Skip to main content

Metallic Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:
Nanomaterials and Their Biomedical Applications

Abstract

Metallic nanoparticles have found various biomedical applications due to their intrinsic physicochemical properties. As the size decreases, the high surface area of particles gives rise to distinctive features, which are entirely different from that of a macro-sized structure. Several methods are involved in synthesizing metallic nanoparticles, and in general, it can be categorized into either bottom-up or top-down approaches. The top-down method consists of cutting down the bulk materials into nano-sized particles through physical, chemical, or mechanical treatments, whereas, in a bottom-up approach, nanoparticles are formed by joining individual atoms or molecules. The top-down approach produces metallic nanoparticles in naked form, which can further agglomerate and hence not suitable for biomedical applications. The bottom-up approach involves solid-state, liquid state, gas phase, biological, microfluidic-technology based, and other methods. Chemical reduction in the bottom-up approach is the most common method of metallic nanoparticle synthesis, which is flexible, simpler, inexpensive, and produces particles in homogenous form. Recently biological method of nanoparticle synthesis has become popular due to its toxic-free nature, inexpensiveness, sustainability, and eco-friendly. In this chapter, we describe the top-down and bottom-up approach and current trends in the synthesis of metallic nanoparticles for biomedical purposes. Further, it explains how the parameters can be tuned to get metallic nanoparticles with the desired shape, size, morphology, composition and crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  2. Barber DJ, Freestone IC (1990) An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy. Archaeometry 32:33–45

    Article  Google Scholar 

  3. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181. https://doi.org/10.1098/rstl.1857.0011

    Article  ADS  Google Scholar 

  4. Kreuter J (2007) Nanoparticles-a historical perspective. Int J Pharm 331:1–10. https://doi.org/10.1016/j.ijpharm.2006.10.021

    Article  Google Scholar 

  5. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  6. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomed Res Int 2014: https://doi.org/10.1155/2014/498420

  7. Cartaxo ALP (2018) Nanoparticles types and properties—understanding these promising devices in the biomedical area. Int J Nanomedicine: 1–8

    Google Scholar 

  8. Tiquia-arashiro S, Rodrigues DF (2016) Extremophiles: applications in nanotechnology. Springer Nature, Gewerbestrasse

    Book  Google Scholar 

  9. Tiquia-Arashiro S, Rodrigues DF (2016) Application of nanoparticles. In: Extremophiles: applications in nanotechnology: biotechnological applications of extremophiles in nanotechnology, pp 163–193

    Google Scholar 

  10. Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8:1237–1259. https://doi.org/10.1039/c5nr07681a

    Article  ADS  Google Scholar 

  11. Polte J, Erler R, Thu AF, Sokolov S, Ahner TT, Rademann K, Emmerling F, Kraehnert R (2010) Nucleation and growth of gold nanoparticles studied via in situ Small angle X-ray scattering at millisecond time resolution. ACS Nano 4:1076–1082

    Article  Google Scholar 

  12. Vekilov PG (2010) The two-step mechanism of nucleation of crystals in solution. Nanoscale 2:2346–2357. https://doi.org/10.1039/c0nr00628a

    Article  ADS  Google Scholar 

  13. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371. https://doi.org/10.1039/c3cs60451a

    Article  Google Scholar 

  14. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. Am Chem Soc 72:4847–4854. https://doi.org/10.1016/s0033-3506(55)80003-0

    Article  Google Scholar 

  15. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. https://doi.org/10.1021/cr030063a

    Article  Google Scholar 

  16. Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles—a new perspective. CrystEngComm 17:6809–6830. https://doi.org/10.1039/c5ce01014d

    Article  Google Scholar 

  17. Karatutlu A, Barhoum A, Sapelkin A (2018) Theories of nanoparticle and nanostructure formation in liquid phase. In: Emerging applications of nanoparticles and architectural nanostructures: current prospects and future trends. Elsevier Inc., pp 597–619

    Google Scholar 

  18. Amirjani A, Haghshenas DF (2019) Modified Finke-Watzky mechanisms for the two step nucleation and growth of silver nanoparticles. Nanotechnology: 0–22

    Google Scholar 

  19. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–4716. https://doi.org/10.1021/acs.jpcc.5b11232

    Article  Google Scholar 

  20. Boies AM, Lei P, Calder S, Shin WG, Girshick SL (2011) Hot-wire synthesis of gold nanoparticles. Aerosol Sci Technol 45:654–663. https://doi.org/10.1080/02786826.2010.551145

    Article  ADS  Google Scholar 

  21. Huang H, du Toit H, Besenhard MO, Ben-Jaber S, Dobson P, Parkin I, Gavriilidis A (2018) Continuous flow synthesis of ultrasmall gold nanoparticles in a microreactor using trisodium citrate and their SERS performance. Chem Eng Sci 189:422–430. https://doi.org/10.1016/j.ces.2018.06.050

    Article  Google Scholar 

  22. Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS (2018) Current trends of microfluidic single-cell technologies. Int J Mol, Sci, p 19

    Google Scholar 

  23. Watt J, Hance BG, Anderson RS, Huber DL (2015) Effect of seed age on gold nanorod formation: a microfluidic, real-time investigation. Chem Mater 27:6442–6449. https://doi.org/10.1021/acs.chemmater.5b02675

    Article  Google Scholar 

  24. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779. https://doi.org/10.1039/c1cs15237h

    Article  Google Scholar 

  25. Santra TS, Tseng F-G (2016) Pulse laser activated photoporation for high efficient intracellular delivery using nano-corrugated mushroom shape gold nanoparticles. In: International conference on Miniaturized systems for chemistry and life sciences, pp 1097–1098

    Google Scholar 

  26. Santra TS, Kar S, Chen C-W, Borana J, Chen T-C, Lee M-C, Tseng F-G (2020) Near-infrared nanosecond-pulsed laser-activated high efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale. https://doi.org/10.1039/d0nr01792b

    Article  Google Scholar 

  27. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770. https://doi.org/10.1039/b200953f

    Article  Google Scholar 

  28. Parveen F, Sannakki B, Mandke MV, Pathan HM (2016) Copper nanoparticles: synthesis methods and its light harvesting performance. Sol Energy Mater Sol Cells 144:371–382. https://doi.org/10.1016/j.solmat.2015.08.033

    Article  Google Scholar 

  29. Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2:1003–1007. https://doi.org/10.1021/nl025674h

    Article  ADS  Google Scholar 

  30. Liu G, Ma X, Sun X, Jia Y, Wang T (2018) Controllable synthesis of silver nanoparticles using three-phase flow pulsating mixing microfluidic chip. Adv Mater Sci Eng. https://doi.org/10.1155/2018/3758161

  31. Jin W, Liang G, Zhong Y, Yuan Y, Jian Z, Wu Z, Zhang W (2019) The influence of CTAB-capped seeds and their aging time on the morphologies of silver nanoparticles. Nanoscale Res Lett 14. https://doi.org/10.1186/s11671-019-2898-x

  32. Santra TS, Tseng F-G (2021) Handbook of single cell technology. Springer Nature

    Google Scholar 

  33. Tseng F-G, Santra TS (2016) Essentials of single-cell analysis. Springer Nature

    Google Scholar 

  34. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53. https://doi.org/10.1016/j.jddst.2019.101174

  35. Piszczek P, Radtke A (2018) Silver nanoparticles fabricated using chemical vapor deposition and atomic layer deposition techniques: properties, applications and perspectives: review. In: Noble and precious metals—properties, nanoscale effects and applications, pp 187–213

    Google Scholar 

  36. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016) Sol-gel based materials for biomedical applications. Prog Mater Sci 77:1–79. https://doi.org/10.1016/j.pmatsci.2015.12.001

