Skip to main content

Applied Mathematics and Mechanics in Aerospace Industry

  • Conference paper
  • First Online:
Applied Mathematics and Computational Mechanics for Smart Applications

Abstract

The chapter contains a brief description of chapters that contribute to the development and applications of computational methods and algorithms in different areas of gas, fluid, and plasma dynamics, solid mechanics, dynamic systems and optimal control, information technology. The first part presents the recent advances in computational fluid dynamics. The second part introduces numerical simulation of plasma and multiphase flows. The third part is devoted to computational solid mechanics, the fourth part provides a numerical study of dynamic systems and the fifth part focuses on information technology and artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Syzranova, N.G., Andrushchenko, V.A.: Simulation of the motion and destruction of bolides in the Earth’s atmosphere. High Temp. 54(3), 308–315 (2016)

    Article  Google Scholar 

  2. Babakov, A.V.: Program package FLUX for the simulation of fundamental and applied problems of fluid dynamics. Comput. Math. Math. Phys. 56(6), 1151–1161 (2016)

    Article  MathSciNet  Google Scholar 

  3. Babakov, A.V., Novikov, P.A.: Numerical simulation of unsteady vortex structures in near wake of poorly streamlined bodies on multiprocessor computer system. Comput. Math. Math. Phys. 51(2), 245–250 (2011)

    Article  Google Scholar 

  4. Gushchin, V., Kondakov, V.: On the Cabaret scheme for incompressible fluid flow problems with a free surface. Math. Models Comput. Simul. 11(4), 499–508 (2019)

    Article  MathSciNet  Google Scholar 

  5. Gushchin, V., Smirnova, I.: The Splitting Scheme for Mathematical Modeling of the Mixed Region Dynamics in a Stratified Fluid. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics. Smart Innovation, Systems and Technologies, vol. 173, pp. 11–21. Springer, Singapore (2020)

    Chapter  Google Scholar 

  6. Maksimov, F.A., Churakov, D.A., Shevelev, Y.D.: Development of mathematical models and numerical methods for aerodynamic design on multiprocessor computers. Comput. Math. Math. Phys. 51, 284–307 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ivanov, I.E., Nazarov, V.S., Gidaspov, V.Yu., Kryukov, I.A.: Numerical simulation of the process of phase transitions in gas-dynamic flows in nozzles and jets. In: Jain L.C., Fa-vorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds) Advances in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conferenceon Computational Mechanics and Modern Applied Software Systems, SIST, vol. 173, pp. 133–150, Springer, Singapore (2019)

    Google Scholar 

  8. Nazarov, V.S., Ivanov, I.E., Kryukov, I.A., Gidaspov, V.U.: Modeling the dynamics of a gas-droplet substance in nozzles, taking into account the phase transition. J. Phys. Conf. Ser. 1250, 012026.1–012026.10 (2019)

    Google Scholar 

  9. Moiseeva, D.S., Motorin, A.A., Stupitsky, E.L.: Assessment of the ionization effect during the distribution of a toroidal plasma bunch in a diluted atmosphere. Geomag. Aeron. 59, 448–457 (2019)

    Article  Google Scholar 

  10. Smirnov, E.V., Stupitskii, E.L.: Numerical simulation of the effect of rarefied plasma flow on the solid surface. J. Surf. Invest. X-ray Synchrotron Neutron Tech. 4(6), 965–975 (2010)

    Article  Google Scholar 

  11. Lopato, A.I., Utkin, P.S.: Toward second-order algorithm for the pulsating detonation wave modeling in the shock-attached frame. Combust. Sci. Technol. 188, 1844–1856 (2016)

    Article  Google Scholar 

  12. Lopato, A.I., Eremenko, A.G., Utkin, P.S., Gavrilov, D.A.: Numerical Simulation of Detonation Initiation: The Quest of Grid Resolution. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics. SIST, vol. 173, pp. 79–89. Springer, Singapore (2020)

    Chapter  Google Scholar 

  13. Aksenov, A.G., Chechetkin, V.M., Tishkin, V.F.: Godunov type method and the Shafranov’s task for multi-temperature plasma. Math. Models Comput. Simul. 11, 360–373 (2019)

    Article  MathSciNet  Google Scholar 

  14. Aksenov, A.G., Chechetkin, V.M.: Supernova explosion mechanism with the neutrinos and the collapse of the rotation core. Astron. Rep. 62, 834–839 (2018)

    Article  Google Scholar 

  15. Balashov, V., Cherkasova, M., Kruglov, K., Kudriavtsev, A., Masherov, P., Mogulkin, A., Obukhov, V., Riaby, V., Svotina, V.: Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects. Review of Scientific Instruments 88(8), 083304.1–083304.5 (2017)

    Article  Google Scholar 

  16. Obukhov, V., Pokryshkin, A., Popov, G., Svotina, V.: Stability of a Moving Control of a Service SC and a Space Debris Object at Impact on it by an Ion Beam. In: Razoumny, Yu.N., Graziani, F., Guerman, A.D., Contant J.-M. (eds.) Advances in the Astronautical Sciences DyCoSS’2017, vol. 161, pp. 665–675. Moscow, Russia (2017)

    Google Scholar 

  17. Vorobev, A.L., Elnikov, R.V.: Analysis of the structure of families of locally optimum solutions to the problem of the interplanetary transfer of a spacecraft with a low—thrust engine. Cosm. Res. 56(5), 365–372 (2018)

    Article  Google Scholar 

  18. Antropov, N.N., Akhmetzhanov, R.V., Bogatiy, A.V., Grishin, R.A., Kozhevnikov, V.V., Plokhikh, A.P., Popov, G.A., Khartov, S.A.: Experimental research of radio-frequency ion thruster. Therm. Eng. 63(13), 957–963 (2016)

    Article  Google Scholar 

  19. Burago, N.G., Nikitin, I.S.: Multiaxial Fatigue Criteria and Durability of Titanium Compressor Disks in low- and Giga-Cycle Fatigue Modes. In: Mathematical Modeling and Optimization of Complex Structures, pp. 117–130. Springer, Heidelberg (2016)

    Google Scholar 

  20. Burago, N.G., Nikitin, I.S., Nikitin, A.D., Stratula, B.A.: Algorithms for calculation damage processes. Frattura ed Integrità Strutturale 49, 212–224 (2019)

    Google Scholar 

  21. Muratov, M.V., Petrov, I.B.: Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method. Comput. Res. Model. 11(6), 1077–1082 (2019)

    Article  Google Scholar 

  22. Petrov, I.B., Muratov, M.V.: Application of the grid-characteristic method to the solution of direct problems in the seismic exploration of fractured formations (review). Math. Models Comput. Simul. 11, 924–939 (2019)

    Article  MathSciNet  Google Scholar 

  23. Aruyunov, S.D., Grachev, D.I., Nikitin, A.D.: Mathematical modelling on the fracture of a laminar prosthesis basis under natural chewing loads. IOP Conf. Ser. Mater. Sci. Eng. 747, 012065.1–012065.6 (2020)

    Google Scholar 

  24. Arutyunov, S.D., Grachev, D.I., Bagdasaryan, G.G., Nikitin, A.D.: Critical stress analysis for the basis of a denture prosthesis. IOP Conf. Ser. Mater. Sci. Eng. (in print) (2020)

    Google Scholar 

  25. Markov, YuG, Perepelkin, V.V., Filippova, A.S.: Analysis of the perturbed Chandler wobble of the Earth pole. Dokl. Phys. 62(6), 318–322 (2017)

    Article  Google Scholar 

  26. Krylov, S.S., Perepelkin, V.V., Filippova, A.S.: Long-period Lunar Perturbations in Earth Pole Oscillatory Process: Theory and Observations. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics. SIST, vol. 173, pp. 315–331. Springer, Singapore (2020)

    Chapter  Google Scholar 

  27. Panteleev, A.V., Karane, M.M.S.: Multi-agent Optimization Algorithms for a Single Class of Optimal Deterministic Control Systems. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Computational Mechanics and Numerical Simulation. SIST, vol. 173, pp. 271–291. Springer, Singapore (2020)

    Google Scholar 

  28. Panteleev, A.V., Pis’mennaya, V.A.: Application of a memetic algorithm for the optimal control of bunches of trajectories of nonlinear deterministic systems with incomplete feedback. J. Comput. Syst. Sci. Int. 57(1), 25–36 (2018)

    Article  MathSciNet  Google Scholar 

  29. Chugai, K.N., Kosachev, I.M., Rybakov, K.A.: Approximate Filtering Methods in Continuous-Time Stochastic Systems. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Computational Mechanics and Numerical Simulation. Smart Innovation, Systems and Technologies, vol. 173, pp. 351–371. Springer, Singapore (2020)

    Google Scholar 

  30. Averina, T.A., Rybakov, K.A.: Using maximum cross section method for filtering jump-diffusion random processes. Rus. J. Numer. Anal. Math. Model.ing 35(2), 55–67 (2020)

    Article  MathSciNet  Google Scholar 

  31. Kuzmina, N.M., Ridley, A.N.: A method for estimating the impact of the fare rules conditions. Civ. Aviat. High Technol. 224(2), 138–146 (2016)

    Google Scholar 

  32. Bochkov, A.V., Zhigirev, N.N., Ridley, A.N.: Method of recovery of priority vector for alternatives under uncertainty or incomplete expert assessment. Dependability 17(3), 41–48 (2017)

    Article  Google Scholar 

  33. Morozov, AYu., Reviznikov, D.L.: Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions. Differ. Eqn. 54(7), 945–956 (2018)

    Article  MathSciNet  Google Scholar 

  34. Morozov, AYu., Reviznikov, D.L., Gidaspov, VYu.: Adaptive interpolation algorithm based on a kd-tree for the problems of chemical kinetics with interval parameters. Math. Models Comput. Simul. 11(4), 622–633 (2019)

    Article  MathSciNet  Google Scholar 

  35. Rybakov, K.A.: Modeling and analysis of output processes of linear continuous stochastic systems based on orthogonal expansions of random functions. J. Comput. Sys. Sc. Int. 59(3), 322–337 (2020)

    Article  Google Scholar 

  36. Rybakov, K.A.: Spectral method of analysis and optimal estimation in linear stochastic systems. Int. J. Model. Simul. Sci. Comput. 11(3), 2050022 (2020)

    Article  Google Scholar 

  37. Semenov, A.S.: Essentials of fractal programming. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and Modern Applied Software Systems, SIST, vol. 173, pp. 373–386, Springer, Singapore (2020)

    Google Scholar 

  38. Semenov, A.S.: Prototype based programming with fractal algebra. AIP Conf. Proc. 2181, 020009 (2019)

    Article  Google Scholar 

  39. Source codes Google-scripts. https://github.com/LevChern/eduprocess. Last accessed 4 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita N. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Favorskaya, M.N., Jain, L.C., Nikitin, I.S., Reviznikov, D.L. (2021). Applied Mathematics and Mechanics in Aerospace Industry. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds) Applied Mathematics and Computational Mechanics for Smart Applications. Smart Innovation, Systems and Technologies, vol 217. Springer, Singapore. https://doi.org/10.1007/978-981-33-4826-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4826-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4825-7

  • Online ISBN: 978-981-33-4826-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics