Skip to main content

Part of the book series: Indoor Environment and Sustainable Building ((IESB))

  • 368 Accesses

Abstract

Adaptive thermal comfort is one of the approaches to understanding and predicting human thermal comfort in the building environment. Different from the heat balance approach that emphasizes the physical aspects of thermal comfort, the adaptive approach encourages thermally variable solutions, such as climate-responsive and energy-conserving designs, and innovative mechanical systems that allow for personal control, and therefore reduce the energy consumption of the building environment conditioning. This chapter briefly introduces why adaptive thermal comfort can attract so much research attention in the first two decades of the twenty-first century alongside the rational heat balance models. The fundamentals of building occupants’ thermal adaptation were interpreted from three layers, e.g. behavioral adjustment, psychological adaptation, and physiological acclimation. Then the progress in adaptive comfort model development and relevant regulatory documents was summarized. At last, the future challenges and opportunities of adaptive thermal comfort were shortly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ANSI/ASHRAE (2020) ANSI/ASHRAE Standard 55–thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, USA

    Google Scholar 

  2. IEA (2018) The future of cooling. IEA, Paris. https://www.iea.org/reports/the-future-of-cooling

  3. IEA (2022) Heating. IEA, Paris. https://www.iea.org/reports/heating

  4. ISO (2005) Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Ergonomics of the Thermal Environment. International Organization for Standards, Geneva

    Google Scholar 

  5. Fanger PO (1970) Thermal comfort. In: Analysis and applications in environmental engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  6. Fiala D, Havenith G, Bröde P et al (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441

    Article  Google Scholar 

  7. Nicol JF, Humphreys MA (1973) Thermal comfort as part of a self-regulating system. Build Res Pract 1:174–179

    Article  Google Scholar 

  8. de Dear RJ, Brager GS (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104:1–18

    Google Scholar 

  9. Parkinson T, de Dear R, Brager G (2020) Nudging the adaptive thermal comfort model. Energy Build 206:109559

    Article  Google Scholar 

  10. de Dear RJ et al (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461

    Article  Google Scholar 

  11. de Dear R, Fountain M (1994) Field experiments on occupant comfort and office thermal environments in a hot-humid climate. ASHRAE Trans 100:457–475

    Google Scholar 

  12. Cena K, de Dear R (1999) Field study of occupant comfort and office thermal environments in a hot, arid climate. ASHRAE Trans 105:204–217

    Google Scholar 

  13. Kaczmarczyk J, Melikov A, Sliva D (2010) Effect of warm air supplied facially on occupants’ comfort. Build Environ 45:848–855

    Article  Google Scholar 

  14. Cao X, Dai X, Liu J (2016) Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build 128:198–213

    Article  Google Scholar 

  15. Chen Y, Shen H, Smith KR et al (2018) Estimating household air pollution exposures and health impacts from space heating in rural China. Environ Int 119:117124

    Article  Google Scholar 

  16. Wang Z, de Dear R, Luo M et al (2018) Individual difference in thermal comfort: a literature review. Build Environ 138:181–193

    Article  Google Scholar 

  17. Fanger PO, Toftum J (2022) Extension of the PMV model to non-air-conditioned buildings in warm climates. Energ Build 34(6):533–536

    Article  Google Scholar 

  18. de Dear R (1998) A global database of thermal comfort field experiments. ASHRAE Trans 104(1b):1141–1152

    Google Scholar 

  19. Humphreys MA (1978) Outdoor temperatures and comfort indoors. Build Res Pract 6(2):92–105

    Google Scholar 

  20. Busch JF (1992) A tale of two populations: thermal comfort in air-conditioned and naturally ventilated offices in Thailand. Energ Build 18:235–249

    Article  Google Scholar 

  21. de Dear R, Leow KG, Foo SC (1991) Thermal comfort in the humid tropics: field experiments in air-conditioned and naturally ventilated buildings in Singapore. Int J Biometeorol 34:259–265

    Article  Google Scholar 

  22. Zhou X (2008) Study on influencing factors and evaluation indexes for human thermal sensation in warm conditions. PhD Thesis, Beijing: Tsinghua University

    Google Scholar 

  23. Cao B (2012) Research on the impacts of climate and built environment on human thermal adaptation. PhD Thesis, Beijing: Tsinghua University

    Google Scholar 

  24. Yan H (2013) Study on adaptive thermal comfort on the basis of regions and climates of China. PhD Thesis., Xi’an, Xi’an University of Architecture & Technology

    Google Scholar 

  25. Luo M, Cao B, Zhou X et al (2014) Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energ Build 72:411–418

    Article  Google Scholar 

  26. Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energ Build 27(1):83–96

    Article  Google Scholar 

  27. Zhang Y, Zhao R (2010) Literature review and discussion on human thermal adaptation in built environment. J HV&AC 40(9):38–48 (in chinese)

    Google Scholar 

  28. Karjalainen S (2012) Thermal comfort and gender: a literature review. Indoor Air 22(2):96–109

    Article  Google Scholar 

  29. Indraganti M, Rao K (2010) Effect of age, gender, economic group and tenure on thermal comfort: a field study in residential buildings in bot and dry climate with seasonal variations. Energ Build 42(3):273–281

    Article  Google Scholar 

  30. Schiavon S, Lee K (2013) Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Build Environ 59:250–260

    Article  Google Scholar 

  31. Zhai Y, Elsworth C, Arens E et al (2015) Using air movement for comfort during moederate exercise. Build Environ 94(1):344–352

    Article  Google Scholar 

  32. Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Trans 104(1):991–1004

    Google Scholar 

  33. Zhai Y, Zhang H, Zhang Y et al (2013) Comfort under personally controlled air movement in warm and humid environments. Build Environ 65:109–117

    Article  Google Scholar 

  34. Huang L, Ouyang Q, Zhu Y, Jiang L (2013) A study about the demand for air movement in warm environment. Build Environ 61:27–33

    Article  Google Scholar 

  35. Candido C, de Dear R, Lamberts R, Bittencourt L (2010) Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Build Environ 45(1):222–229

    Article  Google Scholar 

  36. Zhang H, Arens E, Kim DE et al (2010) Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system. Build Environ 45:29–39

    Article  Google Scholar 

  37. Zhang H, Arens E, Pasut W (2011) Air temperature thresholds for indoor comfort and perceived air quality. Build Res Inform 39:134–144

    Article  Google Scholar 

  38. Bauman F, Carter T, Baughman A, Arens E (1998) Field study of the impact of a desktop task/ambient conditioning system in office buildings. ASHRAE Trans 104(98):1153–1171

    Google Scholar 

  39. Zhang H, Arens E, Zhai Y (2015) A review of the corrective of personal comfort systems in non-neutral ambient environments. Build Environ 91:15–41

    Article  Google Scholar 

  40. Wong NH, Khoo SS (2003) Thermal comfort in classrooms in the tropics. Energ Build 35(4):337–351

    Article  Google Scholar 

  41. Zhang G, Zheng C, Yang W et al (2007) Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. Indoor Built Environ 16(2):148–158

    Article  Google Scholar 

  42. Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide of designing urban spaces. Energ Build 35(1):95–101

    Article  Google Scholar 

  43. Zhou X, Zhu Y, Qin O et al (2014) Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort. Indoor Air 24(2):171–177

    Article  Google Scholar 

  44. Luo M, Cao B, Ji W et al (2016) The underlying linkage between personal control and thermal comfort: psychological or physical effects? Energ Build 111:56–63

    Article  Google Scholar 

  45. Leaman A, Bordass B (2007) Are users more tolerant of ‘green’ buildings? Build Res Inform 35(6):662–673

    Article  Google Scholar 

  46. Leaman A, Bordass B (2001) Assessing building performance in use 4: the probe occupant surveys and their implications. Build Res Inform 29(2):129–143

    Article  Google Scholar 

  47. van Marken Lichtenbelt W, Kingma B, et al (2014) Cold exposure-an approach to increasing energy expenditure in humans. Trends Endocrinol Metab 25(4):165–167

    Google Scholar 

  48. Hanssen M, Hoeks J, Brans B et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21(8):863–865

    Article  Google Scholar 

  49. Pallubinsky H, Schellen L, Kingma B, van Marken Lichtenbelt W (2015) Human thermalneutral zone and thermal comfort zone: effects of mild heat acclimation. Extreme Physiol Med 4(1):1

    Google Scholar 

  50. Yu J (2012) Studies on the effects of physiological acclimation on thermal responses of people accustomed to different thermal indoor environments. PhD Thesis, Shanghai, Donghua University

    Google Scholar 

  51. Luo M (2017) The dynamics and mechanism of human thermal adaptation in building environment. PhD Thesis, Beijing, Tsinghua University

    Google Scholar 

  52. Yang L, Wang X, Li M et al (2020) Carbon dioxide generation rates of different age and gender under various activity levels. Build Environ 186:107317

