Skip to main content

Solid-State Green Organic Reactions

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Solid-state synthetic chemistry has some potential advantages that include the absence of solubility issues and solvation phenomena, together with increased environmental friendliness. Mechanochemical synthesis, in particular, has undergone an exponential growth in recent years and has led to the improvement of many previously known transformations and the development of new ones. This chapter is aimed at providing a critical outlook of these developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obst M, König B (2018) Organic synthesis without conventional solvents. Eur J Org Chem 2018:4213–4232

    Article  CAS  Google Scholar 

  2. Oelgemöller M, Hoffmann N (2016) Studies in organic and physical photochemistry-an interdisciplinary approach. Org Biomol Chem 14:7392–7442

    Article  CAS  Google Scholar 

  3. Hernández-Linares MG, Guerrero-Luna G, Pérez-Estrada S, Ellison M, Ortín MM, García-Garibay MA (2015) Large-scale green chemical synthesis of adjacent quaternary chiral centers by continuous flow photodecarbonylation of aqueous suspensions of nanocrystalline ketones. J Am Chem Soc 137:1679–1684

    Article  CAS  Google Scholar 

  4. Campos LM, Dang H, Ng D, Yang Z, Martinez HL, Garcia-Garibay MA (2002) Engineering reactions in crystalline solids: predicting photochemical decarbonylation from calculated thermochemical parameters. J Org Chem 67:3749–3754

    Article  CAS  Google Scholar 

  5. Ihmels H, Scheffer R (1999) The Norrish type II reaction in the crystalline state: toward a better understanding of the geometric requirements for γ-hydrogen atom abstraction. Tetrahedron 55:885–907

    Article  CAS  Google Scholar 

  6. Schmidt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647–678

    Article  CAS  Google Scholar 

  7. MacGillivray LR, Reid JL, Ripmeester JA (2000) Supramolecular control of reactivity in the solid state using linear molecular templates. J Am Chem Soc 122:7817–7818

    Article  CAS  Google Scholar 

  8. Grobelny AL, Rathb NP, Groeneman RH (2019) Varying the regiochemistry from a solid-state [2 + 2] cycloaddition reaction within a series of mixed co-crystals based upon isosteric resorcinols. J Photochem Photobiol A: Chem 382:111966–111971

    Article  CAS  Google Scholar 

  9. Crawford D, Miskimming CKG, Albadarin AB, Walker G, James SL (2017) Organic synthesis by twin screw extrusion (TSE): continuous, scalable and solvent-free. Green Chem 19:1507–1518

    Article  CAS  Google Scholar 

  10. Hernández JG, Bolm C (2017) Altering product selectivity by mechanochemistry. J Org Chem 82:4007–4019

    Article  CAS  Google Scholar 

  11. Do JL, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19

    Google Scholar 

  12. Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9:3080–3094

    Article  CAS  Google Scholar 

  13. Leonardi M, Villacampa M, Menéndez JC (2018) Multicomponent mechanochemical synthesis. Chem Sci 9:2042–2064

    Article  CAS  Google Scholar 

  14. Tan D, García F (2019) Main group mechanochemistry: from curiosity to established protocols. Chem Soc Rev 48:2274–2292

    Article  CAS  Google Scholar 

  15. Friščić T, Cottillo C, Titi HM (2020) Mechanochemistry for synthesis. Angew Chem Int Ed 59:1018–1029

    Article  CAS  Google Scholar 

  16. El-Sayed TH, Aboelnaga A, El-Atawy MA, Hagar M (2018) Ball milling promoted N-heterocycles synthesis. Molecules 23: article nr 1348

    Google Scholar 

  17. Leonardi M, Estévez V, Villacampa M, Menéndez JC (2019) Mechanochemical synthesis of biologically relevant heterocycles. In: Ballini R (ed) Green synthetic processes and procedures. Royal Society of Chemistry, London, pp 175–191

    Chapter  Google Scholar 

  18. Shearouse WC, Shumba MZ, Mack J (2014) A solvent-free, one-step, one-pot Gewald reaction for alkyl-aryl ketones via mechanochemistry. Appl Sci 4:171–179

    Article  CAS  Google Scholar 

  19. Akelis L, Rousseau J, Juskenas R, Dodonova J, Rousseau C, Menuel S, Prevost D, Tumkevicius S, Monflier E, Hapiot F (2016) Greener Paal-Knorr pyrrole synthesis by mechanical activation. Eur J Org Chem 2016:31–35

    Article  CAS  Google Scholar 

  20. Estévez V, Villacampa M, Menéndez JC (2013) Three-component access to pyrroles promoted by the CAN–silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis. Chem Commun 49:591–593

    Article  Google Scholar 

  21. El-Sayeed TH, Aboelnaga A, Hagar M (2016) Ball milling assisted solvent and catalyst free synthesis of benzimidazoles and their derivatives. Molecules 21:1111. 


    Google Scholar 

  22. Kamur S, Sharma P, Kapoor KK, Hundal S (2008) An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64:536–542


    Google Scholar 

  23. Bose AK, Pednekar S, Ganduly SN, Chakraborty G, Manhas MS (2004) A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett 45:8351–8353

    Google Scholar 

  24. Tan YJ, Zhang Z, Wang FJ, Wu HH, Li QH (2014) Mechanochemical milling promoted solvent-free imino Diels-Alder reaction catalyzed by FeCl3: diastereoselective synthesis of cis-2, 4-diphenyl-1, 2, 3, 4-tetrahydroquinolines. RSC Adv 4:35635–35638

    Article  CAS  Google Scholar 

  25. Kaupp G, Naimi-Jamal MR (2002) Quantitative cascade condensations between o-phenylenediamines and 1,2-dicarbonyl compounds without production of wastes. Eur J Org Chem 2002:1368–1373

    Article  Google Scholar 

  26. Kaupp G, Naimi-Jamal MR, Schmeyers J (2002) Quantitative reaction cascades of ninhydrin in the solid state. Chem Eur J 8:594–600

    Article  CAS  Google Scholar 

  27. Muthusaravanan S, Sasikumar C, Devi Bal B, Perumal S (2014) An eco-friendly three-component regio- and stereoselective synthesis of highly functionalized dihydroindeno[1,2-b]pyrroles under grinding. Green Chem 16:1297–1304

    Article  CAS  Google Scholar 

  28. Kaupp G, Schmeyers J, Boy J (2000) Iminium salts in solid-state syntheses giving 100% yield. J Prakt Chem 342:269–280

    Article  CAS  Google Scholar 

  29. Estévez V, Sridharan V, Sabaté S, Villacampa M, Menéndez JC (2016) Three-component synthesis of pyrrole-related nitrogen heterocycles by a Hantzsch-type process: comparison between conventional and high-speed vibration milling conditions. Asian J Org Chem 5:652–662

    Article  CAS  Google Scholar 

  30. Leonardi M, Villacampa M, Menéndez JC (2017) High-speed vibration-milling-promoted synthesis of symmetrical frameworks containing two or three pyrrole units. Beilstein J Org Chem 13:1957–1962

    Article  CAS  Google Scholar 

  31. Jicsinszky L, Caporaso M, Martina K, Calcio Gaudino E, Cravotto G (2016) Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein J Org Chem 12:2364–2371

    Article  CAS  Google Scholar 

  32. Patil PR, Kartha KPR (2008) Solvent-free mechanochemical synthesis of aryl glycosides. J Carbohydr Chem 27:411–419

    Article  CAS  Google Scholar 

  33. Đud M, Margetić D (2017) Solvent-free mechanochemical deprotection of N-Boc group. Int J Org Chem 7:140–144

    Article  CAS  Google Scholar 

  34. Declerck V, Nun P, Martinez J, Lamaty F (2009) Solvent-free synthesis of peptides. Angew Chem Int Ed 48:9318–9321

    Article  CAS  Google Scholar 

  35. Hernández JG, Juaristi E (2010) Green synthesis of α, β- and β, β-dipeptides under solvent-free conditions. J Org Chem 75:7107–7111

    Article  CAS  Google Scholar 

  36. Landeros JM, Juaristi E (2017) Mechanochemical synthesis of dipeptides using Mg-Al hydrotalcite as activating agent under solvent-free reaction conditions. Eur J Org Chem 2017:687–694

    Article  CAS  Google Scholar 

  37. Gonnet L, Tintillier T, Venturini N, Konnert L, Hernández JF, Lamaty F, Laconde G, Martinez J, Colacino E (2017) N-Acyl benzotriazole derivatives for the synthesis of dipeptides and tripeptides and peptide biotinylation by mechanochemistry. ACS Sustainable Chem Eng 5:2936–2941

    Article  CAS  Google Scholar 

  38. Bonnamour J, Métro TX, Martinez J, Lamaty F (2013) Environmentally benign peptide synthesis using liquid-assisted ball-milling: Application to the synthesis of Leu-enkephalin. Green Chem 15:1116–1120

    Article  CAS  Google Scholar 

  39. Maurin O, Verdié P, Subra G, Lamaty F, Martinez J, Métro TX (2017) Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy? Beilstein J Org Chem 13:2087–2093

    Article  CAS  Google Scholar 

  40. Crossey K, Cunningham RN, Redpath P, Migaud ME (2015) Atom efficient synthesis of pyrimidine and purine nucleosides by ball milling. RSC Adv 5:58116–58119

    Article  CAS  Google Scholar 

  41. Eguaogie O, Conlon PF, Ravalico F, Sweet JS, Elder TB, Conway LP, Lennon ME, Hodgson DRW, Vyle JS (2017) Nucleophilic displacement reactions of 5′-derivatised nucleosides in a vibration ball mill. Beilstein J Org Chem 13:87–92

    Article  CAS  Google Scholar 

  42. Appy L, Depaix A, Bantreil X, Lamaty F, Peyrottes S, Roy B (2019) Straightforward ball-milling access to dinucleoside 5,5-polyphosphates via phosphorimidazolide intermediates. Chem Eur J 25:2477–2481

    Article  CAS  Google Scholar 

  43. Hu H, Li H, Zhang Y, Chen Y, Huang Z, Huang A, Zhu Y, Qin X, Lin B (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662

    Article  CAS  Google Scholar 

  44. Ardila-Fierro KJ, Pich A, Spehr M, Hernández JG, Bolm C (2019) Synthesis of acylglycerol derivatives by mechanochemistry. Beilstein J Org Chem 15:811–817

    Article  CAS  Google Scholar 

  45. Chauhan P, Chimni SS (2012) Mechanochemistry assisted asymmetric organocatalysis: a sustainable approach. Beilstein J Org Chem 8:2132–2141

    Article  CAS  Google Scholar 

  46. Ávila-Ortiz CG, Pérez-Venegas M, Vargas-Caporali J, Juaristi E (2019) Recent applications of mechanochemistry in enantioselective synthesis. Tetrahedron Lett 60:1749–1757

    Article  CAS  Google Scholar 

  47. Rodríguez B, Rantanen T, Bolm C (2006) Solvent-free asymmetric organocatalysis in a ball mill. Angew Chem Int Ed 45:6924–6926

    Article  CAS  Google Scholar 

  48. Hernández JG, Juaristi E (2011) Asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides: improved stereoinduction under solvent-free conditions. J Org Chem 76:1464–1467

    Article  CAS  Google Scholar 

  49. Chauhan P, Chimni SS (2012) Grinding-assisted asymmetric organocatalysis: a solvent-free approach to the formation of vicinal quaternary and tertiary stereocenters. Asian J Org Chem 1:138–141

    Article  CAS  Google Scholar 

  50. Valle-Orero J, Rivas-Pardo JA, Tapia-Rojo R, Popa I, Echelman DJ, Haldar S, Fernández JM (2017) Mechanical deformation accelerates protein ageing. Angew Chem Int Ed 129:9873–9878

    Article  Google Scholar 

  51. Hanefeld U, Cao L, Magner E (2013) Enzyme immobilisation: fundamentals and application. Chem Soc Rev 42:6211–6212

    Article  CAS  Google Scholar 

  52. Pérez-Venegas M, Reyes-Rangel G, Neri A, Escalante J, Juaristi E (2017) Mechanochemical enzymatic resolution of N-benzylated-β3-amino esters. Beilstein J Org Chem 13:1728–1734

    Article  CAS  Google Scholar 

  53. Weißbach U, Dabral S, Konnert L, Bolm C, Hernández JG (2017) Selective enzymatic esterification of lignin model compounds in the ball mill. Beilstein J Org Chem 13:1788–1795

    Article  CAS  Google Scholar 

  54. Hernández JG, Ardila-Fierro KJ, Crawford D, James SL, Bolm C (2017) Mechanoenzymatic peptide and amide bond formation. Green Chem 19:2620–2625

    Article  Google Scholar 

  55. Ardila-Fierro KJ, Crawford D, Körner A, James SL, Bolm C, Hernández JG (2018) Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Julia-Colonna enantioselective epoxidation. Green Chem 20:1262–1269

    Article  CAS  Google Scholar 

  56. Tan D, Loots L, Friščić T (2016) Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem Commun 52:760–7781

    Article  CAS  Google Scholar 

  57. André V, Hardeman A, Halasz I, Stein RS, Jackson GJ, Reid DG, Duer MJ, Curfs C, Duarte MT, Friščić T (2011) Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew Chem Int Ed 50:7858–7861

    Article  CAS  Google Scholar 

  58. Tan D, Štrukil V, Mottillo C, Friščić T (2014) Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chem Commun 50:5248–5250

    Article  CAS  Google Scholar 

  59. Konnert L, Reneaud B, de Figueiredo RM, Campagne JM, Lamaty F, Martinez J, Colacino E (2014) Mechanochemical preparation of hydantoins from amino esters: application to the synthesis of the antiepileptic drug phenytoin. J Org Chem 79:10132–10142

    Article  CAS  Google Scholar 

  60. Colacino E, Porcheddu A, Charnay C, Delogu F (2019) From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. React Chem Eng 4:1179–1188

    Article  CAS  Google Scholar 

  61. Colacino E, Porcheddu A, Halasz I, Charnay C, Delogu F, Guerra R, Fullenwarth J (2018) Mechanochemistry for “no solvent, no base” preparation of hydantoin-based active pharmaceutical ingredients: nitrofurantoin and dantrolene. Green Chem 20:2973–2977

    Article  CAS  Google Scholar 

  62. Porcheddu A, Delogu F, De Luca L, Colacino E (2019) From Lossen transposition to solventless “medicinal mechanochemistry” ACS Sustain Chem Eng 7:12044–12051

    Google Scholar 

  63. Estévez V, Villacampa M, Menéndez JC (2014) Concise synthesis of atorvastatin lactone under high-speed vibration milling conditions. Org Chem Front 1:458–463

    Article  Google Scholar 

  64. Lamour S, Pallmann S, Haas M, Trapp O (2019) Prebiotic sugar formation under nonaqueous conditions and mechanochemical acceleration. Life 9:52

    Article  CAS  Google Scholar 

  65. Bolm C, Mocci R, Schumacher C, Turberg M, Puccetti F, Hernández JG (2018) Mechanochemical activation of iron cyano complexes: a prebiotic impact scenario for the synthesis of α-amino acid derivatives. Angew Chem Int Ed 57:2423–2446

    Article  CAS  Google Scholar 

  66. Içli B, Christinat N, Tönnemann J, Schüttler C, Scopelliti R, Severin K (2009) Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J Am Chem Soc 131:3154–3155

    Article  CAS  Google Scholar 

  67. Pascu M, Ruggi A, Scopelliti R, Severin K (2013) Synthesis of borasiloxane-based macrocycles by multicomponent condensation reactions in solution or in a ball mill. Chem Comm 49:45–47

    Article  CAS  Google Scholar 

  68. Hsueh SY, Cheng KW, Lai CC, Chiu SH (2008) Efficient solvent-free syntheses of [2]- and [4]rotaxanes. Angew Chem Int Ed 47:4436–4439

    Article  CAS  Google Scholar 

  69. Holler M, Stoerkler T, Louis A, Fischer F, Nierengarten JF (2019) Mechanochemical solvent-free conditions for the synthesis of pillar[5]arene-containing [2]rotaxanes. Eur J Org Chem 21:3401–3405

    Article  CAS  Google Scholar 

  70. Wang GW, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387:583–586

    Article  CAS  Google Scholar 

  71. Wang GW, Zhang TH, Hao EH, Jiao LJ, Murata Y, Komatsu K (2003) Solvent-free reactions of fullerenes and N-alkylglycines with and without aldehydes under high-speed vibration milling. Tetrahedron 59:55–60

    Article  CAS  Google Scholar 

  72. Zhu SE, Li F, Wang GW (2013) Mechanochemistry of fullerenes and related materials. Chem Soc Rev 42:7535–7570

    Article  CAS  Google Scholar 

  73. Li X, Liu L, Qin Y, Wu W, Guo ZX, Dai L, Zhu D (2003) C60 modified single-walled carbon nanotubes. Chem Phys Lett 377:32–36

    Article  CAS  Google Scholar 

  74. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J Mater Chem 22:12465–12467

    Article  CAS  Google Scholar 

  75. Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai L, Baek JB (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393

    Article  CAS  Google Scholar 

  76. Li J, Nagamani C, Moore JS (2015) Polymer mechanochemistry: from destructive to productive. Acc Chem Res 48:2181–2190

    Article  CAS  Google Scholar 

  77. Ravnsbæk JB, Swager TM (2014) Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett 3:305–309

    Article  CAS  Google Scholar 

  78. Grätz S, Wolfrum B, Borchardt L (2017) Mechanochemical Suzuki polycondensation—from linear to hyperbranched polyphenylenes. Green Chem 19:2973–2979

    Article  Google Scholar 

  79. Grätz S, Zink S, Kraffczyk H, Rose M, Borchardt L (2019) Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors. Beilstein J Org Chem 15:1154–1161

    Article  CAS  Google Scholar 

  80. Ohn N, Shin J, Kim SS, Kim JG (2017) Mechanochemical ring-opening polymerization of lactide: liquid-assisted grinding for the green synthesis of poly(lactic acid) with high molecular weight. Chemsuschem 10:3529–3533

    Article  CAS  Google Scholar 

  81. Di Nardo T, Hadad C, Van Nhien AN, Moores A (2019) Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chem 21:3276–3285

    Article  Google Scholar 

  82. Ohn N, Kim JG (2018) Mechanochemical post-polymerization modification: solvent-free solid-state synthesis of functional polymers. ACS Macro Lett 7:561–565

    Article  CAS  Google Scholar 

  83. Zhang R, Tao CA, Chen R, Wu L, Zou X, Wang J (2018) Ultrafast synthesis of Ni-MOF in one minute by ball milling. Nanomaterials 8:E1067

    Article  CAS  Google Scholar 

  84. Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL (2015) Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 6:1645–1649

    Article  CAS  Google Scholar 

  85. Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41:3493–3510

    Article  CAS  Google Scholar 

  86. Friščić T, Fábián L (2009) Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm 11:743–745

    Article  CAS  Google Scholar 

  87. Nadizadeh Z, Naimi-Jamal MR, Panahi L (2018) mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery. J Solid State Chem 259:35–42

    Google Scholar 

  88. Wei TH, Wu SH, Huang YD, Lo WS, Williams BP, Chen SY, Yang HC, Hsu YS, Lin ZY, Chen XH, Kuo, PE, Choy LY, Tsung CK, Shieh FK (2019) Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nat Commun 10: article nr. 5002

    Google Scholar 

  89. Papaefstathiou GS, MacGillivray LR (2001) Discrete versus infinite molecular self-assembly:  control in crystalline hydrogen-bonded assemblies based on resorcinol. Org Lett 3:3835–3838.

    Google Scholar 

  90. Friščić T, MacGillivray LR (2003) ‘Template-switching’: a supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chem Commun 2003:1306–1307


    Google Scholar 

  91. Hernández JG (2017) Mechanochemical borylation of aryldiazonium salts; merging light and ball milling. Beilstein J Org Chem 13:1463–1469

    Article  CAS  Google Scholar 

  92. Štrukil VS, Sajko I (2017) Mechanochemically-assisted solid-state photocatalysis (MASSPC). Chem Commun 53:9101–9104

    Article  Google Scholar 

  93. Crawford D (2017) Solvent-free sonochemistry: sonochemical organic synthesis in the absence of a liquid medium. Beilstein J Org Chem 13:1850–1856

    Article  CAS  Google Scholar 

  94. Roy D, James SL, Crawford D (2019) Solvent-free sonochemistry as a route to pharmaceutical co-crystals. Chem Commun 55:5463–5466

    Article  CAS  Google Scholar 

  95. Do JL, Friščić T (2017) Chemistry 2.0: developing a new, solvent-free system of chemical synthesis based on mechanochemistry. Synlett 28:2066–2092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos Menéndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clerigué, J., Ramos, M.T., Menéndez, J.C. (2021). Solid-State Green Organic Reactions. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_6

Download citation

Publish with us

Policies and ethics