.1515/ejnm-2016-0016

    Article  CAS  Google Scholar 

  • Owaid MN, Raman J, Lakshmanan H, Al-Saeedi SS, Sabaratnam V, Ali Abe I (2015) Mycosynthesis of silver nanoparticles from Pleurotus corncopiaevar. citrinopileatus and its inhibitory effect against Candida sp. Adv Mater Lett 153:186–190. https://doi.org/10.1016/j.matlet.2015.04.023

    Article  CAS  Google Scholar 

  • Owaid MN, Al-Saeedic SS, Ali Abed I (2017a) Biosynthesis of gold nanoparticles using yellow oyster mushroom Pleurotus cornucopiae var. citrinopileatus. Environ Nanotechnol Monit Manag 8:157–162. https://doi.org/10.1016/j.enmm.2017.07.004

    Article  Google Scholar 

  • Owaid MN, Abed IA, Al-Saeedi SSS (2017b) Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Inf Process Agric 4:78–82. https://doi.org/10.1016/j.inpa.2017.01.001

    Article  Google Scholar 

  • Owaid MN, Barish A, Shariati MA (2017c) Cultivation of Agaricus bisporus (button mushroom) and its usages in the biosynthesis of nanoparticles. Open Agric 2(1):537–543. https://doi.org/10.1515/opag-2017-0056

    Article  Google Scholar 

  • Owaid MN, Rabeea MA, Aziz AA, Jameel MS, Dheyab MA (2019) Mushroom-assisted synthesis of triangle gold nanoparticles using the aqueous extract of fresh Lentinula edodes (shiitake). Omphalotaceae. Environ Nanotechnol Monit Manag 12:100270. https://doi.org/10.1016/j.enmm.2019.100270

    Article  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhatdt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78. https://doi.org/10.1049/iet-nbt.2010.0033

    Article  CAS  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 20:1–12. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  • Paul S, Sasikumari CS, Singh AR (2015) Fabrication of silver nanoparticles synthesized from Ganoderma lucidum into the cotton fabric and its antimicrobial property. Int J Pharm Pharmaceut Sci 7(8):53–56

    CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A Mole Biomol Spectr 73(2):374–381. https://doi.org/10.1016/j.saa.2009.02.037

    Article  CAS  Google Scholar 

  • Radomski A, Jurasz P, Onso-Escolano D, Drews M, Morandi M, Malinski T (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146:882–893. https://doi.org/10.1038/sj.bjp.0706386

    Article  CAS  Google Scholar 

  • Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanoparticles. Langmuir 22:736–741. https://doi.org/10.1021/la052055q

    Article  CAS  Google Scholar 

  • Raziya S, Durga B, Rajamahanthe SG, Govindh B, Annapurna N (2006) Synthesis and characterization of CdS nanoparticles using Reishi mushroom. Int J Adv Technol Eng Sci 4:220–227

    Google Scholar 

  • Ruan-Soto F, Ordaz-Velázquez M, GarcĂ­a-Santiago W (2017) Traditional processing and preservation of wild edible mushrooms in Mexico. Ann Food Process Preserv 2(1):1013–1018

    Google Scholar 

  • Sahoo KS, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8(24):1112–1120. https://doi.org/10.1016/s1359-6446(03)02903-9

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009a) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504. https://doi.org/10.1016/j.biortech.2008.05.048

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009b) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891. https://doi.org/10.1016/j.cej.2009.08.006

    Article  CAS  Google Scholar 

  • Sathishkumar P, Gu FL, Zhan Q, Palvannan T, Mohd Yusoff AR (2018) Flavonoids mediated “Green” nanomaterials: a novel nanomedicine system to treat various diseases—current trends and future perspective. Mater Lett 210:26–30. https://doi.org/10.1016/j.matlet.2017.08.078

    Article  CAS  Google Scholar 

  • Sen I, Maity K, Islam SS (2013) Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym 91:518–528. https://doi.org/10.1016/j.carbpol.2012.08.058

    Article  CAS  Google Scholar 

  • Senapati US, Sarkar D (2014) Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom P. ostreatus. Indian J Phys 88:557–562. https://doi.org/10.1007/s12648-014-0456-z

    Article  CAS  Google Scholar 

  • Senapati US, Jha DK, Sarkar D, Res J (2015) Structural, optical, thermal and electrical properties of fungus guided biosynthesized zinc sulphide nanoparticles. Res J Chem Sci 5:33–40

    CAS  Google Scholar 

  • Sevindik M, Akgul H, Bal C (2017) Determination of oxidative stress status of Ompholatus olearius gathered from Adana and Antalya provinces in Turkey. Sakarya Univ J Sci 21(3):324–327. https://doi.org/10.16984/saufenbilder.09547

  • Sevindik M, Akgul H, Dogan M, Akata I, Selamoglu Z (2018) Determination of antioxidant, antimicrobial, DNA protective activity and heavy metals content of Laetiporus sulphureus. Fresenius Environ Bull 27(3):1946–1952

    CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308. https://doi.org/10.3390/ma8115377

    Article  CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using an aqueous extract from the compacting producing fungal strain. Process Biochem 44:939–943. https://doi.org/10.1016/j.procbio.2009.04.009

    Article  CAS  Google Scholar 

  • Shivashankar M, Premkumari B, Chandan N (2013) Biosynthesis, partial characterization and antimicrobial activities of silver nanoparticles from Pleurotus species. Int J Integr Sci Innov Technol 2:13–23

    CAS  Google Scholar 

  • Singh N, Chaudhary A, Abraham J (2014) Susceptibility testing of methicillin resistant Staphylococcus aureus (MRSA) and biological role of silver nanoparticles of honey against MRSA. J Biologically Active Prod Nat 4(5–6):332–342. https://doi.org/10.1080/22311866.2014.957097

    Article  CAS  Google Scholar 

  • Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24(22):1839–1845. https://link.springer.com/article/10.1023/A:1020994628109

  • Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in C. tropicum and F. oxusporum. Current Res Nanotechnol 2:112–121. https://doi.org/10.3844/ajnsp.2011.112.121

    Article  CAS  Google Scholar 

  • Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN (2015) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 6:34–56. https://doi.org/10.4236/gsc.2016.61004

    Article  CAS  Google Scholar 

  • Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogen. Int J PharmTech Res 6:1718–1723

    CAS  Google Scholar 

  • Sujatha S, Tamilselvi Subha K, Subha K, Panneerselvam A (2013) Studies on the biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. Int J Curr Microbiol Appl Sci 2:605–614

    Google Scholar 

  • Tabbouche S, GĂĽrgen A, Yildiz S (2017) Antimicrobial and anti-quorum sensing activity of some wild mushrooms collected from Turkey. MSU J Sci 5(2):453–457. https://doi.org/10.18586/msufbd.347692

  • Teferi Y, Muleta M, Woyessa D (2013) Mushroom consumption habits of Wacha Kebele residents, southwestern Ethiopia. Global Res J Agri Biol Sci 4(1):6–16

    Google Scholar 

  • Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:1–20. https://doi.org/10.1088/2043-6262/4/3/033001

    Article  CAS  Google Scholar 

  • Treguer M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose rate effect on radiolytic synthesis of gold-silver bimetallic clusters in solution. J Phys Chem B 102:4310–4321. https://doi.org/10.1021/jp981467n

    Article  CAS  Google Scholar 

  • Valverde ME, Hernández-PĂ©rez T, Paredes-LĂłpez O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol Article ID 376387. https://doi.org/10.1155/2015/376387

  • Velusamy P, Venkat Kumar G, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32:95–102. https://doi.org/10.5487/TR.2016.32.2.095

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomed 5(1):33–40. https://doi.org/10.2217/nnm.09.77

    Article  CAS  Google Scholar 

  • Vetchinkina E, Loshchinina E, Kursky V, Nikitina V (2013) Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol 51(6):829–835. https://doi.org/10.1007/s12275-013-2689-5

    Article  CAS  Google Scholar 

  • Vetchinkina EP, Loshchinina EA, Vodolazov IR, Kursky VF, Dykman LA, Nikitina VE (2016) Biosynthesis of nanoparticles of metals and metalloids by Basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases. Appl Microbiol Biotechnol 5:76–80. https://doi.org/10.1007/s00253-016-7893-x

    Article  CAS  Google Scholar 

  • Wang J, Zhang Y, Yuan Y, Yue T (2014) Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food Chem Toxicol 68:183–189. https://doi.org/10.1016/j.fct.2014.03.003

    Article  CAS  Google Scholar 

  • Williams D (2004) The risks of nanotechnology. Med Device Technol 15:9–10

    Google Scholar 

  • Wong KH (2020) Preparation of highly stable selenium nanoparticles with strong anti-tumor activity using tiger milk mushroom. https://www.polyu.edu.hk/itdo/cntfiles/initiatives/initiative_file_2_137_TC.pdf. Accessed on 28 Jun 2020

  • Wu H, Zhu H, Li X, Liu Z, Zheng W, Chen T (2013) Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: an effect enhance by a polysaccharide-protein complex from Polyporus rhinocerus. J Agric Food Chem 61:1–30. https://doi.org/10.1021/jf403564s

    Article  CAS  Google Scholar 

  • Xiao Y, Huang Q, Zheng Z, Guan H, Liu S (2017) Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int J Biol Macromol 99:483–491. https://doi.org/10.1016/j.ijbiomac.2017.03.016

    Article  CAS  Google Scholar 

  • Xu S, Yong L, Wu P (2013) One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl Mater Interf 5(3):654–662. https://doi.org/10.1021/am302076x

    Article  CAS  Google Scholar 

  • Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30:2797–2803. https://doi.org/10.1007/s11274-014-1703-3

    Article  CAS  Google Scholar 

  • Yekeen TA, Azeez MA, Lateef A, Asafa TB, Oladipo IC, Badmus JA, Adejumo SA, Ajibola AA (2017a) Cytogenotoxicity potentials of Cocoa pod and bean-mediated green synthesized silver nanoparticles on Allium cepa cells. Caryologia Int J Cytol Cytosystem Cytogenet 70(4):366–377. https://doi.org/10.1080/00087114.2017.1370260

    Article  Google Scholar 

  • Yekeen TA, Azeez MA, Akinboro A, Lateef A, Asafa TB, Oladipo IC, Oladokun SO, Ajibola AA (2017b) Safety evaluation of green synthesized Cola nitida pod, seed and seed shell extracts-mediated silver nanoparticles (AgNPs) using Allium cepa assay. J Taibah Univ Sci 11(6):895–909. https://doi.org/10.1016/j.jtusci.2017.06.005

    Article  Google Scholar 

  • Yilmaz A, Yildiz S, Çelik A (2016) Determination of heavy metal and radioactivity in Agaricus campestris mushroom collected from kahramanmaraĹź and erzurum proviences. Turk J Agri Food Sci Technol 4(3):208–215. https://doi.org/10.24925/turjaf.v4i3.208-215.596

  • Zhang G, Wang DJ (2008) Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography. J Am Chem Soc 130:5616–5617. https://doi.org/10.1021/ja710771j

    Article  CAS  Google Scholar 

  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38(6):817–835. https://doi.org/10.1080/07388551.2017.1414141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Adebayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adebayo, E.A., Azeez, M.A., Alao, M.B., Oke, M.A., Aina, D.A. (2021). Mushroom Nanobiotechnology: Concepts, Developments and Potentials. In: Lateef, A., Gueguim-Kana, E.B., Dasgupta, N., Ranjan, S. (eds) Microbial Nanobiotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4777-9_9

Download citation

Publish with us

Policies and ethics