Skip to main content

Nanomaterials: An Introduction

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 16))

Abstract

Nanotechnology offers a significant advantage in science, engineering, medicine, medical surgery, foods, packing, clothes, robotics, and computing from the beginning of the twenty-first century. As the potential scientific discovery always contains some good and bad effects on human civilization and the environment, nanotechnology is not an exception. The major drawbacks include economic disruption along with imposing threats to security, privacy, health, and environment. The introduction of the chapter discusses the historical background of nanotechnology. Later it also discusses the advancement of nanotechnology to date with its benefits. Major drawbacks of nanotechnology arise in human health due to the enormous involvement in medicine, food, agriculture, etc. This chapter also deals with environmental nano pollution and its effect on society, highlighting the social-economic disruption due to the rapid use of nanotechnology. Nano pollution affects not only human beings but also other living beings like microorganisms, animals and plants, which are briefly reviewed. This chapter also demonstrates the safety and security of nanotechnological developments, current policy and regulation status, challenges, and future trends. Finally, it is concluded, while nanotechnology offers more efficient power sources, faster and modern computers and technologies, life-saving medical treatments, but due to some negative impacts, it bounds us to think twice before any further advanced technological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Santra TS, Tseng F-G (Kevin), Barik TK (2015) Biosynthesis of silver and gold nanoparticles for potential biomedical applications—a brief review. J Nanopharmaceutics Drug Deliv 2:249–265. https://doi.org/10.1166/jnd.2014.1065

  2. Kalantar-Zadeh K, Fry B (2008) Nanotechnology-enabled sensors. Springer, US

    Book  Google Scholar 

  3. Bhushan B (2010) Introduction to nanotechnology. Springer handbook of nanotechnology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–13

    Chapter  Google Scholar 

  4. Jha AR (2008) MEMS and nanotechnology-based sensors and devices for communications, medical and aerospace applications. CRC Press

    Google Scholar 

  5. Bakhoum EG Micro- and nano-scale sensors and transducers

    Google Scholar 

  6. (2020) Handbook of single cell technology + reference. Springer

    Google Scholar 

  7. Microfluidics and BioMEMS: Devices and applications—1st Edition—Tu. https://www.routledge.com/Microfluidics-and-BioMEMS-Devices-and-Applications/Santra/p/book/9789814800853. Accessed 9 June 2020

  8. Tseng F-G, Santra TS essentials of single-cell analysis: concepts, applications and future prospects

    Google Scholar 

  9. Tseng F-G, Santra TS (2015) Micro/nano fluidic devices for single cell analysis. MDPI AG Basel, Switz

    Google Scholar 

  10. Santra TS (2020) Bio-MEMS and bio-NEMS: devices and applications. Jenny Stanford Publisher Pvt. Ltd., Singapore

    Google Scholar 

  11. Shinde P, Kar S, Mohan L, Chang H-Y, Tseng F-G, Nagai M, Santra TS (2020) Infrared pulse laser activated highly efficient intracellular delivery using titanium micro-dish device. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.0c00785

    Article  Google Scholar 

  12. Santra TS, Kar S, Chang H-Y, Tseng F-G (2020) Nano-localized single-cell nano-electroporation. Lab Chip 17. https://doi.org/10.1039/d0lc00712a

  13. Illath K, Narasimahan, AK, Nagai M, Wankhar S, Santra TS (2020) Microfluidic based metallic nanoparticle synthesis and applications. In: Microfluidics and bio-MEMS: devices and applications. Jenny Stanford Publisher Pte. Ltd

    Google Scholar 

  14. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater

    Google Scholar 

  15. Oshida Y (2010) Bioscience and bioengineering of titanium materials. Elsevier

    Google Scholar 

  16. Mohan L, Anandan C, Grips VKW (2012) Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank’s solution. Appl Surf Sci 258:6331–6340. https://doi.org/10.1016/j.apsusc.2012.03.032

    Article  ADS  Google Scholar 

  17. Santra TS, Tseng F-G, Barik TK (2014) Green biosynthesis of gold nanoparticles and biomedical applications. Am J Nano Res Appl 2:5–12. https://doi.org/10.11648/j.nano.s.2014020602.12