    Article  Google Scholar 

  37. Lai J, Niu W, Luque R, Xu G (2015) Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10:240–267. https://doi.org/10.1016/j.nantod.2015.03.001

    Article  Google Scholar 

  38. Huang X, Zhang H, Guo C, Zhou Z, Zheng N (2009) Simplifying the creation of hollow metallic nanostructures: one-pot synthesis of hollow palladium/platinum single-crystalline. Angew Chemie Int Ed 48:4808–4812. https://doi.org/10.1002/anie.200900199

    Article  Google Scholar 

  39. Huang X, Tang S, Zhang H, Zhou Z, Zheng N (2009) Controlled formation of concave tetrahedral/Trigonal bipyramidal palladium. J Am Chem Soc 131:13916–13917. https://doi.org/10.1021/ja9059409

    Article  Google Scholar 

  40. Zhang Q, Dong K, Wang C, Cheng Y (2015) Dramatic shape transformation of Ag nanoparticles with concave facets in a solvothermal process. CrystEngComm 17:7469–7472. https://doi.org/10.1039/c5ce01350j

    Article  Google Scholar 

  41. Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Handbook of Nanoparticles. Springer Switzerland, pp 1–1426

    Google Scholar 

  42. Zhang ZC, Hui JF, Liu ZC, Zhang X, Zhuang J, Wang X (2012) Glycine-mediated syntheses of Pt concave nanocubes with high-index hk0 facets and their enhanced electrocatalytic activities. Langmuir 28:14845–14848. https://doi.org/10.1021/la302973r

    Article  Google Scholar 

  43. Xia BY, Bin WuH, Yan Y, Lou XW, Wang X (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135:9480–9485. https://doi.org/10.1021/ja402955t

    Article  Google Scholar 

  44. Rosa P de F, Cirqueira SSR, Aguiar ML, Bernardo A (2014) Solvothermal synthesis and characterization of silver nanoparticles. Mater Sci Forum 802:135–139. https://doi.org/10.4028/www.scientific.net/MSF.802.135

  45. Wu Y, Cai S, Wang D, He W, Li Y (2012) Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure—activity study in model hydrogenation reactions. J Am Chem Soc 134:8975–8981. https://doi.org/10.1021/ja302606d

    Article  Google Scholar 

  46. Lu N, Chen W, Fang G, Chen B, Yang K, Yang Y, Wang Z, Huang S, Li Y (2014) 5-fold twinned nanowires and single twinned right bipyramids of Pd: utilizing small organic molecules to tune the etching degree of O 2/halides. Am Chem Soc 26:2453–2459. https://doi.org/10.1021/cm4042204

    Article  Google Scholar 

  47. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424. https://doi.org/10.1016/j.jcis.2007.03.039

    Article  ADS  Google Scholar 

  48. Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111:9095–9104. https://doi.org/10.1021/jp068859b

    Article  Google Scholar 

  49. Zhang L, Chen D, Jiang Z, Zhang J, Xie S, Kuang Q, Xie Z, Zheng L (2012) Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with hkk high-index surfaces. Nano Res 5:181–189. https://doi.org/10.1007/s12274-012-0198-1

    Article  Google Scholar 

  50. Fu G, Wu K, Jiang X, Tao L, Chen Y, Lin J, Zhou Y, Wei S, Tang Y, Lu T, Xia X (2013) Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys Chem Chem Phys 15:3793–3802. https://doi.org/10.1039/c3cp44191a

    Article  Google Scholar 

  51. Xia BY, Ng WT, Bin WuH, Wang X, Lou XW (2012) Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew Chemie Int Ed 51:7213–7216. https://doi.org/10.1002/anie.201201553

    Article  Google Scholar 

  52. Yu D, Yam VWW (2004) Controlled synthesis of monodisperse silver nanocubes in water. J Am Chem Soc 126:13200–13201. https://doi.org/10.1021/ja046037r

    Article  Google Scholar 

  53. Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Ahmed J, Al-Shihri AS (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48:12–20. https://doi.org/10.1016/j.materresbull.2012.09.069

    Article  Google Scholar 

  54. Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Tunable aqueous phase synthesis and shape-dependent electrochemical properties of rhodium nanostructures. Inorg Chem 49:5515–5521. https://doi.org/10.1021/ic100249t

    Article  Google Scholar 

  55. Guerrini L, Alvarez-puebla RA, Pazos-perez N (2018) Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel) 11:1–28. https://doi.org/10.3390/ma11071154

    Article  Google Scholar 

  56. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  Google Scholar 

  57. Uson L, Sebastian V, Arruebo M, Santamaria J (2016) Continuous microfluidic synthesis and functionalization of gold nanorods. Chem Eng J 285:286–292. https://doi.org/10.1016/j.cej.2015.09.103

    Article  Google Scholar 

  58. Vega MM, Bonifacio A, Lughi V, Marsi S, Carrato S, Sergo V (2014) Long-term stability of surfactant-free gold nanostars long-term stability of surfactant-free gold nanostars. J Nanoparticle Res. https://doi.org/10.1007/s11051-014-2729-z

    Article  Google Scholar 

  59. Skrabalak SE, Xia Y (2009) Pushing nanocrystal synthesis toward nanomanufacturing. ACS Nano 3:10–15. https://doi.org/10.1021/nn800875p

    Article  Google Scholar 

  60. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem A Eur J 11:440–452. https://doi.org/10.1002/chem.200400417

    Article  Google Scholar 

  61. Kohout C, Santi C, Polito L (2018) Anisotropic gold nanoparticles in biomedical applications. Int J Mol Sci 19. https://doi.org/10.3390/ijms19113385

  62. Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134:14542–14554. https://doi.org/10.1021/ja305245g

    Article  Google Scholar 

  63. Indrasekara ASDS, Johnson SF, Odion RA, Vo-dinh T (2018) Manipulation of the geometry and modulation of the optical response of surfactant-free gold nanostars: a systematic bottom—up synthesis. Am Chem Soc Omega 3:2202–2210. https://doi.org/10.1021/acsomega.7b01700

    Article  Google Scholar 

  64. Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640

    Article  Google Scholar 

  65. Ahmed W, Khan HI, Khalid MU, Abdullah A, Ali A (2018) Enhanced Raman scattering and fluorescence quenching properties Facile synthesis of gold nanostars over a wide size range and their excellent surface enhanced Raman scattering and fluorescence quenching properties. J Vac Sci Technol B 36:03E101-1–6. https://doi.org/10.1116/1.4996541

  66. Cui J, Fan J, Zhao T, Wang A, Drezek RA, Zhu M (2009) Real-time monitoring and scale-up synthesis of concentrated gold nanorods. J Biomed Nanotechnol 5:1–6. https://doi.org/10.1166/jbn.2009.1063

    Article  Google Scholar 

  67. Samal AK, Sreenivasan ST, Thalappil P (2010) Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods. J Nanoparticle Res 12:1777–1786. https://doi.org/10.1007/s11051-009-9733-8

    Article  ADS  Google Scholar 

  68. Wang C, Wang T (2009) Synthesis and optical properties of colloidal gold nanoparticles synthesis and optical properties of colloidal gold nanoparticles. In: Journal of Physics: Conference Series

    Google Scholar 

  69. Oliveira JP, Prado AR, Juve W, Ribeiro RN, Pontes MJ, Nogueira BV, Guimara MCC (2017) A helpful method for controlled synthesis of monodisperse gold nanoparticles through response surface modeling. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.04.003

    Article  Google Scholar 

  70. Feng L, Xuan Z, Ma J, Chen J, Cui D, Su C (2015) Preparation of gold nanorods with different aspect ratio and the optical response to solution refractive index. J Exp Nanosci 10:258–267. https://doi.org/10.1080/17458080.2013.824619

    Article  Google Scholar 

  71. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. https://doi.org/10.1021/jp061667w

    Article  Google Scholar 

  72. Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts†. Chem Commun 50:14194–14196. https://doi.org/10.1039/c4cc05946h

    Article  Google Scholar 

  73. Sun Y, Gates B, Mayers B, Xia Y (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168. https://doi.org/10.1021/nl010093y

    Article  ADS  Google Scholar 

  74. Zhang J, Feng C, Deng Y, Liu L, Wu Y, Shen B, Zhong C, Hu W (2014) Shape-controlled synthesis of palladium single-crystalline nanoparticles: the effect of HCl oxidative etching and facet-dependent catalytic properties. Chem Mater 26:1213–1218. https://doi.org/10.1021/cm403591g

    Article  Google Scholar 

  75. Pietrobon B, McEachran M, Kitaev V (2009) Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3:21–26. https://doi.org/10.1021/nn800591y

    Article  Google Scholar 

  76. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745. https://doi.org/10.1021/cm020587b

    Article  Google Scholar 

  77. Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanoparticle Res 6:411–414

    Article  ADS  Google Scholar 

  78. Santra TS, Tseng F-G (Kevin), Barik TK (2015) Biosynthesis of silver and gold nanoparticles for potential biomedical applications—a brief review. J Nanopharmaceutics Drug Deliv 2:249–265. https://doi.org/10.1166/jnd.2014.1065

  79. Wang Y, Chen P, Liu M (2006) Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 17:6000–6006. https://doi.org/10.1088/0957-4484/17/24/016

    Article  ADS  Google Scholar 

  80. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2. https://doi.org/10.1088/2043-6262/2/1/015009

  81. Nagao H, Ichiji M, Hirasawa I (2017) Synthesis of platinum nanoparticles by reductive crystallization using polyethyleneimine. Chem Eng Technol 40:1242–1246. https://doi.org/10.1002/ceat.201600656

    Article  Google Scholar 

  82. Huang X, Zhao Z, Fan J, Tan Y, Zheng N (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having 411 high-index facets. J Am Chem Soc 133:4718–4721. https://doi.org/10.1021/ja1117528

    Article  Google Scholar 

  83. Huang X, Zheng N (2009) One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J Am Chem Soc 131:4602–4603. https://doi.org/10.1021/ja9009343

  84. Yuan Q, Zhuang J, Wang X (2009) Single-phase aqueous approach toward Pd sub-10 nm nanocubes and Pd–Pt heterostructured ultrathin nanowires w. Chem Commun: 6613–6615. https://doi.org/10.1039/b913974e

  85. Wani IA, Khatoon S, Ganguly A, Ahmed J, Ganguli AK, Ahmad T (2010) Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull 45:1033–1038. https://doi.org/10.1016/j.materresbull.2010.03.028

    Article  Google Scholar 

  86. Rosemary MJ, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thiolates. J Colloid Interface Sci 268:81–84. https://doi.org/10.1016/j.jcis.2003.08.009

    Article  ADS  Google Scholar 

  87. Choi J, Park S, Stojanović Z, Han HS, Lee J, Seok HK, Uskoković D, Lee KH (2013) Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters. Langmuir 29:15698–15703. https://doi.org/10.1021/la403888f

    Article  Google Scholar 

  88. Xu X, Zhang H, Liu B, Yang J (2020) One-pot synthesis of corolla-shaped gold nanostructures with (110) planes. RSC Adv 10:8286–8290. https://doi.org/10.1039/d0ra00715c

    Article  ADS  Google Scholar 

  89. Duan H, Yan N, Yu R, Chang C, Zhou G, Hu H, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson PJ, Li J, Li Y (2014) Ultrathin rhodium nanosheets. Nat Commun 1–8. https://doi.org/10.1038/ncomms4093

  90. Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. PNAS 106:4981–4985

    Article  ADS  Google Scholar 

  91. Li Y, Ma J, Ma Z (2013) Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing. Electrochim Acta 108:435–440. https://doi.org/10.1016/j.electacta.2013.06.141

    Article  Google Scholar 

  92. Puja P, Kumar P (2019) A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim Acta PartA Mol Biomol Spectrosc 211:94–99

    Article  ADS  Google Scholar 

  93. Priyadarshini E, Pradhan N, Sukla LB, Panda PK (2014) Controlled synthesis of gold nanoparticles using Aspergillus terreus if0 and its antibacterial potential against gram negative pathogenic bacteria. J Nanotechnol 2014. https://doi.org/10.1155/2014/653198

  94. Owaid MN (2019) Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: review. Environ Nanotechnology, Monit Manag 12:100256. https://doi.org/10.1016/j.enmm.2019.100256

    Article  Google Scholar 

  95. Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, Li B, Mo J, Chen J (2019) Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv 9:29293–29299. https://doi.org/10.1039/c9ra04246f

    Article  ADS  Google Scholar 

  96. Ali J, Ali N, Wang L, Waseem H, Pan G (2019) Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 159:18–25. https://doi.org/10.1016/j.mimet.2019.02.010

    Article  Google Scholar 

  97. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. https://doi.org/10.1039/c1gc15386b

    Article  Google Scholar 

  98. Nasrollahzadeh M, Sajjadi M, Dadashi J, Ghafuri H (2020) Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv Colloid Interface Sci 276:102103. https://doi.org/10.1016/j.cis.2020.102103

    Article  Google Scholar 

  99. Ahmed S, Ikram S, S SY (2016) Biosynthesis of gold nanoparticles: a green approach. JPB 161:141–153. https://doi.org/10.1016/j.jphotobiol.2016.04.034

  100. Santra TS, Tseng F-G, Barik (2014) Green biosynthesis of gold nanoparticles and biomedical applications. Am J nanoresearch Appl 2:5–12

    Google Scholar 

  101. Deokar GK, Ingale AG (2016) Green synthesis of gold nanoparticles (Elixir of Life) from banana fruit waste extract-an efficient multifunctional agent. RSC Adv 6:74620–74629. https://doi.org/10.1039/c6ra14567a

    Article  ADS  Google Scholar 

  102. Tagad CK, Rajdeo KS, Kulkarni A, More P, Aiyer RC, Sabharwal S (2014) Green synthesis of polysaccharide stabilized gold nanoparticles: chemo catalytic and room temperature operable vapor sensing application. RSC Adv 4:24014–24019. https://doi.org/10.1039/c4ra02972k

    Article  ADS  Google Scholar 

  103. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138. https://doi.org/10.1016/j.exppara.2015.03.017

    Article  Google Scholar 

  104. Mittal AK, Bhaumik J, Kumar S, Banerjee UC (2014) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 415:39–47. https://doi.org/10.1016/j.jcis.2013.10.018

    Article  ADS  Google Scholar 

  105. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 45:423–429. https://doi.org/10.1016/j.indcrop.2012.12.019

    Article  Google Scholar 

  106. Geethalakshmi R, Sarada DVL (2013) Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Ind Crops Prod 51:107–115. https://doi.org/10.1016/j.indcrop.2013.08.055

    Article  Google Scholar 

  107. Ganesh Kumar V, Dinesh Gokavarapu S, Rajeswari A, Stalin Dhas T, Karthick V, Kapadia Z, Shrestha T, Barathy IA, Roy A, Sinha S (2011) Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids Surf B Biointerfaces 87:159–163. https://doi.org/10.1016/j.colsurfb.2011.05.016