    Article  Google Scholar 

  53. Luo M, Zhou X, Zhu Y, Sundell J (2016) Revisiting an overlooked parameter in thermal comfort studies, the metabolic rate. Energ Build 118:152–159

    Article  Google Scholar 

  54. Rupp RF, Kazanci OB, Toftum J (2021) Investigating current trends in clothing insulation using a global thermal comfort database. Energ Build 252:111431

    Article  Google Scholar 

  55. Liu H, Wu Y, Li B et al (2017) Seasonal variation of thermal sensations in residential buildings in the hot summer and cold winter zone of China. Energ Build 140:9–18

    Article  Google Scholar 

  56. Luo M, Wang Z, Brager G et al (2018) Indoor climate experience, migration, and thermal comfort expectation in buildings. Build Environ 141:262–272

    Article  Google Scholar 

  57. Liu Y, Dong Y, Song C et al (2020) Dynamic process of behavioral adaptation of migrants with different thermal experiences: a long-term follow-up field survey. Energ Build 207(15):109605

    Article  Google Scholar 

  58. Carlucci S, Bai L, de Dear R, Yang L (2018) Review of adaptive thermal comfort models in built environmental regulatory documents. Build Environ 137:73–89

    Article  Google Scholar 

  59. Yao R, Li B, Liu J (2009) A theoretical adaptive model of thermal comfort–adaptive predicted mean vote. Build Environ 44:2089–2096

    Article  Google Scholar 

  60. Schweiker M, Wagner A (2015) A framework for an adaptive thermal heat balance model (ATHB). Build Environ 94:252–262

    Article  Google Scholar 

  61. Li B, Yao R, Wang Q, Pan Y (2014) An introduction to the Chinese evaluation standard for the indoor thermal environment. Energ Build 82:27–36

    Article  Google Scholar 

  62. de Dear R, Xiong J, Kim J, Cao B (2014) A review of adaptive thermal comfort research since 1998. Energy Build 214:109893

    Article  Google Scholar 

  63. Nicol F, Humphreys MC (2010) Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Build Environ 45:11–17

    Article  Google Scholar 

  64. CEN/TC (2015) Energy performance of buildings–part 1: indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics–module M1–6 (EN 16798–1). In: Avenue Marnix 17, B-1000 Brussels: Technical Committee CEN/TC 156

    Google Scholar 

  65. van der Linden AC, Boerstra AC, Raue AK et al (2006) Adaptive temperature limits: a new guideline in The Netherlands: a new approach for the assessment of building performance with respect to thermal indoor climate. Energ Build 38:8–17

    Article  Google Scholar 

  66. van der Linden AC, Yang J et al (2007) Indoor climate guidelines in The Netherlands. Constr Innov 7:72–84

    Article  Google Scholar 

  67. Boerstra AC, Hoof J, Weele AM (2014) A new hybrid thermal comfort guideline for The Netherlands: background and development. Arch Sci Rev 58:24–34

    Article  Google Scholar 

  68. MOHURD (2012) Evaluation standard for indoor thermal environment in civil buildings (GB/T 50785). Ministry of Housing and Urban-Rural Development (MOHURD), Beijing, China

    Google Scholar 

  69. Bureau of Indian Standards (2016) National building code, clause 6.2, part 8 building services, section 3, air conditioning, heating, and mechanical ventilation, vol 2, p 19. Bureau of Indian Standard

    Google Scholar 

  70. Licina VF, Cheung T, Zhang H et al (2018) Development of the ASHRAE global thermal comfort database II. Build Environ 141:502–512

    Article  Google Scholar 

  71. Luo M, Xie J, Yan Y et al (2020) Comparing machine learning algorithms in predicting thermal sensation using ASHRAE comfort database II. Energ Build 210:109776

    Article  Google Scholar 

  72. Yang B, Li X, Hou Y et al (2020) Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses–a review. Energ Build 224:110261

    Article  Google Scholar 

  73. Zhou X, Xu L, Zhang J, et al (2022) Development of data-driven thermal sensation prediction model using quality-controlled databases. Build Simul 15:2111–2125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohui Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, M. (2023). Adaptive Thermal Comfort. In: Wang, F., Yang, B., Deng, Q., Luo, M. (eds) Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality. Indoor Environment and Sustainable Building. Springer, Singapore. https://doi.org/10.1007/978-981-99-0718-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0718-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0717-5

  • Online ISBN: 978-981-99-0718-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics