Skip to main content

Numerical Modeling in Antenna Engineering

Handbook of Antenna Technologies

Abstract

The principal computational electromagnetics techniques for solving antenna problems are reviewed. An introduction is given on a historical review of how antenna problems were solved in the past. The call for precise solutions calls for the use of numerical methods as found in computational electromagnetics. A brief introduction on differential equation solutions and integral solutions is given. The Green’s function concept is introduced to facilitate the formulation of integral equations. Numerical methods and fast algorithms to solve these equations are discussed.

Then an overview of how electromagnetic theory relates to circuit theory is presented. Then the concept of partial element equivalence circuit is introduced to facilitate solutions to more complex problems. In antenna technology, one invariably has to have a good combined understanding of the wave theory and circuit theory.

Next, the discussion on the computation of electromagnetic solutions in the “twilight zone” where circuit theory meets wave theory was presented. Solutions valid for the wave physics regime often become unstable facing low-frequency catastrophe when the frequency is low.

Due to advances in nanofabrication technology, antennas can be made in the optical frequency regime. But their full understanding requires the full solutions of Maxwell’s equations. Also, many models, such as perfect electric conductors, which are valid at microwave frequency, are not valid at optical frequency. Hence, many antenna concepts need rethinking in the optical regime.

Next, an emerging area of the use of eigenanalysis methods for antenna design is discussed. This can be the characteristic mode analysis or the natural mode analysis. These analysis methods offer new physical insight not possible by conventional numerical methods.

Then the discussion on the use of the domain decomposition method to solve highly complex and multi-scale antenna structures is given. Antennas, due to the need to interface with the circuit theory, often have structures ranging from a fraction of a wavelength to a tiny fraction of a wavelength. This poses a new computational challenge that can be overcome by the domain decomposition method.

Many antenna designs in the high-frequency regime or the ray optics regime are guided by ray physics and the adjoining mathematics. These mathematical techniques are often highly complex due to the rich physics that come with ray optics. The discussion on the use of these new mathematical techniques to reduce computational workload and offering new physical insight is given.

A conclusion section is given to summarize this chapter and allude to future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adams RJ (2004) Physical and analytical properties of a stabilized electric field integral equation. IEEE Trans Antennas Propag 52(2):362–372

    Google Scholar 

  • Alu A, Engheta N (2008) Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photonics 2:307–310

    Google Scholar 

  • Andreani LC, Panzarini G, Gerard JM (1999) Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys Rev B 60:13276–13279

    Google Scholar 

  • Andriulli FP (2012) Loop-star and loop-tree decompositions: analysis and efficient algorithms. IEEE Trans Antennas Propag 60(5):2347–2356

    MathSciNet  Google Scholar 

  • Andriulli FP, Cools K, Bağci H, Olyslager F, Buffa A, Christiansen S, Michielssen E (2008) A multiplicative Calderón preconditioner for the electric field integral equation. IEEE Trans Antennas Propag 56(8):2398–2412

    Google Scholar 

  • Andriulli FP, Bağci H, Vipiana F, Vecchi G, Michielssen E (2009) Analysis and regularization of the TD-EFIE low-frequency breakdown. IEEE Trans Antennas Propag 57(7):2034–2046

    Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Google Scholar 

  • Axelsson O, Barker VA (1984) Finite element solution of boundary value problems: theory and computation. Academic Press, New York

    MATH  Google Scholar 

  • Bağci H, Andriulli FP, Cools K, Olyslager F, Michielssen E (2009) A Calderón multiplicative preconditioner for the combined field integral equation. IEEE Trans Antennas Propag 57(10):3387–3392

    Google Scholar 

  • Balanis CA (2012a) Advanced engineering electromagnetics, 2nd edn. Wiley, New York

    Google Scholar 

  • Balanis CA (2012b) Antenna theory: analysis and design. Wiley, New York

    Google Scholar 

  • Baum C, Rothwell E, Chen K-M, Nyquist D (1991) The singularity expansion method and its application to target identification. Proc IEEE 79:1481–1492

    Google Scholar 

  • Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137

    MathSciNet  MATH  Google Scholar 

  • Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114:185–200

    MathSciNet  MATH  Google Scholar 

  • Berthelot J, Bouhelier A, Huang CJ et al (2009) Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett 9:3914–3921

    Google Scholar 

  • Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1:438–483

    Google Scholar 

  • Biagioni P, Huang JS, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402

    Google Scholar 

  • Bienstman P, Baets R (2001) Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt Quant Electron 33:327–341

    Google Scholar 

  • Bliokh KY, Bekshaev AY, Nori F (2013) Dual electromagnetism: helicity, spin, momentum and angular momentum. New J Phys 15:033026

    Google Scholar 

  • Bonakdar A, Kohoutek J, Dey D, Mohseni H (2012) Optomechanical nanoantenna. Opt Lett 37:3258–3260

    Google Scholar 

  • Borup DT, Gandhi OP (1984) Fast-Fourier transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies. IEEE Trans Microw Theory Tech 32(4):355–360

    Google Scholar 

  • Buffa A, Christiansen S (2007) A dual finite element complex on the barycentric refinement. Math Comput 76(260):1743–1769

    MathSciNet  MATH  Google Scholar 

  • Burke GJ, Poggio AJ (1981) “Numerical Electromagnetic Code-2,” Ver. 5.7.5, Arie Voors

    Google Scholar 

  • Burkholder RJ, Lee TH (2005) Adaptive sampling for fast physical optics numerical integration. IEEE Trans Antennas Propag 53(5):1843–1845

    MathSciNet  Google Scholar 

  • Cabedo-Fabres M, Antonino-Daviu E, Valero-Nogueira A, Bataller MF (2007) The theory of characteristic modes revisited: a contribution to the design of antennas for modern applications. IEEE Antennas Propag Mag 49:52–68

    Google Scholar 

  • Carluccio G, Albani M, Pathak PH (2010) Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions. IEEE Trans Antennas Propag 58(4):1155–1163

    MathSciNet  Google Scholar 

  • Catedra MF, Gago E, Nuno L (1989) A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast Fourier transform. IEEE Trans Antennas Propag 37:528–537

    Google Scholar 

  • Celik M, Pileggi L, Odabasioglu A (2002) IC interconnect analysis. Kluwer Academic, Durdrecht

    Google Scholar 

  • Chen PY, Alu A (2010) Optical nanoantenna arrays loaded with nonlinear materials. Phys Rev B 82:235405

    Google Scholar 

  • Chen CH, Lien C-D (1980) The variational principle for non-self-adjoint electromagnetic problems. IEEE Trans Microw Theory Tech 28:878–886

    MathSciNet  Google Scholar 

  • Chen QL, Wilton DR (1990) Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies. IEEE Int Symp Antennas Propag 2:590–593

    Google Scholar 

  • Chen LZ, Sha WEI, Choy WCH (2012a) Light harvesting improvement of organic solar cells with self-enhanced active layer designs. Opt Express 20:8175–8185

    Google Scholar 

  • Chen YP, Sha WEI, Choy WCH, Jiang LJ, Chew WC (2012b) Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function. Opt Express 20:20210–20221

    Google Scholar 

  • Chew WC (1990) Waves and fields in inhomogeneous media. Van Nostrand Reinhold, New York, Reprinted by Piscataway, NJ: IEEE Press, 1995

    Google Scholar 

  • Chew WC, Kong JA (1981) Asymptotic formula for the resonant frequencies of a circular microstrip antenna. J Appl Phys 52(8):5365–5369

    Google Scholar 

  • Chew WC, Lu CC (1993) The use of Huygens equivalence principle for solving the volume integral equation of scattering. IEEE Trans Antennas Propag 41(7):897904

    Google Scholar 

  • Chew WC, Weedon WH (1994) A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw Opt Technol Lett 7(13):599–604

    Google Scholar 

  • Chew WC, Jin JM, Michielssen E, Song J (2000) Fast and efficient algorithms in computational electromagnetics. Artech House, London

    Google Scholar 

  • Chew WC, Jin JM, Michielssen E, Song JM (eds) (2001) Fast and efficient algorithms in computational electromagnetics. Artech House, Boston

    Google Scholar 

  • Chew WC, Tong MS, Hu B (2008) Integral equation methods for electromagnetic and elastic waves. Morgan Claypool, San Francisco

    Google Scholar 

  • Chew WC, Tong MS, Hu B (2009) Integral equations methods for electromagnetic and elastic waves. Morgan & Claypool, San Rafael

    Google Scholar 

  • Chou HT, Ho HK, Chung TY (2005) A discrete-time uniform geometrical theory of diffraction for the fast transient analysis of scattering from curved wedges. IEEE Trans Antennas Propag 53(11):3633–3643

    Google Scholar 

  • Clark B (1985) Well logging apparatus and method using transverse magnetic mode. U.S. Patent 4,553,097

    Google Scholar 

  • Coifman R, Rokhlin V, Wandzura S (1993) The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag Mag 35(3):7–12

    Google Scholar 

  • Collin RE (1991) Field theory of guided waves. IEEE Press, Piscataway

    MATH  Google Scholar 

  • Collins RE (1966) Foundations for microwave engineering. McGraw-Hill, New York

    Google Scholar 

  • Conde OM, Pérez J, Cátedra MF (2001) Stationary phase method application for the analysis of radiation of complex 3-D conducting structures. IEEE Trans Antennas Propag 49(5):724–731

    Google Scholar 

  • Cools K, Andriulli FP, Olyslager F, Michielssen E (2009) Improving the MFIE’s accuracy by using a mixed discretization. In: IEEE antennas and propagation society international symposium, pp 1–4, Charleston, SC

    Google Scholar 

  • Corvi M, Schaich WL (1986) Hydrodynamic-model calculation of second-harmonic generation at a metal surface. Phys Rev B 33:3688

    Google Scholar 

  • Cui YX, Xu J, Fung KH et al (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:253101

    Google Scholar 

  • Dai QI, Chew WC, Lo YH, Liu YG, Jiang LJ (2012) Generalized modal expansion of electromagnetic field in 2-D bounded and unbounded media. IEEE Antennas Wirel Propag Lett 11:1052–1055

    Google Scholar 

  • Dai QI, Lo YH, Chew WC, Jiang LJ (2013) An efficiently preconditioned eigenanalysis of inhomogeneously loaded rectangular cavities. IEEE Antennas Wirel Propag Lett 12:58–61

    Google Scholar 

  • Dai QI, Lo YH, Chew WC, Liu YG, Jiang LJ (2014) Generalized modal expansion and reduced modal representation of 3-D electromagnetic fields. IEEE Trans Antennas Propag 62:783–793

    Google Scholar 

  • Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18:140–158

    MathSciNet  MATH  Google Scholar 

  • Devilez A, Stout B, Bonod N (2010) Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission. ACS Nano 4:3390–3396

    Google Scholar 

  • Dong YD, Itoh T (2010) Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans Antennas Propag 58:3856–3864

    Google Scholar 

  • Fallahpour M, Ma Z, Li MK, Chew WC (2014) Using equivalence principle algorithm to analyze and design reconfigurable pixelled antennas. In: Allerton antenna applications symposium, IL, USA

    Google Scholar 

  • Fock VA (1946) The distributions of currents induced by a plane wave on the surface of a conductor. J Phys 10:130–136

    MathSciNet  MATH  Google Scholar 

  • Garbacz RJ, Turpin RH (1971) A generalized expansion for radiated and scattered fields. IEEE Trans Antennas Propag 19:348–358

    Google Scholar 

  • Gerard D, Devilez A, Aouani H et al (2009) Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere. J Opt Soc Am B 26:1473–1478

    Google Scholar 

  • Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111:3888–3912

    Google Scholar 

  • Graglia RD (1993) On the numerical integration of the linear shape functions times the 3D Green’s function or its gradient on a plane triangle. IEEE Trans Antennas Propag 41(10):1448–1456

    Google Scholar 

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73:325–348

    MathSciNet  MATH  Google Scholar 

  • Hansen RC (ed) (1981) Geometric theory of diffraction. IEEE Press, Piscataway

    Google Scholar 

  • Hansen TB, Shore RA (1998) Incremental length diffraction coefficients for the shadow boundary of a convex cylinder. IEEE Trans Antennas Propag 46(10):1458–1466

    Google Scholar 

  • Harrington RF, Mautz JR (1971) Theory of characteristic modes for conducting bodies. IEEE Trans Antennas Propag 19:622–628

    Google Scholar 

  • He SQ, Sha WEI, Jiang LJ, Choy WCH, Chew WC, Nie ZP (2012) Finite-element-based generalized impedance boundary condition for modeling plasmonic nanostructures. IEEE Trans Nanotechnol 11:336–345

    Google Scholar 

  • Heaviside O (1888) On electromagnetic waves, especially in relation to the vorticity of the impressed forces, and the forced vibration of electromagnetic systems. Philos Mag 25:130–156. Also see Nahin PJ (1990) Oliver Heaviside. Scientific American 122–129

    MATH  Google Scholar 

  • Ho C, Ruehli A, Brennan P (1975) The modified nodal approach to network analysis. IEEE Trans Circ Syst CAS-32:504–509

    Google Scholar 

  • Hsiao GC, Kleinman RE (1997) Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics. IEEE Trans Antennas Propag 45(3):316–328

    MathSciNet  MATH  Google Scholar 

  • Jin JM (2002) The finite element method in electromagnetics, 2nd edn. Wiley-IEEE Press, New York

    MATH  Google Scholar 

  • Jin JM (2014) The finite element method in electromagnetics, 3rd edn. Wiley-IEEE Press, Hoboken

    MATH  Google Scholar 

  • Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    Google Scholar 

  • Johnson SG, Joannopoulos JD (2001) Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 8:173–190

    Google Scholar 

  • Kalkbrenner T, Hakanson U, Schadle A et al (2005) Optical microscopy via spectral modifications of a nanoantenna. Phys Rev Lett 95:200801

    Google Scholar 

  • Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Google Scholar 

  • Keller JB (1962) Geometrical theory of diffraction. JOSA 52(2):116–130

    Google Scholar 

  • Kelley DF, Luebbers RJ (1996) Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans Antennas Propag 44:792–797

    Google Scholar 

  • King RWP (1956) The theory of linear antennas. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • Kinkhabwala A, Yu ZF, Fan SH et al (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3:654–657

    Google Scholar 

  • Kouyoumjian RG, Pathak PH (1974) A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc IEEE 62(11):1448–1461

    Google Scholar 

  • Krasnok AE, Maksymov IS, Denisyuk AI et al (2013) Optical nanoantennas. Phys Usp 56:539–564

    Google Scholar 

  • Kwon DH, Werner PL, Werner DH (2008) Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt Express 16:11802–11807

    Google Scholar 

  • Lee R, Cangellaris AC (1992) A study of discretization error in the finite element approximation of wave solution. IEEE Trans Antennas Propag 40(5):542–549

    Google Scholar 

  • Lee SW, Deschamps GA (1976) A uniform asymptotic theory of electromagnetic diffraction by a curved wedge. IEEE Trans Antennas Propag 24(1):25–34

    MathSciNet  Google Scholar 

  • Lee SW, Mittra R (1983) Fourier transform of a polygonal shape function and its application in electromagnetics. IEEE Trans Antennas Propag 31(1):99–103

    Google Scholar 

  • Lee JF, Lee R, Burkholder RJ (2003) Loop star basis functions and a robust preconditioner for EFIE scattering problems. Trans Antennas Propag 51(8):1855–1863

    Google Scholar 

  • Lehoucq R, Sorensen D (1996) Deflation techniques for an implicitly restarted Arnoldi method. SIAM J Matrix Anal Appl 17:789–821

    MathSciNet  MATH  Google Scholar 

  • Li M-K, Chew WC (2007) Wave-field interaction with complex structures using equivalence principle algorithm. IEEE Trans Antennas Propag 55(1):130–138

    Google Scholar 

  • Li M-K, Chew WC (2008) Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme. IEEE Trans Antennas Propag 56(8):2389–2397

    MathSciNet  Google Scholar 

  • Ling H, Chou RC, Lee SW (1989) Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans Antennas Propag 37(2):194–205

    Google Scholar 

  • Liu YG, Li Y, Sha WEI (2011) Directional far-field response of a spherical nanoantenna. Opt Lett 36:2146–2148

    Google Scholar 

  • Liu YG, Choy WCH, Sha WEI, Chew WC (2012) Unidirectional and wavelength-selective photonic sphere-array nanoantennas. Opt Lett 37:2112–2114

    Google Scholar 

  • Liu QS, Sun S, Chew WC (2014) Convergence of low-frequency EFIE-based systems with weighted right-hand-side effect. IEEE Trans Antennas Propag 62(10):5108–5116

    Google Scholar 

  • Lo YT, Solomon D, Richards W (1979) Theory and experiment on microstrip antennas. Antennas Propag IEEE Trans 27(2):137–145

    Google Scholar 

  • Lo YH, Jiang LJ, Chew WC (2013) Finite-width feed and load models. IEEE Trans Antennas Propag 61(1):281–289

    MathSciNet  Google Scholar 

  • Lu CC, Chew WC (1995) The use of Huygens equivalence principle for solving 3-D volume integral equation of scattering. IEEE Trans Antennas Propag 43(5):500–507

    MathSciNet  MATH  Google Scholar 

  • Lu Z-Q, An X, Hong W (2008) A fast domain decomposition method for solving three dimensional large-scale electromagnetic problems. IEEE Trans Antennas Propag 56(8):22002210

    MathSciNet  Google Scholar 

  • Luebbers R, Hunsberger FP, Kunz KS et al (1990) A frequency-dependent finite-difference time-domain formulation for dispersive materials. IEEE Trans Electromagn Compat 32:222–227

    Google Scholar 

  • Macdonald HM (1913) The effect produced by an obstacle on a train of electric waves. Philos Trans R Soc Lond A Math Phys Sci 212:299–337

    Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York.

    Google Scholar 

  • Makitalo J, Suuriniemi S, Kauranen M (2011) Boundary element method for surface nonlinear optics of nanoparticles. Opt Express 19:23386–23399

    Google Scholar 

  • Maksymov IS, Davoyan AR, Kivshar YS (2011) Enhanced emission and light control with tapered plasmonic nanoantennas. Appl Phys Lett 99:083304

    Google Scholar 

  • Manges JB, Cendes ZJ (1995) A generalized tree-cotree gauge for magnetic field computation. IEEE Trans Magn 31(3):1342–1347

    Google Scholar 

  • Martin-Moreno L, Garcia-Vidal FJ, Lezec HJ, Degiron A, Ebbesen TW (2003) Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys Rev Lett 90:167401

    Google Scholar 

  • Maxwell JC (1865) A dynamical theory of the electromagnetic field. Phil Trans R Soc Lond 155:459–512

    Google Scholar 

  • Merlein J, Kahl M, Zuschlag A et al (2008) Nanomechanical control of an optical antenna. Nat Photonics 2:230–233

    Google Scholar 

  • Michiels B, Bogaert I, Fostier J, Zutter DD (2014) A well-scaling parallel algorithm for the computation of the translation operator in the MLFMA. IEEE Trans Antennas Propag 62(5):2679–2687

    Google Scholar 

  • Mishchenko MI, Travis LD, Mackowski DW (2010) T-Matrix computations of light scattering by nonspherical particles: a review. J Quant Spectrosc Radiat Transf 111:1704–1744

    Google Scholar 

  • Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076

    Google Scholar 

  • Muhlschlegel P, Eisler HJ, Martin OJF et al (2005) Resonant optical antennas. Science 308:1607–1609

    Google Scholar 

  • Nagel LW, Pederson DO (1973) SPICE (Simulation Program with Integrated Circuit Emphasis). Memorandum No. ERL-M382, University of California, Berkeley

    Google Scholar 

  • Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, New York

    Google Scholar 

  • Novotny L, Hulst NV (2011) Antennas for light. Nat Photonics 5:83–90

    Google Scholar 

  • Pellegrini G, Mattei G, Mazzoldi P (2009) Light extraction with dielectric nanoantenna arrays. ACS Nano 3:2715–2721

    Google Scholar 

  • Peng Z, Wang XC, Lee JF (2011) Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects. IEEE Trans Antennas Propag 59(9):3328–3338

    MathSciNet  Google Scholar 

  • Pillegi L, Rohrer R, Visweswariah C (1995) Electronic circuits and system simulation methods. McGraw-Hill, New York

    Google Scholar 

  • Pozar DM (2011) Microwave engineering, 4th edn. Wiley, New York

    Google Scholar 

  • Pu Y, Grange R, Hsieh CL, Psaltis D (2010) Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 104:207402

    Google Scholar 

  • Qian ZG, Chew WC (2008) An augmented electric field integral equation for low frequency electromagnetics analysis. In: IEEE international symposium on antennas and propagation, San Diego

    Google Scholar 

  • Qian Z-G, Chew WC (2009) Fast full-wave surface integral equation solver for multiscale structure modeling. IEEE Trans Antennas Propag 57(11):3594–3601

    MathSciNet  Google Scholar 

  • Qian ZG, Chew WC (2010) Enhanced A-EFIE with perturbation method. IEEE Trans Antennas Propag 58(10):3256–3264

    MathSciNet  Google Scholar 

  • Qiao PF, Sha WEI, Choy WCH, Chew WC (2011) Systematic study of spontaneous emission in a two-dimensional arbitrary inhomogeneous environment. Phys Rev A 83:043824

    Google Scholar 

  • Rahmat-Samii Y, Galindo-Israel V (1980) Shaped reflector antenna analysis using the Jacobi–Bessei series. IEEE Trans Antennas Propag 28(4):427–432

    Google Scholar 

  • Rao SM, Wilton GR, Glisson AW (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418

    Google Scholar 

  • Ren XG, Sha WEI, Choy WCH (2013) Tuning optical responses of metallic dipole nanoantenna using graphene. Opt Express 21:31824–31829

    Google Scholar 

  • Rokhlin V (1990) Rapid solution of integral equations of scattering theory in two dimensions. J Comput Phys 86(2):414–439

    MathSciNet  MATH  Google Scholar 

  • Rong A, Cangellaris AC (2001) Generalized PEEC models for three-dimensional interconnect structures and integrated passives of arbitrary shapes. Digest Electr Perf Electron Packag, Boston, MA 10:225–228

    Google Scholar 

  • Ruehli AE (1972) Inductance calculations in a complex integrated circuit environment. IBM J Res Dev 16(5):470–481

    Google Scholar 

  • Ruehli AE (1974) Equivalent circuit models for three dimensional multiconductor systems. IEEE Trans Microw Theory Tech MTT-22(3):216–221

    Google Scholar 

  • Ruehli AE, Brennan PA (1973) Efficient capacitance calculations for three-dimensional multiconductor systems. IEEE Trans Microw Theory Tech 21(2):76–82

    Google Scholar 

  • Ruehli AE, Antonini G, Esch J, Ekman J, Mayo A, Orlandi A (2003) Non-orthogonal PEEC formulation for time and frequency domain EM and circuit modeling. IEEE Trans Electromagn Compat 45(2):167–176

    Google Scholar 

  • Ruehli A, Antonio G, Jiang LJ (2013) Skin-effect loss models for time- and frequency-domain PEEC solver. Proc IEEE 101(2):451–472

    Google Scholar 

  • Sacks ZS, Kingsland DM, Lee R, Lee JF (1995) A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag 43(12):1460–1463

    Google Scholar 

  • Sha WEI, Meng LL, Choy WCH, Chew WC (2014) Observing abnormally large group velocity at the plasmonic band edge via a universal eigenvalue analysis. Opt Lett 39:158–161

    Google Scholar 

  • Shao H, Hu J, Nie ZP, Han G, He S (2011) Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures. Prog Electromagn Res 113:127–141

    Google Scholar 

  • Shao H, Hu J, Guo H, Ye F, Lu W, Nie Z (2012) Fast simulation of array structures using T-EPA with hierarchical LU decomposition. IEEE Antennas Wirel Propag Lett 11:1556–1559

    Google Scholar 

  • Shao H, Hu J, Chew WC (2013) Solving array structures using single-source equivalence principle algorithm. In: International Conference on Electromagnetics in Advanced Applications (ICEAA),Torino, pp 774–777

    Google Scholar 

  • Shao H, Hu J, Nie Z, Jiang L (2014) Simulation of multiscale structures using equivalence principle algorithm with grid-robust higher order vector basis. J Electromagn Waves Appl 28(11):1333–1346. doi:10.1080/09205071.2014.921123

    Google Scholar 

  • Sommerfeld A (1896) Mathematische Theorie der Diffraction. Math Ann 47(s319):317–374

    MathSciNet  MATH  Google Scholar 

  • Song JM, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45:1488–1493

    Google Scholar 

  • Staude I, Miroshnichenko AE, Decker M et al (2013) Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7:7824–7832

    Google Scholar 

  • Sun S, Jiang LJ, Chew WC (2013a) Enhanced A-EFIE with Calderón multiplicative preconditioner. In: Symposium on antennas and propagation (IEEE APS13), Orlando, FL

    Google Scholar 

  • Sun S, Liu YG, Chew WC, Ma ZH (2013b) Calderón multiplicative preconditioned EFIE with perturbation method. IEEE Trans Antennas Propag 61(1):247–255

    MathSciNet  Google Scholar 

  • Taflove A (1995) Computational electrodynamics: the finite difference time domain method. Artech House, Boston

    MATH  Google Scholar 

  • Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Boston

    Google Scholar 

  • Taminiau TH, Stefani FD, Hulst NFV (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16:10858–10866

    Google Scholar 

  • Tong MS, Chew WC, Rubin BJ, Morsey JD, Jiang L (2009) On the dual basis for solving electromagnetic surface integral equations. IEEE Trans Antennas Propag 57(10):3136–3146

    MathSciNet  Google Scholar 

  • Trefethen LN, Bau D (1997) Numerical Linear Algebra, No. 50, SIAM

    Google Scholar 

  • Tsang L, Kong JA, Ding KH (2000) Scattering of electromagnetic waves: theories and applications. Wiley, New York

    Google Scholar 

  • Ufimtsev PY (2005) Backscatter. Wiley, New York

    Google Scholar 

  • Ufimtsev PY (2008) New insight into the classical macdonald physical optics approximation. IEEE Antennas Propag Mag 50:11–20

    Google Scholar 

  • Valdés F, Andriulli FP, Bağci H, Michielssen E (2011) A Calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects. IEEE Trans Antennas Propag 59(6):2315–2328

    Google Scholar 

  • Van Bladel J (1985) Electromagnetic fields. Hemisphere, New York

    Google Scholar 

  • Vandervorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644

    MathSciNet  Google Scholar 

  • Vecchi G (1999) Loop-star decomposition of basis functions in the discretization of EFIE. IEEE Trans Antennas Propag 47(2):339–346

    MathSciNet  MATH  Google Scholar 

  • Veysoglu ME, Shin RT, Kong JA (1993) A finite-difference time-domain analysis of wave scattering from periodic surfaces-oblique-incidence case. J Electromagn Waves Appl 7:1595–1607

    Google Scholar 

  • Vico-Bondia F, Ferrando-Bataller M, Valero-Nogueira A (2010) A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction. IEEE Trans Antennas Propag 58(3):773–789

    MathSciNet  Google Scholar 

  • Volakis JL, Chaterjee A, Kempel LC (1998) Finite element method electromagnetics: antennas, microwave circuits, and scattering applications. Wiley-IEEE Press, New York

    MATH  Google Scholar 

  • Wagner RL, Otto GP, Chew WC (1993) Fast waveguide mode computation using wavelet-like basis functions. IEEE Microw Guid Wave Lett 3(7):208–210

    Google Scholar 

  • Warwick C (2009) Everything you always wanted to know about SPICE* (*But were afraid to ask). EMC J (Nutwood UK Limited) 82:27–29

    Google Scholar 

  • Weinan E (2012) Principles of multiscale modeling. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Wu YM, Jiang LJ, Chew WC (2012a) An efficient method for computing highly oscillatory physical optics integral. In: Symposium on antennas and propagation (IEEE APS12), Chicago, IL

    Google Scholar 

  • Wu YM, Jiang LJ, Chew WC (2012b) An efficient method for computing highly oscillatory physical optics integral. Prog Electromagn Res PIER 127:211–257

    Google Scholar 

  • Wu YM, Jiang LJ, Chew WC (2013a) Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method. J Comput Phys 236:408–425

    MathSciNet  MATH  Google Scholar 

  • Wu YM, Jiang LJ, Chew WC (2013b) Reducing computational workload of electromagnetic scattered fields from electrically large quadratic surface at high frequency. In: Symposium on antennas and propagation (IEEE APS13), Orlando, FL

    Google Scholar 

  • Wu YM, Jiang LJ, Sha WEI, Chew WC (2013c) The numerical steepest descent path method for calculating physical optic integrals on smooth conducting surfaces. IEEE Trans Antennas Propag 61(8):4183–4193

    MathSciNet  Google Scholar 

  • Wu YM, Jiang LJ, Chew WC (2014) The contour deformation method for calculating the high frequency scattered fields by the Fock current on the surface of the 3-D convex cylinder. In: Symposium on antennas and propagation (IEEE APS14)

    Google Scholar 

  • Xiong XYZ, Jiang LJ, Lo YH, Chew WC (2014) Second-harmonic generation in metal nanoparticles modeling by surface integral equation. In: 2014 I.E. international symposium on antennas and propagation and USNC-URSI radio science meeting, Memphis

    Google Scholar 

  • Yaghjian AD (1984) Equivalence of surface current and aperture field integrations for reflector antennas. IEEE Trans Antennas Propag 32(12):1355–1358

    Google Scholar 

  • Yaghjian AD, Shore RA, Woodworth MB (1996) Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces. Radio Sci 31(12):1681–1695

    Google Scholar 

  • Yagi H, Uda S (2014) Projector of the sharpest beam of electric waves. Proc Imp Acad Jpn (Imp Acad) 2(2):49–52. Retrieved Sept 11, 2014

    Google Scholar 

  • Yao Y, Kats MA, Genevet P et al (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:1257–1264

    Google Scholar 

  • Ye YQ, He SL (2010) 90 degrees polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl Phys Lett 96:203501

    Google Scholar 

  • Ye YQ, Jin Y, He SL (2010) Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J Opt Soc Am B 27:498–504

    Google Scholar 

  • Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans Antennas Propag 14:302–307

    MATH  Google Scholar 

  • Yonekura J, Ikeda M, Baba T (1999) Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method. J Light Technol 17:1500–1508

    Google Scholar 

  • Yu ZF, Raman A, Fan SH (2010) Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci 107:17491–17496

    Google Scholar 

  • Zhang Y, Cui TJ, Chew WC, Zhao JS (2003) Magnetic field integral equation at very low frequencies. IEEE Trans Antennas Propag 51(8):1864–1871

    Google Scholar 

  • Zhang J, Xu B, Cui TJ (2014) An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces. IEEE Trans Antennas Propag 62(2):986–991

    Google Scholar 

  • Zhao JS, Chew WC (2000) Integral equation solution of Maxwell’s equations from zero frequency to microwave frequency. IEEE Trans Antennas Propag 48(10):1635–1645

    MathSciNet  Google Scholar 

  • Zhao K, Vouvakis M, Lee JF (2004) Application of the multilevel adaptive cross-approximation on ground plane designs. IEEE Int Symp Electromagn Compat 1:124–127

    Google Scholar 

  • Zhu Y, Cangellaris AC (2006) Multigrid finite element methods for electromagnetic field modeling. Wiley-IEEE Press, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. Chew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Chew, W.C. et al. (2015). Numerical Modeling in Antenna Engineering. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Numerical Modeling in Antenna Engineering
    Published:
    17 November 2016

    DOI: https://doi.org/10.1007/978-981-4560-75-7_6-2

  2. Original

    Numerical Modeling in Antenna Engineering
    Published:
    07 March 2015

    DOI: https://doi.org/10.1007/978-981-4560-75-7_6-1