    Article  Google Scholar 

  108. Arunkumar P, Thanalakshmi M, Kumar P, Premkumar K (2013) Micrococcus luteus mediated dual mode synthesis of gold nanoparticles: involvement of extracellular α-amylase and cell wall teichuronic acid. Colloids Surf B Biointerfaces 103:517–522. https://doi.org/10.1016/j.colsurfb.2012.10.051

    Article  Google Scholar 

  109. Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh MG, Suguna L (2013) Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B Biointerfaces 106:208–216. https://doi.org/10.1016/j.colsurfb.2013.01.035

    Article  Google Scholar 

  110. Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK (2015) Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 72:71–78. https://doi.org/10.1016/j.ijbiomac.2014.07.045

    Article  Google Scholar 

  111. Gupta VK, Atar N, Yola ML, Darcan C, Idil Ö, Üstündaǧ Z, Suhas (2013) Biosynthesis of silver nanoparticles using chitosan immobilized Bacillus cereus: nanocatalytic studies. J Mol Liq 188:81–88. https://doi.org/10.1016/j.molliq.2013.09.021

  112. Vetchinkina EP, Loshchinina EA, Burov AM, Dykman LA, Nikitina VE (2014) Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes. J Biotechnol 182–183:37–45. https://doi.org/10.1016/j.jbiotec.2014.04.018

    Article  Google Scholar 

  113. Yilmaz M, Turkdemir H, Kilic MA, Bayram E, Cicek A, Mete A, Ulug B (2011) Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys 130:1195–1202. https://doi.org/10.1016/j.matchemphys.2011.08.068

    Article  Google Scholar 

  114. Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: Green synthesis of gold nanoparticles. J Food Eng 142:210–220. https://doi.org/10.1016/j.jfoodeng.2014.06.014

    Article  Google Scholar 

  115. Basavegowda N, Idhayadhulla A, Lee YR (2014) Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind Crops Prod 52:745–751. https://doi.org/10.1016/j.indcrop.2013.12.006

    Article  Google Scholar 

  116. Siva Kumar K, Kumar G, Prokhorov E, Luna-Bárcenas G, Buitron G, Khanna VG, Sanchez IC (2014) Exploitation of anaerobic enriched mixed bacteria (AEMB) for the silver and gold nanoparticles synthesis. Colloids Surf A Physicochem Eng Asp 462:264–270. https://doi.org/10.1016/j.colsurfa.2014.09.021

    Article  Google Scholar 

  117. Wang Y, He X, Wang K, Zhang X, Tan W (2009) Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf B Biointerfaces 73:75–79. https://doi.org/10.1016/j.colsurfb.2009.04.027

    Article  Google Scholar 

  118. Khaleel Basha S, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 75:405–409. https://doi.org/10.1016/j.colsurfb.2009.09.008

    Article  Google Scholar 

  119. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B Biointerfaces 76:50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  Google Scholar 

  120. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surfaces B Biointerfaces 68:55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021

    Article  Google Scholar 

  121. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  ADS  Google Scholar 

  122. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res 12:1589–1598. https://doi.org/10.1007/s11051-009-9675-1

    Article  ADS  Google Scholar 

  123. Martins M, Mourato C, Sanches S, Noronha JP, Crespo MTB, Pereira IAC (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168. https://doi.org/10.1016/j.watres.2016.10.071

    Article  Google Scholar 

  124. Gaidhani SV, Yeshvekar RK, Shedbalkar UU, Bellare JH, Chopade BA (2014) Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem 49:2313–2319. https://doi.org/10.1016/j.procbio.2014.10.002

    Article  Google Scholar 

  125. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489. https://doi.org/10.1088/0957-4484/17/14/021

    Article  ADS  Google Scholar 

  126. Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004. https://doi.org/10.4014/jmb.1110.10085

    Article  Google Scholar 

  127. Dobrucka R (2016) Synthesis and structural characteristic of platinum nanoparticles using herbal Bidens Tripartitus extract. J Inorg Organomet Polym Mater 26:219–225. https://doi.org/10.1007/s10904-015-0305-3

    Article  Google Scholar 

  128. Sheny DS, Philip D, Mathew J (2013) Synthesis of platinum nanoparticles using dried anacardium occidentale leaf and its catalytic and thermal applications. Spectrochim Acta Part A Mol Biomol Spectrosc 114:267–271. https://doi.org/10.1016/j.saa.2013.05.028

    Article  ADS  Google Scholar 

  129. Al-Radadi NS (2019) Green synthesis of platinum nanoparticles using Saudi’s dates extract and their usage on the cancer cell treatment. Arab J Chem 12:330–349. https://doi.org/10.1016/j.arabjc.2018.05.008

    Article  Google Scholar 

  130. Gaikwad DS, Undale KA, Kalel RA, Patil DB (2019) Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki-Miyaura coupling. J Iran Chem Soc 16:2135–2141. https://doi.org/10.1007/s13738-019-01682-7

    Article  Google Scholar 

  131. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  ADS  Google Scholar 

  132. Günther A, Khan SA, Thalmann M, Trachsel F, Jensen KF (2004) Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 4:278–286. https://doi.org/10.1039/b403982c

    Article  Google Scholar 

  133. Zhang X, Wiles C, Painter SL, Watts P, Haswell SJ (2006) Microreactors as tools for chemical research. Chim Oggi 24:43–45. https://doi.org/10.1007/978-3-642-56763-6_39

    Article  Google Scholar 

  134. Casadevall I, Solvas X, Demello A (2011) Droplet microfluidics: recent developments and future applications. Chem Commun 47:1936–1942. https://doi.org/10.1039/c0cc02474k

    Article  Google Scholar 

  135. Song Y, Cheng D, Zhao L (2018) Microfluidics fundamentals, devices, and applications

    Google Scholar 

  136. Ma J, Lee SMY, Yi C, Li CW (2017) Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications—a review. Lab Chip 17:209–226. https://doi.org/10.1039/C6LC01049K

    Article  Google Scholar 

  137. Hao N, Nie Y, Zhang JXJ (2018) Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. Int Mater Rev 63:461–487. https://doi.org/10.1080/09506608.2018.1434452

    Article  Google Scholar 

  138. Illath K, Narasimahan AK, Nagai M, Wankhar S, Santra TS (2020) Microfluidic based metallic nanoparticle synthesis and applications. In: Bio-MEMS and Bio-NEMS: devices and applications. Jenny Stanford Publishers

    Google Scholar 

  139. Santra TS (2020) Bio-MEMS and Bio-NEMS: devices and applications. Jenny Stanford Publisher, Singapore

    Google Scholar 

  140. Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270. https://doi.org/10.1007/s10800-010-0234-3

    Article  Google Scholar 

  141. Wang B, Zhuang X, Deng W, Cheng B (2010) Microwave-assisted synthesis of silver nanoparticles in alkalic carboxymethyl chitosan solution. Engineering 02:387–390. https://doi.org/10.4236/eng.2010.25050

    Article  Google Scholar 

  142. Xu Y, Musumeci V, Aymonier C (2019) Chemistry in supercritical fluids for the synthesis of metal nanomaterials. React Chem Eng 4:2030–2054. https://doi.org/10.1039/c9re00290a

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the DBT/Wellcome Trust India Alliance Fellowship under grant number IA/E/16/1/503062 and the Science and Engineering Research Board (SERB) under grant number ECR/2016/001945, Department of Science and Technology (DST), Government of India. We also acknowledge all authors and publishers who provided copyright permissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuhin Subhra Santra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Illath, K., Wankhar, S., Mohan, L., Nagai, M., Santra, T.S. (2021). Metallic Nanoparticles for Biomedical Applications. In: Santra, T.S., Mohan, L. (eds) Nanomaterials and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-33-6252-9_2

Download citation

Publish with us

Policies and ethics