Skip to main content

Environmental Feasibility of Solar Hybrid Systems

  • Chapter
  • First Online:
Fundamentals and Innovations in Solar Energy

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

This chapter includes environment feasibility of solar hybrid systems. In this regard, drying system with PVT air collector has been studied in details. It is seen that the market has different types of PV modules (a-Si, CdTe p-Si, c-Si, and CIGS) are available in the market. Further, thermal modeling has been explored to calculate the thermal energy (TE). Weather-related data has been taken from IMD, Pune, for yearly analysis. Various temperatures, namely outlet air from collector, cell, drying chamber, and crop surface have been calculated through thermal modeling developed for the system. Further, energy payback time (EPBT) for 100% PV area with different PV technologies used on flat plate air collector-integrated drying system found between 3.2 and 1.59 years. Environmental feasibility has also been evaluated for various solar PV cell technologies integrated with the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A c :

Area of the crop surface (m2)

A cf :

Opening area of fan (m2)

A c1 :

Cross-sectional area of duct of air collector (m2)

A m :

Area of the PV module (m2)

A w :

Area of side walls of dryer (m2)

A t :

Area of the tray (m2)

C f :

Specific heat of air (J/kg K)

C cr :

Specific heat of crop (J/kg K)

d :

Diameter of DC fan (m)

E el :

Electrical energy (kWh)

hi :

Heat transfer coefficient inside PVT air collector and solar drying system (W/m2K)

h crr :

Total heat transfer coefficient from crop surface to drying chamber (W/m2K)

h crc :

Convective heat transfer coefficient from crop surface to drying chamber (W/m2K)

h crew or h ew :

Evaporative heat transfer coefficient from crop surface to drying chamber (W/m2K)

h o :

Heat transfer coefficient from top of module to ambient air (W/m2K)

h pf :

Heat transfer coefficient from absorbing plate to working fluid (W/m2K)

I t :

Solar intensity (W/m2)

I w :

Total solar intensity on the walls of drying chamber (W/m2)

K g :

Thermal conductivity of glazing (W/mK)

L g :

Thickness of the glass (m)

\( \dot{M}_{f} \) :

Mass flow rate of working fluid (air) (kg/s)

M cr :

Mass of crop (kg)

P Tr :

Partial pressure at greenhouse chamber temperature (N/m2)

P Tcr :

Partial pressure at crop temperature (N/m2)

T a :

Ambient temperature (°C)

T o :

Cell temperature for optimum cell efficiency

T c :

Cell temperature (°C)

T cr :

Crop temperature (°C)

T cro :

Initial crop temperature (°C)

T r :

Drying chamber temperature (°C)

T foN :

Air temperature at outlet of Nth PVT air collector (°C)

U bcf :

Heat transfer coefficient from bottom of module to working fluid (W/m2K)

U tca :

Heat transfer coefficient from top of module to ambient air (W/m2K)

U bpa :

Heat transfer coefficient from bottom of absorbing plate to ambient air (W/m2K)

Q th :

Thermal energy (kWh)

Q eq,th :

Equivalent thermal energy (kWh)

Q th,ex :

Thermal exergy (kWh)

α c :

Absorptivity of solar cell

α cr :

Absorptivity of crop

β 0 :

Temperature-dependent efficiency factor

β c :

Packing factor of module

γ :

Relative humidity

η 0 :

Standard efficiency at standard condition

η c :

Solar cell efficiency

η m :

Module efficiency

η th :

Thermal efficiency

η el :

Electrical efficiency

η eq,th :

Equivalent thermal efficiency

η ex :

Exergy efficiency

η eq,ex :

Equivalent exergy efficiency

v :

Wind velocity in ambient (m/s)

v 1 :

Air velocity in duct of air collector (m/s)

v 2 :

Air velocity from fan (m/s)

v 3 :

Air velocity in drying chamber (m/s)

τ g :

Transmittivity of glass

References

  1. Adnane L, Noureddine M, Kamel A, Adel B (2016) Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: an experimental investigation in the region of Biskra (Algeria). J Clean Prod 112:2545–2552

    Article  Google Scholar 

  2. Akbulut A, Durmus A (2010) Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35:1754–1763

    Article  Google Scholar 

  3. Anyanwu CN, Okonkwo WI (2006) Experimental determination of the drying rate constant of chilly yellow pepper. In: Proceedings of National Solar Energy Forum, Nnamdi Azikiwe University Awka

    Google Scholar 

  4. Azaizia Z, Kooli S, Elkhadraoui A, Hamdi I, Guizani A (2017) Investigation of a new solar greenhouse drying system for peppers. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2016.11.180

    Article  Google Scholar 

  5. Barnwal P, Tiwari GN (2008) Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: an experimental study. Sol Energy 82:1131–1144

    Article  Google Scholar 

  6. Browne MC, Norton Brian, McCormack Sarah J (2016) Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133:533–548

    Google Scholar 

  7. Castillo-Téllez M, Pilatowsky-Figueroa I, López-Vidaña EC, Sarracino-Martínez O, Hernández-Galvez G (2017) Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Appl Thermal Eng 114:1137–1144

    Google Scholar 

  8. Condorí M, Condorí G, Echazú R, Altobelli F (2017) Semi-industrial drying of vegetables using an array of large solar air collectors. Energy Sustain Dev 37:1–9

    Article  Google Scholar 

  9. Crawford RH, Treloar GJ, Fuller RJ, Bazilian M (2006) Life-cycle energy analysis of building integrated photovoltaic systems (BIPVs) with heat recovery unit. Renew Sust Energy Rev 10(6):559–575

    Article  Google Scholar 

  10. Dorouzi M, Mortezapour H, Akhavan H-R, Moghaddam AG (2018) Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Sol Energy 162:364–371

    Google Scholar 

  11. Evans DL (1981) Simplified method for predicting PV array output. Sol Energy 27:555–560

    Article  Google Scholar 

  12. Fterich M, Chouikhi H, Bentaher H, Maalej A (2018) Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Sol Energy 171:751–760

    Article  Google Scholar 

  13. Hussain CMI, Norton B, Duffy A (2017) Technological assessment of different solar-biomass systems for hybrid power generation in Europe. Renew Sustain Energy Rev 68:1115–1129

    Google Scholar 

  14. Kabeel AE, Abdelgaied M (2016) Performance of novel solar dryer. Process Saf Environ Prot 102:183–189

    Article  Google Scholar 

  15. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295

    Article  Google Scholar 

  16. Kumar M, Sahdev RK, Tiwari S, Panchal H, Manchanda H (2019) Experimental free convection thin layer groundnut greenhouse drying. Agric Eng Int CIGR J 21(3):203–211

    Google Scholar 

  17. Lamnatou C, Papanicolaou E, Belessiotis V, Kyriakis N (2012) Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Appl Energy 94:232–243

    Google Scholar 

  18. Mghazli S, v M, Hidar N, Lahnine L, Idlimam A, Mahrouz M (2017) Drying characteristics and kinetics solar drying of moroccan rosemary leaves. Renew Energy. https://doi.org/10.1016/j.renene.2017.02.022

    Article  Google Scholar 

  19. Mishra RK, Tiwari GN (2013) Energy matrices analyses of hybrid photovoltaic thermal (HPVT) water collector with different PV technology. Sol Energy 91:161–173

    Article  Google Scholar 

  20. Muthukarupan KS, Eashwar SS, Subramanian V, Tiwari S, Singh DB (2020) Performance improvement of PVT module with applications of nano-fluids and phase change materials: a review. In: International conference on electrical and electronics engineering (ICEEE) 2020

    Google Scholar 

  21. Odeh N, Grassie T, Henderson D, Muneer T (2006) Modelling of flow rate in a photovoltaic-driven roof slate-based solar ventilation air preheating system. Energy Convers Manage 47:909–925

    Article  Google Scholar 

  22. Pawar RS, Takwale MG, Bhide VG (1995) Solar drying of custard powder. Energy Convers Manage 36:1085–1096

    Article  Google Scholar 

  23. Parsa SM, Rahbar A, Davoud Javadi Y, Koleini MH, Afrand M, Amidpour M (2020) Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000 m: Altitude concept. J Cleaner Prod 261:121243

    Google Scholar 

  24. Saeedi F, Sarhaddi F, Behzadmehr A (2015) Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy 87:142–152

    Article  Google Scholar 

  25. Sahota L, Shyam, Tiwari GN (2017) Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination 409:66–79

    Google Scholar 

  26. Saini V, Tiwari S, Tiwari GN (2017) Environ economic analysis of various types of photovoltaic technologies integrated with greenhouse solar drying system. J Cleaner Prod 156:30–40

    Google Scholar 

  27. Saini V, Tiwari S, Jain VK, Tiwari GN (2020) Performance evaluation of different types PV materials for PVTAC with solar drying system. Mater Today Proc 25(4):544–550

    Google Scholar 

  28. Sami S, Rahimi A, Etesami N (2011) Dynamic modeling and a parametric study of an indirect solar cabinet dryer. Dry Technol 29:825–835

    Article  Google Scholar 

  29. Scanlin D, Renner M, Domermuth D, Moody H (1997) The design, construction and use of an indirect, through – pass solar food dryer. Home Power 57:62–72

    Google Scholar 

  30. Singh AK, Samsher (2020) Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Mater Today Proc

    Google Scholar 

  31. Singh DB, Tiwari GN (2016) Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. Desalination 397:75–91

    Article  Google Scholar 

  32. Singh DB, Raturi A, Kumar N, Nirala A, Singh AK, Tiwari S (2020a) Effect of flow of fluid mass per unit time on life cycle conversion efficiency of single slope solar desalination unit coupled with N identical evacuated tubular collectors. Mater Today Proc 28(4):2096–2100

    Google Scholar 

  33. Singh DB, Bansal G, Yadav JK, Kumar N, Tiwari S, Raturi A (2020) Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: a comprehensive review. MS&E 748(1):012031

    Google Scholar 

  34. Singh DB, Bansal G, Yadav JK, Kumar N, Tiwari S, Raturi A (2020) Exergoeconomic and enviroeconomic analyses of single slope solar desalination unit loaded with/without nanofluid: A comprehensive review. Mater Sci Eng 748:012031

    Google Scholar 

  35. Song H, Starfelt F, Daianova L, Yan J (2012) Influence of drying process on the biomass-based polygeneration system of bioethanol, power and heat. Appl Energy 90:32–37

    Article  Google Scholar 

  36. Tiwari S, Tiwari GN, Al-Helal IM (2016) Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Sol Energy 133:421–428

    Google Scholar 

  37. Tiwari S, Tiwari GN (2016) Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Sol Energy 138:128–136

    Google Scholar 

  38. Tiwari S, Tiwari GN (2016b) Exergoeconomic analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Energy 114:155–164

    Google Scholar 

  39. Tiwari S, Tiwari GN, Al-Helal IM (2016) Development and recent trends in greenhouse dryer: a review. Renew Sustain Energy Rev 65:1048–1064

    Google Scholar 

  40. Tiwari S (2020a) ANN and mathematical modelling for moisture evaporation with thermal modelling of bitter gourd flakes drying in SPVT solar dryer. Heat Mass Transfer

    Google Scholar 

  41. Tiwari S, Srivastava AK, Sahu R (2020b) 2nd international conference on computational and experimental methods in mechanical engineering. Mater Today Proc 25(4): 537–960

    Google Scholar 

  42. Tiwari S, Tiwari P, Sahdev RK, Dwivedi VK (2020c) Environmental feasibility of PVT drying system. In: 2020 International conference on electrical and electronics engineering (ICE3), Gorakhpur, India, pp 773–777. https://doi.org/10.1109/ICE348803.2020.9122886

  43. Tiwari S, Tiwari P, Singh SN (2020d) Study to improve the efficiency of c-Si material in photovoltaic power plant. Mater Today Proc 25:691–694

    Google Scholar 

  44. Watt M, Jhonson A, Ellis M, Quthred N (1998) Life cycle air emission from PV power systems. Prog Photovoltaic Res Appl 6(2):127–136

    Article  Google Scholar 

  45. Whitefield D (2000) Solar dryer systems and the Internet: important resources to improve food preparation. In: conference paper: international conference on solar cooking, Kimberly, South Africa

    Google Scholar 

  46. Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69:191–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Tiwari .

Editor information

Editors and Affiliations

Appendices

Appendix I

Formulae used to compute various heat transfer coefficient are as follows:

\( A_{cf} = (\pi /4) \times d^{2} \)

\( v_{2} = \dot{M}_{f} /(\rho \times A_{cf} ) \)

\( v_{1} = ((\pi /4) \times d^{2} \times v_{2} )/A_{c1} \)

\( v_{3} = ((\pi /4) \times d^{2} \times v_{2} )/A_{t} \)

\( h_{i} = 2.8 + 3v_{1} \)

\( h_{o} = 5.7 + 3.8v \)

\( h_{{{\text{cr}}r}} = h_{{{\text{cr}}c}} + h_{\text{crew}} \)

\( h_{crc} = 2.8 + 3v_{3} \)

\( h_{\text{crew}} = \frac{{0.01667h_{{{\text{cr}}c}} (P_{Tcr} - \gamma P_{Tr} )}}{{T_{\text{cr}} - T_{r} }} \)

\( P_{Tcr} = \exp (25.317 - (5144/(273 + T_{cr} ))) \)\( U_{bpa} = 1/((L_{p} /K_{p} ) + (1/h_{i} )) \)

\( P_{Tr} = \exp (25.317 - (5144/(273 + T_{r} ))) \)

\( U_{bcf} = 1/((L_{g} /K_{g} ) + (1/h_{i} )) \)

\( U_{tca} = 1/((L_{g} /K_{g} ) + (1/h_{o} )) \)

\( U_{wra} = 1/((L_{g} /K_{g} ) + (1/h_{o} )) \)

\( UA = A_{w} U_{wra} \)

 

Appendix II

Various design parameters taken for the calculation of different temperatures

αc = 0.85

τg = 0.9

βc = 0.83

ηo = 0.15

αcr = 0.4

Mcr = 2 kg

Ccr = 3900 J/kg K

γ = 0.4

v = 2 m/s

Am = 0.358 m2

Aw = 0.390 m2

Ac = 1.073 m2

Cf = 1005 J/kg K

Kg = 1.1 W/mK

d = 0.01 m

Lg = 0.003 m

Lp = 0.002 m

Kp = 0.8 W/mK

ρ = 1.17 kg/m3

T0 = 25 °C

At = 0.169 m2

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Tiwari, P., Dwivedi, V.K., Tiwari, G.N. (2021). Environmental Feasibility of Solar Hybrid Systems. In: Singh, S.N., Tiwari, P., Tiwari, S. (eds) Fundamentals and Innovations in Solar Energy. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6456-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6456-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6455-4

  • Online ISBN: 978-981-33-6456-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics