Skip to main content

Atmospheric Pressure Plasma Jets and Their Interaction with Dielectric Surfaces

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Abstract

In this Chapter, we present the results from the 2-dimentional computational study of the interaction of plasma jets with conductive and non-conductive dielectric targets and metal surfaces. We provide a brief introduction to the modelling tools used in the simulations. Then, we demonstrate the behaviour of helium and argon jets and compare their characteristics. The affects of a helium plasma jet interacting with dielectric plates having different dielectric properties are discussed followed by examples of an ionization wave splitting at the edge of a plate positioned at a grazing angle to the jet axis. We also consider the production and delivery of main ions and reactive neutral species to the treated targets and estimate the energy of positive and negative ions arriving to surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Laroussi, T. Akan, Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process. Polym. 4, 777–788 (2007)

    Article  Google Scholar 

  2. T. Shao, Y. Zhou, C. Zhang, W. Yang, Z. Niu, C. Ren, Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum. IEEE Trans. Diel. El. Insul. 22, 1747 (2015)

    Article  Google Scholar 

  3. R. Wang, Y. Shen, C. Zhang, P. Yan, T. Shao, Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface. Appl. Surf. Sci. 367, 401–406 (2016)

    Article  ADS  Google Scholar 

  4. N.Y. Babaeva, G.V. Naidis, Modeling of plasmas for biomedicine. Trends Biotechnol. 36, 603–614 (2018)

    Article  Google Scholar 

  5. M. Laroussi, M. Kong, G. Morfill, W. Stolz (eds.), Plasma Medicine: Applications of Low-Temperature Gas Plasmas in Medicine and Biology (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  6. X. Lu, M. Laroussi, V. Puech, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21, 034005 (2012)

    Article  ADS  Google Scholar 

  7. N. Jiang, A. Ji, Z. Cao, Atmospheric pressure plasma jet: effect of electrode configuration, discharge behavior, and its formation mechanism. J. Appl. Phys. 106, 013308 (2009)

    Article  ADS  Google Scholar 

  8. D. Maletic, N. Puac, G. Malovic, A. Dordevic, Z.L. Petrovic, The influence of electrode configuration on light emission profiles and electrical characteristics of an atmospheric pressure plasma jet. J. Phys. D: Appl. Phys. 50, 145202 (2017)

    Article  ADS  Google Scholar 

  9. F. Liu, B. Zhang, Zh. Fang, M. Wan, H. Wan, Kostya (Ken) Ostrikov, Jet-to-jet interactions in atmospheric-pressure plasma jet arrays for surface processing. Plasma Process Polym. e1700114 (2017).

    Google Scholar 

  10. N.Y. Babaeva, M.J. Kushner, Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air. Plasma Sources Sci. Technol. 23, 015007 (2014)

    Google Scholar 

  11. N.Y. Babaeva, G.V. Naidis, V.A. Panov, R. Wang, Y. Zhao, T. Shao, Interaction of argon and helium plasma jets and jets arrays with account for gravity. Phys. Plasmas 25, 063507 (2018)

    Article  ADS  Google Scholar 

  12. L. Bischoff, G. Hubner, I. Korolov, Z. Donko, P. Hartmann, T. Gans, J. Held, V. Schulz-von der Gathen, Y. Liu, T. Mussenbrock, J. Schulze, Experimental and computational investigations of electron dynamics in micro atmospheric pressure radio-frequency plasma jets operated in He/N2 mixtures. Plasma Sources Sci. Technol. 27, 125009 (2018)

    Article  ADS  Google Scholar 

  13. M. Teschke, J. Kedziersk, E.G. Finantu-Dinu, D. Korzec, J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans. Plasma Sci. 33, 2 (2005)

    Article  Google Scholar 

  14. E. Karakas, M.A. Akman, M. Laroussi, The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements. Plasma Sources Sci. Technol. 21, 034016 (2012)

    Article  ADS  Google Scholar 

  15. N. Mericam-Bourdet, M. Laroussi, A. Begum, E. Karakas, Experimental investigations of plasma bullets. J. Phys. D: Appl. Phys. 42, 055207 (2009)

    Article  ADS  Google Scholar 

  16. M.G. Kong, B.N. Ganguly, R.F. Hicks, Plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21, 030201 (2012)

    Article  ADS  Google Scholar 

  17. T. Gerling, A.V. Nastuta, R. Bussiahn, E. Kindel, K-D. Weltmann, Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures. Plasma Sources Sci. Technol. 21, 034012 (2012)

    Google Scholar 

  18. J.P. Boeuf, L.L. Yang, L.C. Pitchford, Dynamics of a guided streamer (“plasma bullet”) in a helium jet in air at atmospheric pressure. J. Phys. D: Appl. Phys. 46, (2013)

    Google Scholar 

  19. A. Schmidt-Bleker, S.A. Norberg, J. Winter, E. Johnsen, S. Reuter, K.D. Weltmann, M.J. Kushner, Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas. Plasma Sources Sci. Technol. 24, 035022 (2015)

    Google Scholar 

  20. R. Wang, Y. Gao, C. Zhang, P. Yan, T. Shao, Dynamics of plasma bullets in a microsecond pulse driven atmospheric pressure He plasma jet. IEEE Trans. Plasma Sci. 44, 393–397 (2016)

    Article  ADS  Google Scholar 

  21. D.B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D: Appl. Phys. 45, 263001 (2012)

    Article  ADS  Google Scholar 

  22. Y. Akishev, G. Aponin, A. Petryakov, N. Trushkin, On the composition of reactive species in air plasma jets and their influence on the adhesion of polyurethane foam to low-pressure polyethylene. J. Phys. D: Appl. Phys. 51, 274006 (2018)

    Article  ADS  Google Scholar 

  23. G.E. Morfill, M.G. Kong, J.L. Zimmermann, Focus on plasma medicine. New J. Phys. 11, 115011 (2009)

    Article  ADS  Google Scholar 

  24. M. Laroussi, Low-temperature plasmas for medicine? IEEE Trans. Plasma Sci. 37, 714–725 (2009)

    Article  ADS  Google Scholar 

  25. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, Plasma medicine: an introductory review. New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  26. D.B. Graves, Reactive species from cold atmospheric plasma: implications for cancer therapy. Plasma Process. Polym. 11, 1120–1127 (2014)

    Article  Google Scholar 

  27. T. von Woedtkea, S. Reuter, K. Masura, K.-D. Weltmann, Plasmas for medicine. Phys. Reports 530, 291–320 (2013)

    Article  ADS  Google Scholar 

  28. T. Nosenko, T. Shimizu, G.E. Morfill, Designing plasmas for chronic wound disinfection. New J. Phys. 11, 115013 (2009)

    Article  ADS  Google Scholar 

  29. G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008)

    Article  Google Scholar 

  30. M. Keidar, A. Shashurin, O. Volotskova, M. Stepp, P. Srinivasan, A. Sandler, B. Trink, Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20, 057101 (2013)

    Article  ADS  Google Scholar 

  31. J.K. Lee, M.S. Kim, J.H. Byun, K.T. Kim, G.C. Kim, G.Y. Park, Biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Jpn. J. Appl. Phys. 50, 08JF01 (2011)

    Google Scholar 

  32. M. Keidar, Plasma for cancer treatment. Plasma Sources Sci. Technol. 24, 033001 (2015)

    Article  ADS  Google Scholar 

  33. J.S. Sousa, K. Niemi, L.J. Cox, Q. Th Algwari, T. Gans, D. O’Connell, Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications. J. Appl. Phys. 109, 123302 (2011)

    Article  ADS  Google Scholar 

  34. S. Reuter, H. Tresp, K. Wende, M. Hammer, J. Winter, K. Masur, A. Schmidt-Bleker, K.-D. Weltmann, From RONS to ROS: tailoring plasma jet treatment of skin cells. IEEE Trans. Plasma Sci. 40, 2986 (2012)

    Article  ADS  Google Scholar 

  35. M.J. Pavlovich, D.S. Clark, D.B. Graves, Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci. Technol. 23, 065036 (2014)

    Google Scholar 

  36. X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Reports 630, 1–84 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. X. Lu, G.V. Naidis, M. Laroussi, K. Ostrikov, Guided ionization waves: theory and experiments. Phys. Rep. 540, 123–166 (2014)

    Article  ADS  Google Scholar 

  38. G. Park, S. Park, M. Choi, I. Koo, J. Byun, J. Hong, J. Sim, G. Collins, J. Lee, Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 21, 043001 (2012)

    Article  ADS  Google Scholar 

  39. J. Winter, R. Brandenburg, K.-D. Weltmann, Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci. Technol. 24, 064001 (2015)

    Article  ADS  Google Scholar 

  40. E.C. Neyts, M. Yusupov, Ch.C. Verlackt, A. Bogaerts, Computer simulations of plasma–biomolecule and plasma–tissue interactions for a better insight in plasma Medicine. J. Phys. D: Appl. Phys. 47, 293001 (2014)

    Article  Google Scholar 

  41. A. Bogaerts, M. Yusupov, J. Van der Paal, C.C.W. Verlackt, E.C. Neyts, Reactive molecular dynamics simulations for a better insight in plasma medicine. Plasma Process. Polym. 11, 1156–1168 (2014)

    Article  Google Scholar 

  42. A. Bogaerts, N. Khosravian, J. Van der Paal, C.C.W. Verlackt, M. Yusupov, B. Kamaraj, E.C. Neyts, Multi-level molecular modelling for plasma medicine. J. Phys. D: Appl. Phys. 49, 054002 (2016)

    Article  ADS  Google Scholar 

  43. D.B. Graves, P. Brault, Molecular dynamics for low temperature plasma–surface interaction studies. J. Phys. D: Appl. Phys. 42, 194011 (2009)

    Article  ADS  Google Scholar 

  44. M.J. Kushner, Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design. J. Phys. D: Appl. Phys. 42, 194013 (2009)

    Article  ADS  Google Scholar 

  45. S. Norberg, E. Johnsen, M.J. Kushner, Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air. Plasma Sources Sci. Technol. 24, 035026 (2015)

    Article  ADS  Google Scholar 

  46. N.Y. Babaeva, D.V. Tereshonok, G.V. Naidis, Fluid and hybrid modelling of nanosecond surface discharges: effect of polarity and secondary electrons emission. Plasma Sources Sci. Technol. 25, 044008 (2016)

    Google Scholar 

  47. A.C. Gentile, M.J. Kushner, Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. J. Appl. Phys. 78, 2074–2085 (1995)

    Article  ADS  Google Scholar 

  48. R. Dorai, M.J. Kushner, Effect of multiple pulses on the plasma chemistry during the remediation of NOx using dielectric barrier discharges. J. Phys. D: Appl. Phys. 34, 574–83 (2001)

    Google Scholar 

  49. N.Y. Babaeva, R.A. Arakoni, M.J. Kushner, Production of O2(1Δ) in flowing plasmas using spiker-sustainer excitation. J. Appl. Phys. 99, 113306 (2006)

    Article  ADS  Google Scholar 

  50. N.Y. Babaeva, M.J. Kushner, Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J. Phys. D: Appl. Phys. 46, 025401 (2013)

    Article  ADS  Google Scholar 

  51. I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures. Plasma Sources Sci. Technol. 1, 207 (1992)

    Article  ADS  Google Scholar 

  52. G.V. Naidis, On photoionization produced by discharges in air. Plasma Sources Sci Technol. 15, 253 (2006)

    Article  ADS  Google Scholar 

  53. A. Bourdon, V.P. Pasko, N.Y. Liu, S. Célestin, P. Ségur, E. Marode, Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Sources Sci. Technol. 16, 656 (2007)

    Article  ADS  Google Scholar 

  54. A. Luque, U. Ebert, C. Montijn, W. Hundsdorfer, Photoionisation in negative streamers: fast computations and two propagation modes. Appl. Phys. Lett. 90, 081501 (2007)

    Article  ADS  Google Scholar 

  55. M.M. Nudnova, A.Y. Starikovskii, Streamer head structure: role of ionization and photoionization. J. Phys. D 41, 234003 (2008)

    Article  ADS  Google Scholar 

  56. G. Naidis, Modelling of plasma bullet propagation along a helium jet in ambient air. J. Phys. D Appl. Phys. 44, 215203 (2011)