  18. Mohan L, Durgalakshmi D, Geetha M, Narayanan TSNS, Asokamani R (2012) Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications. Ceram Int 38:3435–3443

    Article  Google Scholar 

  19. Mohan L, Anandan C (2013) Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr. Appl Surf Sci 282:281–290. https://doi.org/10.1016/j.apsusc.2013.05.120

    Article  ADS  Google Scholar 

  20. Mohan L, Anandan C, Rajendran N (2015) Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4 V in Hanks’ solution for biomedical applications. Electrochim Acta 155:411–420. https://doi.org/10.1016/j.electacta.2014.12.032

    Article  Google Scholar 

  21. Mohan L, Kar S, Nandhini B, Dhilip Kumar SS, Nagai M, Santra TS (2020) Formation of nanostructures on magnesium alloy by anodization for potential biomedical applications. Mater Today Commun: 101403. https://doi.org/10.1016/j.mtcomm.2020.101403

  22. [PDF] A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via Marine Algae and Seagrasses|Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-of-Current-Research-into-the-Biogenic-of-Fawcett-Verduin/04a57915cbbe6701fb08de0464260d5a3af7e3a7. Accessed 9 June 2020

  23. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12. https://doi.org/10.1093/annhyg/mel071

    Article  Google Scholar 

  24. Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res J 17:205–220. https://doi.org/10.21427/D7HC92

  25. De Pádua M, Growoski Fontoura PS, Mathias AL (2004) Chemical composition of Ulvaria oxysperma (Kützing) bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Brazilian Arch Biol Technol 47:49–55. https://doi.org/10.1590/s1516-89132004000100007

    Article  Google Scholar 

  26. Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757. https://doi.org/10.1016/j.foodchem.2009.11.006

    Article  Google Scholar 

  27. Ravikumar S, Krishnakumar S, Inbaneson SJ, Gnanadesigan M (2010) Antagonistic activity of marine actinomycetes from Arabian Sea coast

    Google Scholar 

  28. Krishnakumar S, Premkumar J, Alexis RR, Ravikumar S (2011) Optimization of potential antibiotic production by salt-tolerant Actinomycetes streptomyces sp.-MSU29 isolated from marine sponge. Int J Appl Bio-Eng 5:12–18. https://doi.org/10.18000/ijabeg.10079

  29. Manivasagan P, Venkatesan J, Kim S-K (2015) Marine algae: an important source of bioenergy production. In: Marine Bioenergy. CRC Press, pp 45–70

    Google Scholar 

  30. Ermakova S, Kusaykin M, Trincone A, Tatiana Z (2015) Are multifunctional marine polysaccharides a myth or reality? Front Chem 3:39. https://doi.org/10.3389/fchem.2015.00039

    Article  ADS  Google Scholar 

  31. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  Google Scholar 

  32. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109. https://doi.org/10.1016/j.nano.2009.04.006

    Article  Google Scholar 

  33. Ra M, Gade A, Gaikwad S, Marcato PD, Durán N (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23:14–24

    Google Scholar 

  34. Kar S, Mohapatra DR, Freysz E, Sood AK (2014) Tuning photoinduced terahertz conductivity in monolayer graphene: optical-pump terahertz-probe spectroscopy. Phys Rev B Condens Matter Mater Phys 90:165420. https://doi.org/10.1103/PhysRevB.90.165420

    Article  ADS  Google Scholar 

  35. Kar S, Nguyen VL, Mohapatra DR, Lee YH, Sood AK (2018) Ultrafast spectral photoresponse of bilayer graphene: optical pump-terahertz probe spectroscopy. ACS Nano 12:1785–1792. https://doi.org/10.1021/acsnano.7b08555

    Article  Google Scholar 

  36. Kar S, Mohapatra DR, Sood AK (2018) Tunable terahertz photoconductivity of hydrogen functionalized graphene using optical pump-terahertz probe spectroscopy. Nanoscale 10:14321–14330. https://doi.org/10.1039/c8nr04154g

    Article  Google Scholar 

  37. Kar S, Su Y, Nair RR, Sood AK (2015) Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy. ACS Nano 9:12004–12010. https://doi.org/10.1021/acsnano.5b04804

    Article  Google Scholar 

  38. Kar S, Jayanthi S, Freysz E, Sood AK (2014) Time resolved terahertz spectroscopy of low frequency electronic resonances and optical pump-induced terahertz photoconductivity in reduced graphene oxide membrane. Carbon N Y 80:762–770. https://doi.org/10.1016/j.carbon.2014.09.030

    Article  Google Scholar 

  39. Li BL, Wang J, Zou HL, Garaj S, Lim CT, Xie J, Li NB, Leong DT (2016) Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv Funct Mater 26:7034–7056. https://doi.org/10.1002/adfm.201602136

    Article  Google Scholar 

  40. Kar S, Sood AK (2019) Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: optical pump-terahertz probe spectroscopy. Carbon N Y 144:731–736. https://doi.org/10.1016/j.carbon.2018.12.081

    Article  Google Scholar 

  41. Chiara R, Ciftci YO, Queloz VIE, Nazeeruddin MK, Grancini G, Malavasi L (2020) Green-emitting lead-free Cs4SnBr 6 zero-dimensional perovskite nanocrystals with improved air stability. J Phys Chem Lett 11:618–623. https://doi.org/10.1021/acs.jpclett.9b03685

    Article  Google Scholar 

  42. Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071. https://doi.org/10.1016/j.procbio.2010.03.024

    Article  Google Scholar 

  43. Prasad TNVKV, Elumalai EK (2011) Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1:439–442. https://doi.org/10.1016/S2221-1691(11)60096-8

    Article  Google Scholar 

  44. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. African J Biotechnol 7:3162–3165. https://doi.org/10.5897/AJB08.425

    Article  Google Scholar 

  45. Hedenborg M (1988) Titanium dioxide induced chemiluminescence of human polymorphonuclear leukocytes. Int Arch Occup Environ Health 61:1–6. https://doi.org/10.1007/BF00381600

    Article  Google Scholar 

  46. Savithramma N, Linga Rao M, Ankanna S, Venkateswarlu P (2012) Screening of medicinal plants for effective biogenesis of silver nanoparticles and efficient antimicrobial activity. Int J Pharm Sci Res. https://ijpsr.com/bft-article/screening-of-medicinal-plants-for-effective-biogenesis-of-silver-nano-particles-and-efficient-anti-microbial-activity/. Accessed 9 June 2020

  47. Chikramane PS, Suresh AK, Bellare JR, Kane SG (2010) Extreme homeopathic dilutions retain starting materials: a nanoparticulate perspective. Homeopathy 99:231–242. https://doi.org/10.1016/j.homp.2010.05.006

    Article  Google Scholar 

  48. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:3157–3162. https://doi.org/10.1021/jp045186t

    Article  Google Scholar 

  49. Diao JJ, Cao Q (2011) Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules. AIP Adv 1:012115. https://doi.org/10.1063/1.3568815

    Article  ADS  Google Scholar 

  50. Lim JK, Imura K, Nagahara T, Kim SK, Okamoto H (2005) Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy. Chem Phys Lett 412:41–45. https://doi.org/10.1016/j.cplett.2005.06.094

    Article  ADS  Google Scholar 

  51. Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74:592–604

    Article  Google Scholar 

  52. Biological applications of colloidal nanocrystals—IOPscience. https://iopscience.iop.org/article/10.1088/0957-4484/14/7/201/pdf. Accessed 9 June 2020

  53. Schider G, Krenn R, Hohenau A, Ditlbacher H, Leitner A, Aussenegg R, Schaich L, Puscasu I, Monacelli B, Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B Condens Matter Mater Phys 68:155427. https://doi.org/10.1103/PhysRevB.68.155427

    Article  ADS  Google Scholar 

  54. Lou X, Zhang Y, Qin J, Li Z (2011) A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples. Chem A Eur J 17:9691–9696. https://doi.org/10.1002/chem.201100389

    Article  Google Scholar 

  55. Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866. https://doi.org/10.1016/j.electacta.2008.03.005

    Article  Google Scholar 

  56. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking of gold nanoparticles. Chem Phys Lett 380:269–272. https://doi.org/10.1016/j.cplett.2003.07.029

    Article  ADS  Google Scholar 

  57. Dey K, Kar S, Shinde P, Mohan L, Bajpai SK, Santra TS (2020) Microfluidic electroporation and applications. Jenny Stanford Publisher

    Google Scholar 

  58. Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B Biointerfaces 59:171–178. https://doi.org/10.1016/j.colsurfb.2007.05.007

    Article  Google Scholar 

  59. Tan Y, Wang Y, Jiang L, Zhu D (2002) Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J Colloid Interface Sci 249:336–345. https://doi.org/10.1006/jcis.2001.8166

    Article  ADS  Google Scholar 

  60. Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983. https://doi.org/10.1021/j100151a054

    Article  Google Scholar 

  61. Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by interphase reduction. Colloids Surf A Physicochem Eng Asp 152:375–379. https://doi.org/10.1016/S0927-7757(98)00861-9

    Article  Google Scholar 

  62. Mallick K, Witcomb MJ, Scurrell MS (2005) Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering. Mater Chem Phys 90:221–224. https://doi.org/10.1016/j.matchemphys.2004.10.030

    Article  Google Scholar 

  63. Kéki S, Török J, Deák G, Daróczi L, Zsuga M (2000) Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J Colloid Interface Sci 229:550–553. https://doi.org/10.1006/jcis.2000.7011

    Article  ADS  Google Scholar 

  64. Pileni MP (2000) Fabrication and physical properties of self-organized silver nanocrystals. Pure Appl Chem, pp 53–65

    Google Scholar 

  65. Sun YP, Atorngitjawat P, Meziani MJ (2001) Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 17:5707–5710. https://doi.org/10.1021/la0103057

    Article  Google Scholar 

  66. Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010

    Article  Google Scholar 

  67. Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491:78–86. https://doi.org/10.1016/S0022-0728(00)00301-6

    Article  Google Scholar 

  68. Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. In: Applied Surface Science. Elsevier, pp 628–634

    Google Scholar 

  69. Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526. https://doi.org/10.1016/j.jcis.2004.10.038

    Article  ADS  Google Scholar 

  70. Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-Metal (Slver, Platinum, and Palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243. https://doi.org/10.1021/la035440t

    Article  Google Scholar 

  71. Murugadoss A, Khan A, Chattopadhyay A (2010) Stabilizer specific interaction of gold nanoparticles with a thermosensitive polymer hydrogel. J Nanoparticle Res 12:1331–1348. https://doi.org/10.1007/s11051-009-9668-0

    Article  ADS  Google Scholar 

  72. Zhang H, Li X, Chen G (2009) Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J Mater Chem 19:8223–8231. https://doi.org/10.1039/b910610c

    Article  Google Scholar 

  73. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science (80-) 298:2176–2179. https://doi.org/10.1126/science.1077229

  74. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  Google Scholar 

  75. Raghunandan D, Borgaonkar PA, Bendegumble B, Bedre MD, Bhagawanraju M, Yalagatti MS, Huh DS, Abbaraju V (2011) Microwave-assisted rapid extracellular biosynthesis of silver nanoparticles using carom seed (Trachyspermum copticum) extract and in vitro studies. Am J Anal Chem 02:475–483. https://doi.org/10.4236/ajac.2011.24057

    Article  Google Scholar 

  76. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137. https://doi.org/10.1016/j.colsurfb.2009.01.016

    Article  Google Scholar 

  77. Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl 4-ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29. https://doi.org/10.1016/j.hydromet.2005.09.006

    Article  Google Scholar 

  78. (PDF) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa | Alfredo R Vilchis-Nestor—Academia.edu. https://www.academia.edu/22627587/Biosynthesis_of_silver_gold_and_bimetallic_nanoparticles_using_the_filamentous_fungus_Neurospora_crassa. Accessed 9 June 2020

  79. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss

    Google Scholar 

  80. Thakur NS, Dwivedee BP, Banerjee UC, Bhaumik J (2017) Bioinspired synthesis of silver nanoparticles: characterisation, mechanism and applications. In: Silver Nanoparticles for Antibacterial Devices. CRC Press, pp 3–36

    Google Scholar 

  81. Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439. https://doi.org/10.1021/nn7000883

    Article  Google Scholar 

  82. Mendiola JA, Rodriguez-Meizoso I, Señoráns FJ, Reglero G (2017) Advanced Microalgal Technologies for a Circular Economy. ALGATEC-CM View project. Project Allergy Car-Union European View project

    Google Scholar 

  83. Wenqiang G, Shufen L, Ruixiang Y, Yanfeng H (2006) Comparison of composition and antifungal activity of Artemisia argyi Lévl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide. Nat Prod Res 20:992–998. https://doi.org/10.1080/14786410600921599

    Article  Google Scholar 

  84. Santra TS, Bhattacharyya TK Diamond-Like Nanocomposite (DLN) Films for Microelectro-Mechanical System (MEMS). IJCA

    Google Scholar 

  85. Santra TS, Bhattacharyya TK, Tseng FG, Barik TK (2012) Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD. AIP Adv 2:022132. https://doi.org/10.1063/1.4721654

    Article  ADS  Google Scholar 

  86. Santra TS, Bhattacharyya TK, Patel P, Tseng FG, Barik TK (2011) Structural and tribological properties of diamond-like nanocomposite thin films. Surf Coatings Technol 206:228–233. https://doi.org/10.1016/j.surfcoat.2011.06.057

    Article  Google Scholar 

  87. Santra TS, Liu CH, Bhattacharyya TK, Patel P, Barik TK (2010) Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition. J Appl Phys 107:124320. https://doi.org/10.1063/1.3415548

    Article  ADS  Google Scholar 

  88. IJCA—Diamond-like Nanocomposite (DLN) Films for Microelectro-Mechanical System (MEMS). http://sandbox.ijcaonline.org/proceedings/isdmisc/number6/3478-isdm132. Accessed 9 June 2020

  89. Biomedical applications of diamond-like nanocomposite thin films: ingenta connect. https://www.ingentaconnect.com/content/asp/sam/2012/00000004/00000001/art00014. Accessed 9 June 2020

  90. Das T, Ghosh D, Bhattacharyya TK, Maiti TK (2007) Biocompatibility of diamond-like nanocomposite thin films. J Mater Sci Mater Med 18:493–500. https://doi.org/10.1007/s10856-007-2009-x

    Article  Google Scholar 

  91. Nanotechnology applications (With images) | Nanotechnology, Nano science, Nanotechnology art. https://in.pinterest.com/pin/574842339921055473/. Accessed 9 June 2020

  92. Global Nanomaterials Market Worth USD 16.8 Billion by 2022. https://www.zionmarketresearch.com/news/nanomaterials-market. Accessed 9 June 2020

  93. Nanotechnology global market value 2020 | Statista. https://www.statista.com/statistics/1073886/global-market-value-nanotechnology/. Accessed 9 Jun 2020

  94. Global Nanotechnology Market To Reach $48.9 Billion In 2017. https://www.bccresearch.com/pressroom/nan/global-nanotechnology-market-reach-$48.9-billion-2017. Accessed 9 June 2020

  95. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev

    Google Scholar 

  96. Pridgen EM, Alexis F, Farokhzad OC (2015) Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv

    Google Scholar 

  97. Kafshgari M, Harding F, Voelcker N (2015) Insights into cellular uptake of nanoparticles. Curr Drug Deliv. https://doi.org/10.2174/1567201811666140821110631

    Article  Google Scholar 

  98. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  Google Scholar 

  99. Papp T, Schiffmann D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27. https://doi.org/10.1080/17435390701847935

    Article  Google Scholar 

  100. Likus W, Bajor G, Siemianowicz K (2013) Nanosilver-does it have only one face?

    Google Scholar 

  101. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  102. Love SA, Maurer-Jones MA, Thompson JW, Lin Y-S, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem. https://doi.org/10.1146/annurev-anchem-062011-143134

    Article  Google Scholar 

  103. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin. Chim, Acta

    Book  Google Scholar 

  104. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res, Int

    Book  Google Scholar 

  105. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles-Nanoparticle or silver ion? Toxicol Lett. https://doi.org/10.1016/j.toxlet.2011.11.002

    Article  Google Scholar 

  106. Liao MY, Liu HG (2012) Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol 34:67–80. https://doi.org/10.1016/j.etap.2011.05.014

    Article  Google Scholar 

  107. La Francesca S (2012) Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications. Methodist Debakey Cardiovasc J 8:28–35

    Article  Google Scholar 

  108. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp. Mol, Pathol

    Book  Google Scholar 

  109. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med. https://doi.org/10.1146/annurev-med-040210-162544

    Article  Google Scholar 

  110. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, Wurm EMT, Yoong C, Robertson TA, Soyer HP, Roberts MS (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv, Rev

    Book  Google Scholar 

  111. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv, Rev

    Book  Google Scholar 

  112. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Article  Google Scholar 

  113. Gerloff K, Albrecht C, Boots AW, Frster I, Schins RPF (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3:355–364. https://doi.org/10.3109/17435390903276933

    Article  Google Scholar 

  114. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. | Semantic Scholar. https://www.semanticscholar.org/paper/Relating-cytotoxicity%2C-zinc-ions%2C-and-reactive-in-Shen-James/95df5b01a4a932d2c233884e7a4c9e8dcd942169. Accessed 9 June 2020

  115. Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X, Zhao Y (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Heal Part A 47:577–588. https://doi.org/10.1080/10934529.2012.650576

    Article  Google Scholar 

  116. Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, Sprando RL (2014) Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 34:1155–1166. https://doi.org/10.1002/jat.2994

    Article  Google Scholar 

  117. Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. In: Inhalation Toxicology, pp 453–459

    Google Scholar 

  118. Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6. https://doi.org/10.1165/AJRCMB/6.5.535

  119. Jugan ML, Barillet S, Simon-Deckers A, Sauvaigo S, Douki T, Herlin N, Carrière M (2011) Cytotoxic and genotoxic impact of TiO2 nanoparticles on A549 cells. J Biomed Nanotechnol 7:22–23. https://doi.org/10.1166/jbn.2011.1181

    Article  Google Scholar 

  120. Du Z, Zhao D, Jing L, Cui G, Jin M, Li Y, Liu X, Liu Y, Du H, Guo C, Zhou X, Sun Z (2013) Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol 13:194–207. https://doi.org/10.1007/s12012-013-9198-y

    Article  Google Scholar 

  121. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:1–33

    Article  Google Scholar 

  122. Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, Van Ravenzwaay B (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16. https://doi.org/10.1186/1743-8977-11-16

    Article  Google Scholar 

  123. Silver Nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells | Toxicological Sciences | Oxford Academic. https://academic.oup.com/toxsci/article-abstract/118/1/160/1664864?redirectedFrom=fulltext. Accessed 9 June 2020

  124. Trickler WJ, Lantz-Mcpeak SM, Robinson BL, Paule MG, Slikker W, Biris AS, Schlager JJ, Hussain SM, Kanungo J, Gonzalez C, Ali SF (2014) Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metab Rev 46:224–231

    Article  Google Scholar 

  125. González C, Salazar-García S, Palestino G, Martínez-Cuevas PP, Ramírez-Lee MA, Jurado-Manzano BB, Rosas-Hernández H, Gaytán-Pacheco N, Martel G, Espinosa-Tanguma R, Biris AS, Ali SF (2011) Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: Role of nitric oxide. Toxicol Lett 207:306–313. https://doi.org/10.1016/j.toxlet.2011.09.024

    Article  Google Scholar 

  126. Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B (2012) Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol 40:1004–1013. https://doi.org/10.1177/0192623312444470

    Article  Google Scholar 

  127. Tsuda H, Xu J, Sakai Y, Futakuchi M, Fukamachi K (2009) Toxicology of engineered nanomaterials—a review of carcinogenic potential. Asian Pac J Cancer Prev 10:975–980

    Google Scholar 

  128. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275:65–71. https://doi.org/10.1016/j.tox.2010.06.002

    Article  Google Scholar 

  129. Chen R, Zhang L, Ge C, Tseng MT, Bai R, Qu Y, Beer C, Autrup H, Chen C (2015) Subchronic toxicity and cardiovascular responses in spontaneously hypertensive rats after exposure to multiwalled carbon nanotubes by intratracheal instillation. Chem Res Toxicol 28:440–450. https://doi.org/10.1021/tx5004003

    Article  Google Scholar 

  130. Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T (2011) An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73:1417–1423. https://doi.org/10.1292/jvms.11-0038

    Article  Google Scholar 

  131. Clichici S, Filip A (2015) In vivo assessment of nanomaterials toxicity. In: Nanomaterials—toxicity and risk assessment. InTech

    Google Scholar 

  132. Shinde P, Kumar A, Kavitha, Dey K, Mohan L, Kar S, Barik TK, Sharifi-Rad J, Nagai M, Santra TS (2020) Physical approaches for drug delivery. In: Delivery of drugs. Elsevier, pp 161–190

    Google Scholar 

  133. Kumar A, Mohan L, Shinde P, Chang H, Nagai M, Santra TS Mechanoporation Toward single cell approaches

    Google Scholar 

  134. Santra TS, Chang H-Y, Wang P-C, Tseng F-G (2014) Impact of pulse duration on localized single-cell nano-electroporation. Analyst 139:6249–6258

    Article  ADS  Google Scholar 

  135. Santra TS, Wang PC, Chang HY, Tseng FG (2013) Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation. Appl Phys Lett 103. https://doi.org/10.1063/1.4833535

  136. Manoj H, Gupta P, Loganathan M, Nagai M, Wankhar S, Santra (2020) Microneedles: current trends & applications. In: Microfluidics and bio-MEMS: devices and applications. Jenny Stanford Publisher

    Google Scholar 

  137. Kar S, Shinde P, Nagai M, Santra TS (2020) Optical manipulation of cells. In: Microfluidics and bio-MEMS: devices and applications. Jenny Stanford Publisher

    Google Scholar 

  138. Santra TS, Wu TH, Chiou EPY (2016) Photothermal microfluidics. In: Optical MEMS for chemical analysis and biomedicine. Institution of Engineering and Technology, pp 289–323

    Google Scholar 

  139. Santra TS, Tseng F-G (2016) Electroporation for single-cell analysis, pp 55–83

    Google Scholar 

  140. Santra TS, Wang P-C, Tseng FG (2013) Electroporation based drug delivery and its applications. In: Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. InTech

    Google Scholar 

  141. Shanmugam MM, Santra TS (2016) Microinjection for single-cell analysis. Springer, Berlin, Heidelberg, pp 85–129

    Google Scholar 

  142. Santra TS, Kar S, Chen C-W, Borana J, Chen T-C, Lee M-C, Tseng F-G (2020) Near-infrared nanosecond-pulsed laser-activated high efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale. https://doi.org/10.1039/d0nr01792b

    Article  Google Scholar 

  143. Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng F-G, Chang H-Y, Nagai M, Santra TS (2018) Current trends of microfluidic single-cell technologies. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103143

  144. Kar S, Loganathan M, Dey K, Shinde P, Chang H-Y, Nagai M, Santra TS (2018) Single-cell electroporation: current trends, applications and future prospects. J Micromechanics Microengineering 28:123002. https://doi.org/10.1088/1361-6439/aae5ae

    Article  ADS  Google Scholar 

  145. Narasimhan AK, Lakshmi SB, Santra TS, Rao MSR, Krishnamurthi G (2017) Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv 7:53822–53829. https://doi.org/10.1039/c7ra10702a

    Article  ADS  Google Scholar 

  146. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog. Polym, Sci

    Book  Google Scholar 

  147. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2014.09.009

    Article  Google Scholar 

  148. Sekhon BS (2010) Food nanotechnology—an overview. Nanotechnol Sci Appl

    Google Scholar 

  149. Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal

    Google Scholar 

  150. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess

    Google Scholar 

  151. Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Front Microbiol

    Google Scholar 

  152. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res

    Google Scholar 

  153. Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut. https://doi.org/10.5539/ep.v2n2p49

    Article  Google Scholar 

  154. Zhang B, Misak H, Dhanasekaran PS, Kalla D, Asmatulu R (2011) Environmental impacts of nanotechnology and its products. Am Soc Eng Educ

    Google Scholar 

  155. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect

    Google Scholar 

  156. Van Hee VC, Kaufman JD, Scott Budinger GR, Mutlu GM (2010) Update in environmental and occupational medicine 2009. Am J Respir Crit Care Med 181:1174–1180

    Article  Google Scholar 

  157. Pope AC, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke shape of the exposure-response relationship. Circulation 120:941–948. https://doi.org/10.1161/CIRCULATIONAHA.109.857888

    Article  Google Scholar 

  158. Bernd N (2010) Pollution prevention and treatment using nanotechnology. In: Nanotechnology

    Google Scholar 

  159. Wood S, Geldart A, Jones R (2003) The social and economic challenges of nanotechnology. TATuP - Zeitschrift für Tech Theor und Prax. https://doi.org/10.14512/tatup.12.3-4.72

  160. Roco MC, Bainbridge WS (2005) Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanoparticle Res. https://doi.org/10.1007/s11051-004-2336-5

    Article  Google Scholar 

  161. Khan A (2015) Ethical and social implications of nanotechnology. QScience Proc. https://doi.org/10.5339/qproc.2015.elc2014.57

    Article  Google Scholar 

  162. Springer handbook of nanotechnology

    Google Scholar 

  163. (2012) Encyclopedia of nanotechnology

    Google Scholar 

  164. Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165. https://doi.org/10.1016/j.taap.2011.11.010

    Article  Google Scholar 

  165. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies—a review. Toxicology 269:92–104

    Article  Google Scholar 

  166. Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 87:1883–1900

    Article  Google Scholar 

  167. Scopus—Document search | Signed in. https://www.scopus.com/search/form.uri?display=basic. Accessed 9 June 2020

  168. Nanomaterials: toxicity and risk assessment—Google Books. https://books.google.co.jp/books?id=ammQDwAAQBAJ&pg=PA18&lpg=PA18&dq=Rodgers,+P.,+Chun,+A.,+Cantrill,+S.,+Thomas,+J.+Editorial,+Small+is+different,+Natur+Nanotechnol.+1,+1,+2006.&source=bl&ots=NX2ybJWdwk&sig=ACfU3U0mIa1_5cq6sbgJJpAeR7SQxHn7Ig&hl=en&sa=X&ved=2ahUKEwjP8L2Kj_TpAhVrw4sBHQE4DLUQ6AEwAHoECAoQAg#v=onepage&q=Rodgers%2CP.%2CChun%2CA.%2CCantrill%2CS.%2CThomas%2CJ.Editorial%2CSmallisdifferent%2CNaturNanotechnol.1%2C1%2C2006.&f=false. Accessed 9 June 2020

  169. Chen W, Xiong Q, Ren QX, Guo YK, Li G (2014) Can amino-functionalized carbon nanotubes carry functional nerve growth factor? Neural Regen Res 9:285–292. https://doi.org/10.4103/1673-5374.128225

    Article  Google Scholar 

  170. Liu Y, Ren L, Yan D, Zhong W (2014) Mechanistic study on the reduction of SWCNT-induced cytotoxicity by albumin coating. Part Part Syst Charact 31:1244–1251. https://doi.org/10.1002/ppsc.201400145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Barik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, T.K., Maity, G.C., Gupta, P., Mohan, L., Santra, T.S. (2021). Nanomaterials: An Introduction. In: Santra, T.S., Mohan, L. (eds) Nanomaterials and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-33-6252-9_1

Download citation

Publish with us

Policies and ethics