    Article  ADS  Google Scholar 

  57. G. Naidis, Simulation of streamers propagating along helium jets in ambient air: polarity-induced effects. Appl. Phys. Lett. 98, 141501 (2011)

    Article  ADS  Google Scholar 

  58. Y.S. Seo, A.-A.H. Mohamed, K.C. Woo, H.W. Lee, J.K. Lee, K.T. Kim, Comparative studies of atmospheric pressure plasma characteristics between He and Ar working gases for sterilization. IEEE Trans. Plasma Sci. 38, 2954–2962 (2010)

    Article  ADS  Google Scholar 

  59. X.-J. Shao, N. Jiang, G.-J. Zhang, Z.-X. Cao, Comparative study on the atmospheric pressure plasma jets of helium and argon. Appl. Phys. Lett. 101, 253509 (2012)

    Article  ADS  Google Scholar 

  60. T. Shao, C. Zhang, R. Wang, Y. Zhou, Q. Xie, Z. Fang, Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses. IEEE Trans. Plasma Sci. 43, 726–732 (2015)

    Article  ADS  Google Scholar 

  61. E. Karakas, M. Koklu, M. Laroussi, Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets. J. Phys. D: Appl. Phys. 43, 155202 (2010)

    Article  ADS  Google Scholar 

  62. N.Y. Babaeva, G.V. Naidis, V.A. Panov, R. Wang, S. Zhang, C. Zhang, T. Shao, Plasma bullet propagation and reflection from metallic and dielectric targets. Plasma Sources Sci. Technol. 28, 095006 (2019)

    Article  ADS  Google Scholar 

  63. G. Borcia, C.A. Anderson, N.M.D. Brown, The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Appl. Surface Sci. 221, 203–214 (2004)

    Article  ADS  Google Scholar 

  64. C. Sarra-Bournet, S. Turgeon, D. Mantovani, G. Laroche, A study of atmospheric pressure plasma discharges for surface functionalization of PTFE used in biomedical applications. J. Phys. D: Appl. Phys. 39, 3461–3469 (2006)

    Article  ADS  Google Scholar 

  65. O. Guaitella, A. Sobota, The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface. J. Phys. D: Appl. Phys. 48, 255202 (2015)

    Article  ADS  Google Scholar 

  66. E. Slikboer, A. Sobota, O. Guaitella, E. Garcia-Caurel, Electric field and temperature in a target induced by a plasma jet imaged using Mueller polarimetry. J. Phys. D: Appl. Phys. 51, 025204 (2018)

    Article  ADS  Google Scholar 

  67. B.L.M. Klarenaar, O. Guaitella, R. Engeln, A. Sobota, How dielectric, metallic and liquid targets influence the evolution of electron properties in a pulsed He jet measured by Thomson and Raman scattering. Plasma Sources Sci. Technol. 27, 085004 (2018)

    Article  ADS  Google Scholar 

  68. A. Sobota, O. Guaitella, G.B. Sretenović, V.V. Kovacević, E. Slikboer, I.B. Krstić, B.M. Obradović, M.M. Kuraica, Plasma-surface interaction: dielectric and metallic targets and their influence on the electric field profile in a kHz AC-driven He plasma jet. Plasma Sources Sci. Technol. 28, 045003 (2019)

    Article  ADS  Google Scholar 

  69. R. Wang, H. Xu, Y. Zhao, W. Zhu, K. Ostrikov, T. Shao, Effect of dielectric and conductive targets on plasma jet behaviour and thin film properties. J. Phys. D: Appl. Phys. 52, 074002 (2019)

    Google Scholar 

  70. R. Wang, H. Xu, Y. Zhao, W. Zhu, C. Zhang, T. Shao, Spatial–temporal evolution of a radial plasma jet array and its interaction with material. Plasma Chem. Plasma Process. 39, 187–203 (2019)

    Google Scholar 

  71. Y.S. Akishev, V.B. Karalnik, M.A. Medvedev, A.V. Petryakov, N.I. Trushkin, A.G. Shafikov, The shape of DBD plasma jet striking into the static and quickly moving dielectric and metallic substrate. J. Phys.: Conf. Ser. 927, 012039 (2017)

    Google Scholar 

  72. S.A. Norberg, E. Johnsen, M.J. Kushner, Helium atmospheric pressure plasma jets touching dielectric and metal surfaces. J. Appl. Phys. 118, 013301 (2015)

    Article  ADS  Google Scholar 

  73. S.A. Norberg, W. Tian, E. Johnsen, M.J. Kushner, Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid. J. Phys. D: Appl. Phys. 47, 475203 (2015)

    Article  Google Scholar 

  74. C. Lazarou, C. Anastassiou, I. Topala, A.S. Chiper, I. Mihaila, V. Pohoata, G.E. Georghiou, Numerical simulation of capillary helium and helium−oxygen atmospheric pressure plasma jets: propagation dynamics and interaction with dielectric. Plasma Sources Sci. Technol. 27, 105007 (2018)

    Article  ADS  Google Scholar 

  75. P. Viegas, E. Slikboer, A. Obrusník, Z. Bonaventura, A. Sobota, E. Garcia-Caurel, O. Guaitella, A. Bourdon, Investigation of a plasma–target interaction through electric field characterization examining surface and volume charge contributions: modeling and experiment. Plasma Sources Sci. Technol. 27, 094002 (2018)

    Article  ADS  Google Scholar 

  76. L. Martinez, A. Dhruv, L. Lin, E. Balaras, M. Keidar, Interaction between a helium atmospheric plasma jet and targets and dynamics of the interface. Plasma Sources Sci. Technol. 28, 115002 (2019)

    Article  ADS  Google Scholar 

  77. J. Jiang, P.J. Bruggeman, Spatially resolved absolute densities of reactive species and positive ion flux in He-O2 RF-driven atmospheric pressure plasma jet: touching and non-touching with dielectric substrate. J. Phys. D: Appl. Phys. 53, 28LT01 (2020)

    Google Scholar 

  78. N.Y. Babaeva, G.V. Naidis, Reactive fluxes delivered by plasma jets to conductive dielectric surfaces during multiple reflections of ionization waves. J. Appl. Phys. 128, 203301 (2020)

    Google Scholar 

  79. X. Damany, S. Pasquiers, N. Blin-Simiand, G. Bauville, B. Bournonville, M. Fleury, P. Jeanney, J.S. Sousa, Impact of an atmospheric argon plasma jet on a dielectric surface and desorption of organic molecules. Eur. Phys. J. Appl. Phys. 75, 24713 (2016)

    Article  ADS  Google Scholar 

  80. T.M.C. Nishime, R. Wagner, K.G. Kostov, Study of modified area of polymer samples exposed to a he atmospheric pressure plasma jet using different treatment conditions. Polymers 12, 1028 (2020)

    Article  Google Scholar 

  81. O.T. Olabanji, J.W. Bradley, Side-on surface modification of polystyrene with an atmospheric pressure microplasma jet. Plasma Process. Polym. 9, 929–936 (2012)

    Article  Google Scholar 

  82. G. Parsey, A.M. Lietz, M.J. Kushner, Guided plasma jets directed onto wet surfaces: angular dependence and control. J. Phys. D: Appl. Phys. 54, 045206 (2021)

    Google Scholar 

  83. A.N. Bhoj, M.J. Kushner, Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges. Plasma Sources Sci. Technol. 17, 035024 (2008)

    Article  ADS  Google Scholar 

  84. N.Y. Babaeva, G.V. Naidis, D.V. Tereshonok, C. Zhang, B. Huang, T. Shao, Interaction of helium plasma jet with tilted targets: consequences of target permittivity, conductivity and incidence angle. Plasma Sources Sci.Technol. 30, 115021 (2021)

    Google Scholar 

  85. M. Engelhardt, R. Pothiraja, K. Kartaschew, N. Bibinov, M. Havenith, P. Awakowicz, Interaction of an argon plasma jet with a silicon wafer. J. Phys. D: Appl. Phys. 49, 145201 (2016)

    Article  ADS  Google Scholar 

  86. K. Fricke, H. Steffen, T. von Woedtke, K. Schroder, K.-D. Weltmann, High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process. Polym. 8, 51–58 (2011)

    Article  Google Scholar 

  87. H. Paetzelt, G. Bohm, T. Arnold, Etching of silicon surfaces using atmospheric plasma jets. Plasma Sources Sci. Technol. 24, 025002 (2015)

    Article  ADS  Google Scholar 

  88. P. Luan, A.J. Knoll, H. Wang, V.S.S.K. Kondeti, P.J. Bruggeman, G.S. Oehrlein, Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor. J. Phys. D: Appl. Phys. 50, 03LT02 (2017)

    Google Scholar 

  89. S.M. Starikovskaia, K. Allegraud, O. Guaitella, A. Rousseau, On electric field measurements in surface dielectric barrier discharge. J. Phys. D: Appl. Phys. 43, 124007 (2010)

    Article  ADS  Google Scholar 

  90. M.S. Simeni, E. Baratte, C. Zhang, K. Frederickson, I.V. Adamovich, Electric field measurements in nanosecond pulse discharges in air over liquid water surface. Plasma Sources Sci. Technol. 27, 015011 (2018)

    Article  ADS  Google Scholar 

  91. J.C. Weaver, K.C. Smith, A.T. Esser, R.S. Son, T. Gowrishankar, A brief overview of electroporation pulse strength–duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87, 236–243 (2012)

    Article  Google Scholar 

  92. J.C. Weaver, Y.A. Chizmadzhev, Theory of electroporation: a review. Bioelectrochem. Bioenergetics 41, 135 (1996)

    Article  Google Scholar 

  93. N.Y. Babaeva, M.J. Kushner, Ion Energy and angular distributions onto polymer surfaces delivered by dielectric barrier discharge filaments in air: I. Flat surfaces. Plasma Sources Sci. Technol. 20, 035017 (2011)

    Google Scholar 

  94. N.Y. Babaeva, N. Ning, D.B. Graves, M.J. Kushner, Ion activation energy delivered to wounds by atmospheric pressure dielectric barrier discharges: sputtering of lipid-like surfaces. J. Phys. D: Appl. Phys. 45, 115203 (2012)

    Google Scholar 

  95. A. Agarwal, M.J. Kushner, Effect of nonsinusoidal bias waveforms on ion energy distributions and fluorocarbon plasma etch selectivity. J. Vac. Sci. Technol. A 23, 1440 (2005)

    Google Scholar 

  96. Y. Babaeva, S. Norberg, M.J. Kushner, Dynamics of repetitive plasma bullets in the plasma jets into air, in 41st IEEE International Conference on Plasma Science (Washington DC, May, 2014)

    Google Scholar 

  97. I. Adamovich, S. Agarwal, E. Ahedo, L.L. Alves, S. Baalrud, N. Babaeva et al., The 2022 Plasma Roadmap: low temperature plasma science and technology. J. Phys. D: Appl. Phys. 55, 373001 (2022)

    Article  Google Scholar 

  98. P.J. Bruggeman, F. Iza, R. Brandenburg, Foundations of atmospheric pressure nonequilibrium plasmas. Plasma Sources Sci. Technol. 26, 123002 (2017)

    Article  ADS  Google Scholar 

  99. A. von Keudell, V. Schulz-von der Gathen, Foundations of low-temperature plasma physics - an introduction. Plasma Sources Sci. Technol. 26, 113001 (2017)

    Article  ADS  Google Scholar 

  100. A. Fridman, A. Chirokov, A. Gutsol, Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys. 38, R1–R24 (2005)

    Article  ADS  Google Scholar 

  101. J.J. Lowke, Plasma predictions: past, present and future. Plasma Sources Sci. Technol. 22, 023002 (2013)

    Article  ADS  Google Scholar 

  102. P. Viegas, E. Slikboer, Z. Bonaventura, O. Guaitella, A. Sobota, A. Bourdon, Physics of plasma jets and interaction with surfaces: review on modelling and experiments. Plasma Sources Sci. Technol. 31, 053001 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1026 of November 15, 2021), jointly by the National Key Research and Development Plan of China (2021YFE0114700), and National Natural Science Foundation of China (Grant No. 52011530026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Yu Babaeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babaeva, N.Y., Naidis, G.V., Shao, T., Tarasenko, V.F. (2023). Atmospheric Pressure Plasma Jets and Their Interaction with Dielectric Surfaces. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_21

Download citation

Publish with us

Policies and ethics